Properties

Label 1584.2.a
Level $1584$
Weight $2$
Character orbit 1584.a
Rep. character $\chi_{1584}(1,\cdot)$
Character field $\Q$
Dimension $25$
Newform subspaces $22$
Sturm bound $576$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1584 = 2^{4} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1584.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 22 \)
Sturm bound: \(576\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(5\), \(7\), \(13\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1584))\).

Total New Old
Modular forms 312 25 287
Cusp forms 265 25 240
Eisenstein series 47 0 47

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(11\)FrickeDim.
\(+\)\(+\)\(+\)\(+\)\(3\)
\(+\)\(+\)\(-\)\(-\)\(3\)
\(+\)\(-\)\(+\)\(-\)\(5\)
\(+\)\(-\)\(-\)\(+\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(4\)
\(-\)\(-\)\(-\)\(-\)\(4\)
Plus space\(+\)\(11\)
Minus space\(-\)\(14\)

Trace form

\( 25 q - 2 q^{5} - 4 q^{7} + O(q^{10}) \) \( 25 q - 2 q^{5} - 4 q^{7} - 3 q^{11} - 2 q^{13} + 2 q^{17} + 4 q^{19} + 6 q^{23} + 27 q^{25} + 6 q^{29} + 10 q^{31} - 12 q^{35} - 2 q^{37} + 2 q^{41} + 8 q^{43} - 8 q^{47} + 17 q^{49} - 2 q^{53} - 4 q^{55} - 14 q^{59} - 18 q^{61} + 28 q^{65} - 10 q^{67} + 18 q^{71} + 2 q^{73} - 20 q^{79} + 32 q^{83} - 20 q^{85} - 2 q^{89} - 16 q^{91} - 24 q^{95} - 10 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1584))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 11
1584.2.a.a 1584.a 1.a $1$ $12.648$ \(\Q\) None \(0\) \(0\) \(-4\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-4q^{5}+2q^{7}-q^{11}+6q^{17}-4q^{19}+\cdots\)
1584.2.a.b 1584.a 1.a $1$ $12.648$ \(\Q\) None \(0\) \(0\) \(-4\) \(2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{5}+2q^{7}+q^{11}-2q^{13}+2q^{17}+\cdots\)
1584.2.a.c 1584.a 1.a $1$ $12.648$ \(\Q\) None \(0\) \(0\) \(-2\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{5}-2q^{7}-q^{11}+6q^{13}+4q^{17}+\cdots\)
1584.2.a.d 1584.a 1.a $1$ $12.648$ \(\Q\) None \(0\) \(0\) \(-2\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{5}+q^{11}+2q^{13}-6q^{17}+4q^{23}+\cdots\)
1584.2.a.e 1584.a 1.a $1$ $12.648$ \(\Q\) None \(0\) \(0\) \(-2\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{5}+2q^{7}+q^{11}-2q^{13}-4q^{17}+\cdots\)
1584.2.a.f 1584.a 1.a $1$ $12.648$ \(\Q\) None \(0\) \(0\) \(-2\) \(4\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{5}+4q^{7}-q^{11}-6q^{13}-2q^{17}+\cdots\)
1584.2.a.g 1584.a 1.a $1$ $12.648$ \(\Q\) None \(0\) \(0\) \(-1\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}+2q^{7}+q^{11}+4q^{13}+2q^{17}+\cdots\)
1584.2.a.h 1584.a 1.a $1$ $12.648$ \(\Q\) None \(0\) \(0\) \(0\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{7}-q^{11}-4q^{13}+6q^{17}+4q^{19}+\cdots\)
1584.2.a.i 1584.a 1.a $1$ $12.648$ \(\Q\) None \(0\) \(0\) \(0\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{7}-q^{11}+2q^{13}+6q^{17}-2q^{19}+\cdots\)
1584.2.a.j 1584.a 1.a $1$ $12.648$ \(\Q\) None \(0\) \(0\) \(0\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{7}+q^{11}+2q^{17}-8q^{19}-2q^{23}+\cdots\)
1584.2.a.k 1584.a 1.a $1$ $12.648$ \(\Q\) None \(0\) \(0\) \(0\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{7}+q^{11}+2q^{13}-6q^{17}-2q^{19}+\cdots\)
1584.2.a.l 1584.a 1.a $1$ $12.648$ \(\Q\) None \(0\) \(0\) \(0\) \(2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{7}-q^{11}-6q^{13}-6q^{17}+2q^{19}+\cdots\)
1584.2.a.m 1584.a 1.a $1$ $12.648$ \(\Q\) None \(0\) \(0\) \(0\) \(2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{7}+q^{11}-6q^{13}+6q^{17}+2q^{19}+\cdots\)
1584.2.a.n 1584.a 1.a $1$ $12.648$ \(\Q\) None \(0\) \(0\) \(2\) \(-4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{5}-4q^{7}-q^{11}+6q^{13}-6q^{17}+\cdots\)
1584.2.a.o 1584.a 1.a $1$ $12.648$ \(\Q\) None \(0\) \(0\) \(2\) \(-4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{5}-4q^{7}+q^{11}-2q^{13}+2q^{17}+\cdots\)
1584.2.a.p 1584.a 1.a $1$ $12.648$ \(\Q\) None \(0\) \(0\) \(3\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{5}-2q^{7}-q^{11}-4q^{13}-6q^{17}+\cdots\)
1584.2.a.q 1584.a 1.a $1$ $12.648$ \(\Q\) None \(0\) \(0\) \(3\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{5}+2q^{7}-q^{11}+6q^{17}-4q^{19}+\cdots\)
1584.2.a.r 1584.a 1.a $1$ $12.648$ \(\Q\) None \(0\) \(0\) \(4\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+4q^{5}+2q^{7}-q^{11}-2q^{13}-2q^{17}+\cdots\)
1584.2.a.s 1584.a 1.a $1$ $12.648$ \(\Q\) None \(0\) \(0\) \(4\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{5}+2q^{7}+q^{11}+4q^{13}+2q^{17}+\cdots\)
1584.2.a.t 1584.a 1.a $2$ $12.648$ \(\Q(\sqrt{17}) \) None \(0\) \(0\) \(-3\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{5}+(2-2\beta )q^{7}-q^{11}+\cdots\)
1584.2.a.u 1584.a 1.a $2$ $12.648$ \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(0\) \(-4\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{5}+(-2-\beta )q^{7}-q^{11}+(2-\beta )q^{13}+\cdots\)
1584.2.a.v 1584.a 1.a $2$ $12.648$ \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(0\) \(-4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{5}+(-2+\beta )q^{7}+q^{11}+(2+\beta )q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1584))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1584)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(132))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(144))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(176))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(198))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(264))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(396))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(528))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(792))\)\(^{\oplus 2}\)