Properties

Label 1575.4.a.y.1.2
Level $1575$
Weight $4$
Character 1575.1
Self dual yes
Analytic conductor $92.928$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,4,Mod(1,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.9280082590\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{41}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.70156\) of defining polynomial
Character \(\chi\) \(=\) 1575.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.70156 q^{2} +14.1047 q^{4} -7.00000 q^{7} +28.7016 q^{8} +O(q^{10})\) \(q+4.70156 q^{2} +14.1047 q^{4} -7.00000 q^{7} +28.7016 q^{8} -24.5969 q^{11} +35.0156 q^{13} -32.9109 q^{14} +22.1047 q^{16} -18.4187 q^{17} -67.4031 q^{19} -115.644 q^{22} -145.675 q^{23} +164.628 q^{26} -98.7328 q^{28} -214.419 q^{29} -88.6594 q^{31} -125.686 q^{32} -86.5969 q^{34} -162.125 q^{37} -316.900 q^{38} +337.769 q^{41} -122.156 q^{43} -346.931 q^{44} -684.900 q^{46} +354.219 q^{47} +49.0000 q^{49} +493.884 q^{52} +676.691 q^{53} -200.911 q^{56} -1008.10 q^{58} -501.319 q^{59} -708.931 q^{61} -416.837 q^{62} -767.758 q^{64} +907.956 q^{67} -259.791 q^{68} -430.334 q^{71} -41.3406 q^{73} -762.241 q^{74} -950.700 q^{76} +172.178 q^{77} +890.388 q^{79} +1588.04 q^{82} -1057.15 q^{83} -574.325 q^{86} -705.969 q^{88} -1473.72 q^{89} -245.109 q^{91} -2054.70 q^{92} +1665.38 q^{94} -555.034 q^{97} +230.377 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} + 9 q^{4} - 14 q^{7} + 51 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 3 q^{2} + 9 q^{4} - 14 q^{7} + 51 q^{8} - 62 q^{11} + 6 q^{13} - 21 q^{14} + 25 q^{16} + 40 q^{17} - 122 q^{19} - 52 q^{22} + 16 q^{23} + 214 q^{26} - 63 q^{28} - 352 q^{29} + 66 q^{31} - 309 q^{32} - 186 q^{34} + 188 q^{37} - 224 q^{38} - 16 q^{41} + 396 q^{43} - 156 q^{44} - 960 q^{46} - 188 q^{47} + 98 q^{49} + 642 q^{52} + 982 q^{53} - 357 q^{56} - 774 q^{58} - 516 q^{59} - 880 q^{61} - 680 q^{62} - 479 q^{64} + 356 q^{67} - 558 q^{68} - 310 q^{71} - 326 q^{73} - 1358 q^{74} - 672 q^{76} + 434 q^{77} + 1832 q^{79} + 2190 q^{82} - 680 q^{83} - 1456 q^{86} - 1540 q^{88} - 796 q^{89} - 42 q^{91} - 2880 q^{92} + 2588 q^{94} + 670 q^{97} + 147 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.70156 1.66225 0.831127 0.556083i \(-0.187696\pi\)
0.831127 + 0.556083i \(0.187696\pi\)
\(3\) 0 0
\(4\) 14.1047 1.76309
\(5\) 0 0
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 28.7016 1.26844
\(9\) 0 0
\(10\) 0 0
\(11\) −24.5969 −0.674203 −0.337102 0.941468i \(-0.609447\pi\)
−0.337102 + 0.941468i \(0.609447\pi\)
\(12\) 0 0
\(13\) 35.0156 0.747045 0.373523 0.927621i \(-0.378150\pi\)
0.373523 + 0.927621i \(0.378150\pi\)
\(14\) −32.9109 −0.628273
\(15\) 0 0
\(16\) 22.1047 0.345386
