# Properties

 Label 1584.2.a.g Level $1584$ Weight $2$ Character orbit 1584.a Self dual yes Analytic conductor $12.648$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1584 = 2^{4} \cdot 3^{2} \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1584.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$12.6483036802$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 11) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q - q^{5} + 2 q^{7}+O(q^{10})$$ q - q^5 + 2 * q^7 $$q - q^{5} + 2 q^{7} + q^{11} + 4 q^{13} + 2 q^{17} - q^{23} - 4 q^{25} - 7 q^{31} - 2 q^{35} + 3 q^{37} + 8 q^{41} + 6 q^{43} + 8 q^{47} - 3 q^{49} + 6 q^{53} - q^{55} + 5 q^{59} + 12 q^{61} - 4 q^{65} + 7 q^{67} - 3 q^{71} + 4 q^{73} + 2 q^{77} + 10 q^{79} - 6 q^{83} - 2 q^{85} - 15 q^{89} + 8 q^{91} - 7 q^{97}+O(q^{100})$$ q - q^5 + 2 * q^7 + q^11 + 4 * q^13 + 2 * q^17 - q^23 - 4 * q^25 - 7 * q^31 - 2 * q^35 + 3 * q^37 + 8 * q^41 + 6 * q^43 + 8 * q^47 - 3 * q^49 + 6 * q^53 - q^55 + 5 * q^59 + 12 * q^61 - 4 * q^65 + 7 * q^67 - 3 * q^71 + 4 * q^73 + 2 * q^77 + 10 * q^79 - 6 * q^83 - 2 * q^85 - 15 * q^89 + 8 * q^91 - 7 * q^97

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 −1.00000 0 2.00000 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$11$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1584.2.a.g 1
3.b odd 2 1 176.2.a.b 1
4.b odd 2 1 99.2.a.d 1
8.b even 2 1 6336.2.a.bu 1
8.d odd 2 1 6336.2.a.br 1
12.b even 2 1 11.2.a.a 1
15.d odd 2 1 4400.2.a.i 1
15.e even 4 2 4400.2.b.h 2
20.d odd 2 1 2475.2.a.a 1
20.e even 4 2 2475.2.c.a 2
21.c even 2 1 8624.2.a.j 1
24.f even 2 1 704.2.a.h 1
24.h odd 2 1 704.2.a.c 1
28.d even 2 1 4851.2.a.t 1
33.d even 2 1 1936.2.a.i 1
36.f odd 6 2 891.2.e.b 2
36.h even 6 2 891.2.e.k 2
44.c even 2 1 1089.2.a.b 1
48.i odd 4 2 2816.2.c.f 2
48.k even 4 2 2816.2.c.j 2
60.h even 2 1 275.2.a.b 1
60.l odd 4 2 275.2.b.a 2
84.h odd 2 1 539.2.a.a 1
84.j odd 6 2 539.2.e.g 2
84.n even 6 2 539.2.e.h 2
132.d odd 2 1 121.2.a.d 1
132.n odd 10 4 121.2.c.a 4
132.o even 10 4 121.2.c.e 4
156.h even 2 1 1859.2.a.b 1
204.h even 2 1 3179.2.a.a 1
228.b odd 2 1 3971.2.a.b 1
264.m even 2 1 7744.2.a.k 1
264.p odd 2 1 7744.2.a.x 1
276.h odd 2 1 5819.2.a.a 1
348.b even 2 1 9251.2.a.d 1
660.g odd 2 1 3025.2.a.a 1
924.n even 2 1 5929.2.a.h 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
11.2.a.a 1 12.b even 2 1
99.2.a.d 1 4.b odd 2 1
121.2.a.d 1 132.d odd 2 1
121.2.c.a 4 132.n odd 10 4
121.2.c.e 4 132.o even 10 4
176.2.a.b 1 3.b odd 2 1
275.2.a.b 1 60.h even 2 1
275.2.b.a 2 60.l odd 4 2
539.2.a.a 1 84.h odd 2 1
539.2.e.g 2 84.j odd 6 2
539.2.e.h 2 84.n even 6 2
704.2.a.c 1 24.h odd 2 1
704.2.a.h 1 24.f even 2 1
891.2.e.b 2 36.f odd 6 2
891.2.e.k 2 36.h even 6 2
1089.2.a.b 1 44.c even 2 1
1584.2.a.g 1 1.a even 1 1 trivial
1859.2.a.b 1 156.h even 2 1
1936.2.a.i 1 33.d even 2 1
2475.2.a.a 1 20.d odd 2 1
2475.2.c.a 2 20.e even 4 2
2816.2.c.f 2 48.i odd 4 2
2816.2.c.j 2 48.k even 4 2
3025.2.a.a 1 660.g odd 2 1
3179.2.a.a 1 204.h even 2 1
3971.2.a.b 1 228.b odd 2 1
4400.2.a.i 1 15.d odd 2 1
4400.2.b.h 2 15.e even 4 2
4851.2.a.t 1 28.d even 2 1
5819.2.a.a 1 276.h odd 2 1
5929.2.a.h 1 924.n even 2 1
6336.2.a.br 1 8.d odd 2 1
6336.2.a.bu 1 8.b even 2 1
7744.2.a.k 1 264.m even 2 1
7744.2.a.x 1 264.p odd 2 1
8624.2.a.j 1 21.c even 2 1
9251.2.a.d 1 348.b even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1584))$$:

 $$T_{5} + 1$$ T5 + 1 $$T_{7} - 2$$ T7 - 2 $$T_{13} - 4$$ T13 - 4 $$T_{17} - 2$$ T17 - 2

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T + 1$$
$7$ $$T - 2$$
$11$ $$T - 1$$
$13$ $$T - 4$$
$17$ $$T - 2$$
$19$ $$T$$
$23$ $$T + 1$$
$29$ $$T$$
$31$ $$T + 7$$
$37$ $$T - 3$$
$41$ $$T - 8$$
$43$ $$T - 6$$
$47$ $$T - 8$$
$53$ $$T - 6$$
$59$ $$T - 5$$
$61$ $$T - 12$$
$67$ $$T - 7$$
$71$ $$T + 3$$
$73$ $$T - 4$$
$79$ $$T - 10$$
$83$ $$T + 6$$
$89$ $$T + 15$$
$97$ $$T + 7$$