Properties

Label 1584.2.o.e.703.1
Level $1584$
Weight $2$
Character 1584.703
Analytic conductor $12.648$
Analytic rank $0$
Dimension $4$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1584,2,Mod(703,1584)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1584, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1584.703");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1584 = 2^{4} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1584.o (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.6483036802\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 176)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 703.1
Root \(-1.18614 + 1.26217i\) of defining polynomial
Character \(\chi\) \(=\) 1584.703
Dual form 1584.2.o.e.703.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.37228 q^{5} +O(q^{10})\) \(q-1.37228 q^{5} -3.31662i q^{11} +6.13592i q^{23} -3.11684 q^{25} -9.30506i q^{31} -12.1168 q^{37} +6.63325i q^{47} -7.00000 q^{49} -6.00000 q^{53} +4.55134i q^{55} -14.6487i q^{59} -16.2333i q^{67} -10.8896i q^{71} -18.8614 q^{89} -0.116844 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 6 q^{5} + 22 q^{25} - 14 q^{37} - 28 q^{49} - 24 q^{53} - 18 q^{89} + 34 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1584\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(353\) \(991\) \(1189\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.37228 −0.613703 −0.306851 0.951757i \(-0.599275\pi\)
−0.306851 + 0.951757i \(0.599275\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 3.31662i − 1.00000i
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.13592i 1.27943i 0.768613 + 0.639713i \(0.220947\pi\)
−0.768613 + 0.639713i \(0.779053\pi\)
\(24\) 0 0
\(25\) −3.11684 −0.623369
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) − 9.30506i − 1.67124i −0.549309 0.835619i \(-0.685109\pi\)
0.549309 0.835619i \(-0.314891\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −12.1168 −1.99200 −0.995998 0.0893706i \(-0.971514\pi\)
−0.995998 + 0.0893706i \(0.971514\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.63325i 0.967559i 0.875190 + 0.483779i \(0.160736\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 4.55134i 0.613703i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 14.6487i − 1.90710i −0.301239 0.953549i \(-0.597400\pi\)
0.301239 0.953549i \(-0.402600\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 16.2333i − 1.98321i −0.129307 0.991605i \(-0.541275\pi\)
0.129307 0.991605i \(-0.458725\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 10.8896i − 1.29236i −0.763184 0.646181i \(-0.776365\pi\)
0.763184 0.646181i \(-0.223635\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −18.8614 −1.99931 −0.999653 0.0263586i \(-0.991609\pi\)
−0.999653 + 0.0263586i \(0.991609\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −0.116844 −0.0118637 −0.00593185 0.999982i \(-0.501888\pi\)
−0.00593185 + 0.999982i \(0.501888\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 19.8997i 1.96078i 0.197066 + 0.980390i \(0.436859\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −13.3723 −1.25796 −0.628979 0.777422i \(-0.716527\pi\)
−0.628979 + 0.777422i \(0.716527\pi\)
\(114\) 0 0
\(115\) − 8.42020i − 0.785188i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.1386 0.996266
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 21.6060 1.84592 0.922961 0.384893i \(-0.125762\pi\)
0.922961 + 0.384893i \(0.125762\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 12.7692i 1.02564i
\(156\) 0 0
\(157\) −20.1168 −1.60550 −0.802749 0.596316i \(-0.796630\pi\)
−0.802749 + 0.596316i \(0.796630\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) − 19.8997i − 1.55867i −0.626608 0.779334i \(-0.715557\pi\)
0.626608 0.779334i \(-0.284443\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 9.89497i 0.739585i 0.929114 + 0.369792i \(0.120571\pi\)
−0.929114 + 0.369792i \(0.879429\pi\)
\(180\) 0 0
\(181\) 3.88316 0.288633 0.144316 0.989532i \(-0.453902\pi\)
0.144316 + 0.989532i \(0.453902\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 16.6277 1.22249