\(17\) −18.4187 −0.262777 −0.131388 0.991331i \(-0.541943\pi\)
−0.131388 + 0.991331i \(0.541943\pi\)
\(18\) 0 0
\(19\) −67.4031 −0.813860 −0.406930 0.913459i \(-0.633401\pi\)
−0.406930 + 0.913459i \(0.633401\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −115.644 −1.12070
\(23\) −145.675 −1.32067 −0.660333 0.750973i \(-0.729585\pi\)
−0.660333 + 0.750973i \(0.729585\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 164.628 1.24178
\(27\) 0 0
\(28\) −98.7328 −0.666384
\(29\) −214.419 −1.37298 −0.686492 0.727137i \(-0.740851\pi\)
−0.686492 + 0.727137i \(0.740851\pi\)
\(30\) 0 0
\(31\) −88.6594 −0.513667 −0.256834 0.966456i \(-0.582679\pi\)
−0.256834 + 0.966456i \(0.582679\pi\)
\(32\) −125.686 −0.694323
\(33\) 0 0
\(34\) −86.5969 −0.436801
\(35\) 0 0
\(36\) 0 0
\(37\) −162.125 −0.720356 −0.360178 0.932884i \(-0.617284\pi\)
−0.360178 + 0.932884i \(0.617284\pi\)
\(38\) −316.900 −1.35284
\(39\) 0 0
\(40\) 0 0
\(41\) 337.769 1.28660 0.643300 0.765614i \(-0.277565\pi\)
0.643300 + 0.765614i \(0.277565\pi\)
\(42\) 0 0
\(43\) −122.156 −0.433224 −0.216612 0.976258i \(-0.569501\pi\)
−0.216612 + 0.976258i \(0.569501\pi\)
\(44\) −346.931 −1.18868
\(45\) 0 0
\(46\) −684.900 −2.19528
\(47\) 354.219 1.09932 0.549661 0.835388i \(-0.314757\pi\)
0.549661 + 0.835388i \(0.314757\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 493.884 1.31710
\(53\) 676.691 1.75378 0.876892 0.480687i \(-0.159613\pi\)
0.876892 + 0.480687i \(0.159613\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −200.911 −0.479426
\(57\) 0 0
\(58\) −1008.10 −2.28225
\(59\) −501.319 −1.10621 −0.553103 0.833113i \(-0.686556\pi\)
−0.553103 + 0.833113i \(0.686556\pi\)
\(60\) 0 0
\(61\) −708.931 −1.48802 −0.744011 0.668167i \(-0.767079\pi\)
−0.744011 + 0.668167i \(0.767079\pi\)
\(62\) −416.837 −0.853845
\(63\) 0 0
\(64\) −767.758 −1.49953
\(65\) 0 0
\(66\) 0 0
\(67\) 907.956 1.65559 0.827795 0.561031i \(-0.189595\pi\)
0.827795 + 0.561031i \(0.189595\pi\)
\(68\) −259.791 −0.463298
\(69\) 0 0
\(70\) 0 0
\(71\) −430.334 −0.719314 −0.359657 0.933085i \(-0.617106\pi\)
−0.359657 + 0.933085i \(0.617106\pi\)
\(72\) 0 0
\(73\) −41.3406 −0.0662816 −0.0331408 0.999451i \(-0.510551\pi\)
−0.0331408 + 0.999451i \(0.510551\pi\)
\(74\) −762.241 −1.19741
\(75\) 0 0
\(76\) −950.700 −1.43490
\(77\) 172.178 0.254825
\(78\) 0 0
\(79\) 890.388 1.26806 0.634028 0.773310i \(-0.281400\pi\)
0.634028 + 0.773310i \(0.281400\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 1588.04 2.13866
\(83\) −1057.15 −1.39804 −0.699020 0.715102i \(-0.746380\pi\)
−0.699020 + 0.715102i \(0.746380\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −574.325 −0.720129
\(87\) 0 0
\(88\) −705.969 −0.855188
\(89\) −1473.72 −1.75522 −0.877610 0.479376i \(-0.840863\pi\)
−0.877610 + 0.479376i \(0.840863\pi\)
\(90\) 0 0
\(91\) −245.109 −0.282356
\(92\) −2054.70 −2.32845
\(93\) 0 0
\(94\) 1665.38 1.82735
\(95\) 0 0
\(96\) 0 0
\(97\) −555.034 −0.580981 −0.290491 0.956878i \(-0.593819\pi\)
−0.290491 + 0.956878i \(0.593819\pi\)
\(98\) 230.377 0.237465
\(99\) 0 0
\(100\) 0 0
\(101\) −1890.14 −1.86214 −0.931071 0.364838i \(-0.881124\pi\)
−0.931071 + 0.364838i \(0.881124\pi\)
\(102\) 0 0
\(103\) −662.700 −0.633959 −0.316979 0.948432i \(-0.602669\pi\)
−0.316979 + 0.948432i \(0.602669\pi\)
\(104\) 1005.00 0.947583
\(105\) 0 0
\(106\) 3181.50 2.91523
\(107\) 1614.53 1.45872 0.729358 0.684132i \(-0.239819\pi\)
0.729358 + 0.684132i \(0.239819\pi\)
\(108\) 0 0
\(109\) 217.206 0.190868 0.0954339 0.995436i \(-0.469576\pi\)
0.0954339 + 0.995436i \(0.469576\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −154.733 −0.130544
\(113\) −1658.20 −1.38044 −0.690221 0.723598i \(-0.742487\pi\)
−0.690221 + 0.723598i \(0.742487\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −3024.31 −2.42069
\(117\) 0 0
\(118\) −2356.98 −1.83879
\(119\) 128.931 0.0993202
\(120\) 0 0
\(121\) −725.994 −0.545450
\(122\) −3333.08 −2.47347
\(123\) 0 0
\(124\) −1250.51 −0.905640
\(125\) 0 0
\(126\) 0 0
\(127\) 1108.81 0.774734 0.387367 0.921926i \(-0.373385\pi\)
0.387367 + 0.921926i \(0.373385\pi\)
\(128\) −2604.17 −1.79827
\(129\) 0 0
\(130\) 0 0
\(131\) −185.488 −0.123711 −0.0618554 0.998085i \(-0.519702\pi\)
−0.0618554 + 0.998085i \(0.519702\pi\)
\(132\) 0 0
\(133\) 471.822 0.307610
\(134\) 4268.81 2.75201
\(135\) 0 0
\(136\) −528.647 −0.333317
\(137\) −37.9907 −0.0236917 −0.0118458 0.999930i \(-0.503771\pi\)
−0.0118458 + 0.999930i \(0.503771\pi\)
\(138\) 0 0
\(139\) 183.609 0.112040 0.0560199 0.998430i \(-0.482159\pi\)
0.0560199 + 0.998430i \(0.482159\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −2023.24 −1.19568
\(143\) −861.275 −0.503660
\(144\) 0 0
\(145\) 0 0
\(146\) −194.366 −0.110177
\(147\) 0 0
\(148\) −2286.72 −1.27005
\(149\) 1383.34 0.760587 0.380293 0.924866i \(-0.375823\pi\)
0.380293 + 0.924866i \(0.375823\pi\)
\(150\) 0 0
\(151\) 765.256 0.412422 0.206211 0.978508i \(-0.433887\pi\)
0.206211 + 0.978508i \(0.433887\pi\)
\(152\) −1934.57 −1.03233
\(153\) 0 0
\(154\) 809.506 0.423584
\(155\) 0 0
\(156\) 0 0
\(157\) 2366.76 1.20311 0.601554 0.798832i \(-0.294548\pi\)
0.601554 + 0.798832i \(0.294548\pi\)
\(158\) 4186.21 2.10783
\(159\) 0 0
\(160\) 0 0
\(161\) 1019.72 0.499165
\(162\) 0 0
\(163\) 3137.69 1.50775 0.753875 0.657018i \(-0.228183\pi\)
0.753875 + 0.657018i \(0.228183\pi\)
\(164\) 4764.12 2.26839
\(165\) 0 0
\(166\) −4970.26 −2.32390
\(167\) 146.469 0.0678688 0.0339344 0.999424i \(-0.489196\pi\)