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 1.38219i − 0.100012i −0.998749 0.0500060i \(-0.984076\pi\)
0.998749 0.0500060i \(-0.0159241\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 19.8997i 1.41066i 0.708881 + 0.705328i \(0.249200\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 14.0588i 0.941446i 0.882281 + 0.470723i \(0.156007\pi\)
−0.882281 + 0.470723i \(0.843993\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 28.3505 1.87346 0.936728 0.350058i \(-0.113838\pi\)
0.936728 + 0.350058i \(0.113838\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) − 9.10268i − 0.593794i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 9.60597 0.613703
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 31.6742i − 1.99926i −0.0271858 0.999630i \(-0.508655\pi\)
0.0271858 0.999630i \(-0.491345\pi\)
\(252\) 0 0
\(253\) 20.3505 1.27943
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 8.23369 0.505791
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −30.0000 −1.82913 −0.914566 0.404436i \(-0.867468\pi\)
−0.914566 + 0.404436i \(0.867468\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 10.3374i 0.623369i
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 20.1021i 1.17039i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 33.1662i 1.88069i 0.340229 + 0.940343i \(0.389495\pi\)
−0.340229 + 0.940343i \(0.610505\pi\)
\(312\) 0 0
\(313\) 16.3505 0.924187 0.462093 0.886831i \(-0.347098\pi\)
0.462093 + 0.886831i \(0.347098\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 33.6060 1.88750 0.943750 0.330661i \(-0.107272\pi\)
0.943750 + 0.330661i \(0.107272\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 25.3360i 1.39259i 0.717756 + 0.696295i \(0.245169\pi\)
−0.717756 + 0.696295i \(0.754831\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 22.2766i 1.21710i
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −30.8614 −1.67124
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 27.0951 1.44213 0.721063 0.692869i \(-0.243654\pi\)
0.721063 + 0.692869i \(0.243654\pi\)
\(354\) 0 0
\(355\) 14.9436i 0.793126i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 37.0179i − 1.93232i −0.257948 0.966159i \(-0.583046\pi\)
0.257948 0.966159i \(-0.416954\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) − 6.72582i − 0.345482i −0.984967 0.172741i \(-0.944738\pi\)
0.984967 0.172741i \(-0.0552624\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 35.4333i − 1.81056i −0.424818 0.905279i \(-0.639662\pi\)
0.424818 0.905279i \(-0.360338\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 39.0951 1.98220 0.991100 0.133120i \(-0.0424994\pi\)
0.991100 + 0.133120i \(0.0424994\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 40.1870i 1.99200i
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 33.1662i − 1.62028i −0.586238 0.810139i \(-0.699392\pi\)
0.586238 0.810139i \(-0.300608\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 40.3505 1.93912 0.969561 0.244848i \(-0.0787382\pi\)
0.969561 + 0.244848i \(0.0787382\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 36.4280i 1.73075i 0.501129 + 0.865373i \(0.332918\pi\)
−0.501129 + 0.865373i \(0.667082\pi\)
\(444\) 0 0
\(445\) 25.8832 1.22698
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 5.13859 0.242505 0.121253 0.992622i \(-0.461309\pi\)
0.121253 + 0.992622i \(0.461309\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 41.7716i 1.94129i 0.240515 + 0.970645i \(0.422684\pi\)
−0.240515 + 0.970645i \(0.577316\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 24.1561i − 1.11781i −0.829231 0.558906i \(-0.811221\pi\)
0.829231 0.558906i \(-0.188779\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0.160343 0.00728079
\(486\) 0 0
\(487\) 32.2642i 1.46203i 0.682362 + 0.731014i \(0.260953\pi\)
−0.682362 + 0.731014i \(0.739047\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) − 19.8997i − 0.890835i −0.895323 0.445418i \(-0.853055\pi\)
0.895323 0.445418i \(-0.146945\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −25.3723 −1.12461 −0.562303 0.826931i \(-0.690085\pi\)