0.0339344 + 0.999424i \(0.489196\pi\)
\(168\) 0 0
\(169\) −970.906 −0.441924
\(170\) 0 0
\(171\) 0 0
\(172\) −1722.98 −0.763812
\(173\) −1424.12 −0.625860 −0.312930 0.949776i \(-0.601311\pi\)
−0.312930 + 0.949776i \(0.601311\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −543.706 −0.232860
\(177\) 0 0
\(178\) −6928.81 −2.91762
\(179\) −1244.70 −0.519737 −0.259869 0.965644i \(-0.583679\pi\)
−0.259869 + 0.965644i \(0.583679\pi\)
\(180\) 0 0
\(181\) −3879.09 −1.59299 −0.796493 0.604648i \(-0.793314\pi\)
−0.796493 + 0.604648i \(0.793314\pi\)
\(182\) −1152.40 −0.469348
\(183\) 0 0
\(184\) −4181.10 −1.67519
\(185\) 0 0
\(186\) 0 0
\(187\) 453.044 0.177165
\(188\) 4996.14 1.93820
\(189\) 0 0
\(190\) 0 0
\(191\) −1574.90 −0.596628 −0.298314 0.954468i \(-0.596424\pi\)
−0.298314 + 0.954468i \(0.596424\pi\)
\(192\) 0 0
\(193\) 4775.67 1.78114 0.890572 0.454843i \(-0.150305\pi\)
0.890572 + 0.454843i \(0.150305\pi\)
\(194\) −2609.53 −0.965738
\(195\) 0 0
\(196\) 691.130 0.251869
\(197\) −2803.58 −1.01394 −0.506971 0.861963i \(-0.669235\pi\)
−0.506971 + 0.861963i \(0.669235\pi\)
\(198\) 0 0
\(199\) 4102.92 1.46155 0.730774 0.682620i \(-0.239159\pi\)
0.730774 + 0.682620i \(0.239159\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −8886.63 −3.09535
\(203\) 1500.93 0.518940
\(204\) 0 0
\(205\) 0 0
\(206\) −3115.72 −1.05380
\(207\) 0 0
\(208\) 774.009 0.258019
\(209\) 1657.91 0.548707
\(210\) 0 0
\(211\) −823.512 −0.268687 −0.134343 0.990935i \(-0.542893\pi\)
−0.134343 + 0.990935i \(0.542893\pi\)
\(212\) 9544.51 3.09207
\(213\) 0 0
\(214\) 7590.82 2.42476
\(215\) 0 0
\(216\) 0 0
\(217\) 620.616 0.194148
\(218\) 1021.21 0.317271
\(219\) 0 0
\(220\) 0 0
\(221\) −644.944 −0.196306
\(222\) 0 0
\(223\) −817.194 −0.245396 −0.122698 0.992444i \(-0.539155\pi\)
−0.122698 + 0.992444i \(0.539155\pi\)
\(224\) 879.802 0.262430
\(225\) 0 0
\(226\) −7796.12 −2.29465
\(227\) 3655.85 1.06893 0.534465 0.845190i \(-0.320513\pi\)
0.534465 + 0.845190i \(0.320513\pi\)
\(228\) 0 0
\(229\) 939.393 0.271078 0.135539 0.990772i \(-0.456723\pi\)
0.135539 + 0.990772i \(0.456723\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −6154.15 −1.74155
\(233\) −7.64701 −0.00215010 −0.00107505 0.999999i \(-0.500342\pi\)
−0.00107505 + 0.999999i \(0.500342\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −7070.94 −1.95034
\(237\) 0 0
\(238\) 606.178 0.165095
\(239\) 889.115 0.240636 0.120318 0.992735i \(-0.461609\pi\)
0.120318 + 0.992735i \(0.461609\pi\)
\(240\) 0 0
\(241\) 2140.23 0.572051 0.286026 0.958222i \(-0.407666\pi\)
0.286026 + 0.958222i \(0.407666\pi\)
\(242\) −3413.30 −0.906676
\(243\) 0 0
\(244\) −9999.25 −2.62351
\(245\) 0 0
\(246\) 0 0
\(247\) −2360.16 −0.607990
\(248\) −2544.66 −0.651557
\(249\) 0 0
\(250\) 0 0
\(251\) 6749.81 1.69739 0.848693 0.528886i \(-0.177390\pi\)
0.848693 + 0.528886i \(0.177390\pi\)
\(252\) 0 0
\(253\) 3583.15 0.890398
\(254\) 5213.15 1.28780
\(255\) 0 0
\(256\) −6101.62 −1.48965
\(257\) 3068.64 0.744811 0.372405 0.928070i \(-0.378533\pi\)
0.372405 + 0.928070i \(0.378533\pi\)
\(258\) 0 0
\(259\) 1134.87 0.272269
\(260\) 0 0
\(261\) 0 0
\(262\) −872.081 −0.205639
\(263\) −4674.12 −1.09589 −0.547944 0.836515i \(-0.684589\pi\)
−0.547944 + 0.836515i \(0.684589\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 2218.30 0.511326
\(267\) 0 0
\(268\) 12806.4 2.91895
\(269\) −2417.38 −0.547919 −0.273960 0.961741i \(-0.588333\pi\)
−0.273960 + 0.961741i \(0.588333\pi\)
\(270\) 0 0
\(271\) 7724.30 1.73143 0.865715 0.500537i \(-0.166864\pi\)
0.865715 + 0.500537i \(0.166864\pi\)
\(272\) −407.141 −0.0907593
\(273\) 0 0
\(274\) −178.616 −0.0393816
\(275\) 0 0
\(276\) 0 0
\(277\) 4576.17 0.992620 0.496310 0.868145i \(-0.334688\pi\)
0.496310 + 0.868145i \(0.334688\pi\)
\(278\) 863.250 0.186239
\(279\) 0 0
\(280\) 0 0
\(281\) 1358.56 0.288415 0.144208 0.989547i \(-0.453937\pi\)
0.144208 + 0.989547i \(0.453937\pi\)
\(282\) 0 0
\(283\) −3885.04 −0.816048 −0.408024 0.912971i \(-0.633782\pi\)
−0.408024 + 0.912971i \(0.633782\pi\)
\(284\) −6069.73 −1.26821
\(285\) 0 0
\(286\) −4049.34 −0.837211
\(287\) −2364.38 −0.486289
\(288\) 0 0
\(289\) −4573.75 −0.930948
\(290\) 0 0
\(291\) 0 0
\(292\) −583.097 −0.116860
\(293\) −4033.91 −0.804312 −0.402156 0.915571i \(-0.631739\pi\)
−0.402156 + 0.915571i \(0.631739\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −4653.24 −0.913730
\(297\) 0 0
\(298\) 6503.85 1.26429
\(299\) −5100.90 −0.986598
\(300\) 0 0
\(301\) 855.093 0.163743
\(302\) 3597.90 0.685549
\(303\) 0 0
\(304\) −1489.92 −0.281096
\(305\) 0 0
\(306\) 0 0
\(307\) 4620.36 0.858950 0.429475 0.903079i \(-0.358699\pi\)
0.429475 + 0.903079i \(0.358699\pi\)
\(308\) 2428.52 0.449278
\(309\) 0 0
\(310\) 0 0
\(311\) −6675.89 −1.21722 −0.608609 0.793470i \(-0.708272\pi\)
−0.608609 + 0.793470i \(0.708272\pi\)
\(312\) 0 0
\(313\) −2836.78 −0.512283 −0.256141 0.966639i \(-0.582451\pi\)
−0.256141 + 0.966639i \(0.582451\pi\)
\(314\) 11127.5 1.99987
\(315\) 0 0
\(316\) 12558.6 2.23569
\(317\) 4010.63 0.710597 0.355299 0.934753i \(-0.384379\pi\)
0.355299 + 0.934753i \(0.384379\pi\)
\(318\) 0 0
\(319\) 5274.03 0.925671
\(320\) 0 0
\(321\) 0 0
\(322\) 4794.30 0.829739
\(323\) 1241.48 0.213863
\(324\) 0 0
\(325\) 0 0
\(326\) 14752.1 2.50626
\(327\) 0 0
\(328\) 9694.49 1.63198
\(329\) −2479.53 −0.415504
\(330\) 0 0
\(331\) 11087.5 1.84117 0.920583 0.390546i \(-0.127714\pi\)
0.920583 + 0.390546i \(0.127714\pi\)