−0.562303 + 0.826931i \(0.690085\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 27.3081i − 1.20334i
\(516\) 0 0
\(517\) 22.0000 0.967559
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −29.8397 −1.30730 −0.653650 0.756797i \(-0.726763\pi\)
−0.653650 + 0.756797i \(0.726763\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −14.6495 −0.636933
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 23.2164i 1.00000i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 18.3505 0.772013
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 19.1247i − 0.797555i
\(576\) 0 0
\(577\) −32.1168 −1.33704 −0.668521 0.743693i \(-0.733072\pi\)
−0.668521 + 0.743693i \(0.733072\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 19.8997i 0.824163i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 6.63325i − 0.273784i −0.990586 0.136892i \(-0.956289\pi\)
0.990586 0.136892i \(-0.0437113\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 33.1662i 1.35514i 0.735460 + 0.677568i \(0.236966\pi\)
−0.735460 + 0.677568i \(0.763034\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 15.0951 0.613703
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −42.0000 −1.69086 −0.845428 0.534089i \(-0.820655\pi\)
−0.845428 + 0.534089i \(0.820655\pi\)
\(618\) 0 0
\(619\) − 25.7407i − 1.03461i −0.855802 0.517303i \(-0.826936\pi\)
0.855802 0.517303i \(-0.173064\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.298936 0.0119574
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) − 18.8125i − 0.748914i −0.927244 0.374457i \(-0.877829\pi\)
0.927244 0.374457i \(-0.122171\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −2.39403 −0.0945585 −0.0472793 0.998882i \(-0.515055\pi\)
−0.0472793 + 0.998882i \(0.515055\pi\)
\(642\) 0 0
\(643\) − 20.5822i − 0.811684i −0.913943 0.405842i \(-0.866978\pi\)
0.913943 0.405842i \(-0.133022\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 44.9407i − 1.76680i −0.468617 0.883402i \(-0.655247\pi\)
0.468617 0.883402i \(-0.344753\pi\)
\(648\) 0 0
\(649\) −48.5842 −1.90710
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 22.6277 0.885491 0.442746 0.896647i \(-0.354005\pi\)
0.442746 + 0.896647i \(0.354005\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −36.5842 −1.42296 −0.711481 0.702706i \(-0.751975\pi\)
−0.711481 + 0.702706i \(0.751975\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 46.4327i 1.77670i 0.459167 + 0.888350i \(0.348148\pi\)
−0.459167 + 0.888350i \(0.651852\pi\)
\(684\) 0 0
\(685\) −29.6495 −1.13285
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 39.5971i − 1.50635i −0.657823 0.753173i \(-0.728522\pi\)
0.657823 0.753173i \(-0.271478\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −52.5842 −1.97484 −0.987421 0.158114i \(-0.949459\pi\)
−0.987421 + 0.158114i \(0.949459\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 57.0951 2.13823
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 52.4589i − 1.95639i −0.207700 0.978193i \(-0.566598\pi\)
0.207700 0.978193i \(-0.433402\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 50.8743i − 1.88682i −0.331625 0.943411i \(-0.607597\pi\)
0.331625 0.943411i \(-0.392403\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −53.8397 −1.98321
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) − 4.95610i − 0.180851i −0.995903 0.0904254i \(-0.971177\pi\)
0.995903 0.0904254i \(-0.0288227\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −54.0000 −1.94225 −0.971123 0.238581i \(-0.923318\pi\)
−0.971123 + 0.238581i \(0.923318\pi\)
\(774\) 0 0
\(775\) 29.0024i 1.04180i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −36.1168 −1.29236
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 27.6060 0.985299
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −47.3288 −1.67647 −0.838236 0.545308i \(-0.816413\pi\)
−0.838236 + 0.545308i \(0.816413\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 27.3081i 0.956559i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) − 27.5104i − 0.958953i −0.877555 0.479477i \(-0.840826\pi\)
0.877555 0.479477i \(-0.159174\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) −28.5842 −0.992771 −0.496385 0.868102i \(-0.665340\pi\)
−0.496385 + 0.868102i \(0.665340\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 57.2126i 1.97520i 0.156999 + 0.987599i \(0.449818\pi\)
−0.156999 + 0.987599i \(0.550182\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −17.8397 −0.613703
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 74.3479i − 2.54861i
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 1.97210i 0.0672872i 0.999434 + 0.0336436i \(0.0107111\pi\)
−0.999434 + 0.0336436i \(0.989289\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 46.4327i − 1.58059i −0.612727 0.790295i \(-0.709928\pi\)
0.612727 0.790295i \(-0.290072\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −42.8614 −1.44404 −0.722019 0.691873i \(-0.756786\pi\)
−0.722019 + 0.691873i \(0.756786\pi\)
\(882\) 0 0
\(883\) − 19.8997i − 0.669680i −0.942275 0.334840i \(-0.891318\pi\)
0.942275 0.334840i \(-0.108682\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) − 13.5787i − 0.453885i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −5.32878 −0.177135
\(906\) 0 0
\(907\) 59.6992i 1.98228i 0.132818 + 0.991140i \(0.457597\pi\)
−0.132818 + 0.991140i \(0.542403\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 6.63325i 0.219769i 0.993944 + 0.109885i \(0.0350482\pi\)
−0.993944 + 0.109885i \(0.964952\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 37.7663 1.24175
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 30.0000 0.984268 0.492134 0.870519i \(-0.336217\pi\)
0.492134 + 0.870519i \(0.336217\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 60.9716i 1.98131i 0.136385 + 0.990656i \(0.456452\pi\)
−0.136385 + 0.990656i \(0.543548\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 1.89676i 0.0613777i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −55.5842 −1.79304
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 17.4131i 0.558812i 0.960173 + 0.279406i \(0.0901376\pi\)
−0.960173 + 0.279406i \(0.909862\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −35.3288 −1.13027 −0.565134 0.824999i \(-0.691176\pi\)
−0.565134 + 0.824999i \(0.691176\pi\)
\(978\) 0 0
\(979\) 62.5562i 1.99931i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 25.9259i − 0.826906i −0.910525 0.413453i \(-0.864323\pi\)
0.910525 0.413453i \(-0.135677\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) − 59.6992i − 1.89641i −0.317660 0.948205i \(-0.602897\pi\)
0.317660 0.948205i \(-0.397103\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 27.3081i − 0.865723i
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1584.2.o.e.703.1 4
3.2 odd 2 176.2.e.b.175.3 yes 4
4.3 odd 2 inner 1584.2.o.e.703.2 4
11.10 odd 2 CM 1584.2.o.e.703.1 4
12.11 even 2 176.2.e.b.175.2 4
24.5 odd 2 704.2.e.c.703.2 4
24.11 even 2 704.2.e.c.703.3 4
33.32 even 2 176.2.e.b.175.3 yes 4
44.43 even 2 inner 1584.2.o.e.703.2 4
48.5 odd 4 2816.2.g.c.1407.6 8
48.11 even 4 2816.2.g.c.1407.4 8
48.29 odd 4 2816.2.g.c.1407.3 8
48.35 even 4 2816.2.g.c.1407.5 8
132.131 odd 2 176.2.e.b.175.2 4
264.131 odd 2 704.2.e.c.703.3 4
264.197 even 2 704.2.e.c.703.2 4
528.131 odd 4 2816.2.g.c.1407.5 8
528.197 even 4 2816.2.g.c.1407.6 8
528.395 odd 4 2816.2.g.c.1407.4 8
528.461 even 4 2816.2.g.c.1407.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
176.2.e.b.175.2 4 12.11 even 2
176.2.e.b.175.2 4 132.131 odd 2
176.2.e.b.175.3 yes 4 3.2 odd 2
176.2.e.b.175.3 yes 4 33.32 even 2
704.2.e.c.703.2 4 24.5 odd 2
704.2.e.c.703.2 4 264.197 even 2
704.2.e.c.703.3 4 24.11 even 2
704.2.e.c.703.3 4 264.131 odd 2
1584.2.o.e.703.1 4 1.1 even 1 trivial
1584.2.o.e.703.1 4 11.10 odd 2 CM
1584.2.o.e.703.2 4 4.3 odd 2 inner
1584.2.o.e.703.2 4 44.43 even 2 inner
2816.2.g.c.1407.3 8 48.29 odd 4
2816.2.g.c.1407.3 8 528.461 even 4
2816.2.g.c.1407.4 8 48.11 even 4
2816.2.g.c.1407.4 8 528.395 odd 4
2816.2.g.c.1407.5 8 48.35 even 4
2816.2.g.c.1407.5 8 528.131 odd 4
2816.2.g.c.1407.6 8 48.5 odd 4
2816.2.g.c.1407.6 8 528.197 even 4