\(332\) −14910.8 −2.46486
\(333\) 0 0
\(334\) 688.631 0.112815
\(335\) 0 0
\(336\) 0 0
\(337\) −12118.7 −1.95890 −0.979450 0.201689i \(-0.935357\pi\)
−0.979450 + 0.201689i \(0.935357\pi\)
\(338\) −4564.78 −0.734589
\(339\) 0 0
\(340\) 0 0
\(341\) 2180.74 0.346316
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) −3506.07 −0.549520
\(345\) 0 0
\(346\) −6695.58 −1.04034
\(347\) −6361.22 −0.984116 −0.492058 0.870562i \(-0.663755\pi\)
−0.492058 + 0.870562i \(0.663755\pi\)
\(348\) 0 0
\(349\) −3115.18 −0.477799 −0.238899 0.971044i \(-0.576787\pi\)
−0.238899 + 0.971044i \(0.576787\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 3091.48 0.468115
\(353\) −11927.4 −1.79839 −0.899194 0.437550i \(-0.855846\pi\)
−0.899194 + 0.437550i \(0.855846\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −20786.4 −3.09460
\(357\) 0 0
\(358\) −5852.02 −0.863935
\(359\) 6143.95 0.903245 0.451623 0.892209i \(-0.350845\pi\)
0.451623 + 0.892209i \(0.350845\pi\)
\(360\) 0 0
\(361\) −2315.82 −0.337632
\(362\) −18237.8 −2.64794
\(363\) 0 0
\(364\) −3457.19 −0.497819
\(365\) 0 0
\(366\) 0 0
\(367\) 1927.67 0.274178 0.137089 0.990559i \(-0.456225\pi\)
0.137089 + 0.990559i \(0.456225\pi\)
\(368\) −3220.10 −0.456139
\(369\) 0 0
\(370\) 0 0
\(371\) −4736.83 −0.662868
\(372\) 0 0
\(373\) −10452.0 −1.45090 −0.725449 0.688276i \(-0.758368\pi\)
−0.725449 + 0.688276i \(0.758368\pi\)
\(374\) 2130.01 0.294493
\(375\) 0 0
\(376\) 10166.6 1.39443
\(377\) −7508.01 −1.02568
\(378\) 0 0
\(379\) 7066.43 0.957726 0.478863 0.877890i \(-0.341049\pi\)
0.478863 + 0.877890i \(0.341049\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −7404.51 −0.991747
\(383\) 7168.04 0.956318 0.478159 0.878273i \(-0.341304\pi\)
0.478159 + 0.878273i \(0.341304\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 22453.1 2.96071
\(387\) 0 0
\(388\) −7828.58 −1.02432
\(389\) 7414.06 0.966344 0.483172 0.875525i \(-0.339485\pi\)
0.483172 + 0.875525i \(0.339485\pi\)
\(390\) 0 0
\(391\) 2683.15 0.347040
\(392\) 1406.38 0.181206
\(393\) 0 0
\(394\) −13181.2 −1.68543
\(395\) 0 0
\(396\) 0 0
\(397\) 8936.01 1.12969 0.564843 0.825198i \(-0.308937\pi\)
0.564843 + 0.825198i \(0.308937\pi\)
\(398\) 19290.1 2.42946
\(399\) 0 0
\(400\) 0 0
\(401\) −1782.91 −0.222031 −0.111015 0.993819i \(-0.535410\pi\)
−0.111015 + 0.993819i \(0.535410\pi\)
\(402\) 0 0
\(403\) −3104.46 −0.383733
\(404\) −26659.9 −3.28312
\(405\) 0 0
\(406\) 7056.72 0.862609
\(407\) 3987.77 0.485667
\(408\) 0 0
\(409\) −8759.92 −1.05905 −0.529524 0.848295i \(-0.677629\pi\)
−0.529524 + 0.848295i \(0.677629\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −9347.17 −1.11772
\(413\) 3509.23 0.418106
\(414\) 0 0
\(415\) 0 0
\(416\) −4400.97 −0.518691
\(417\) 0 0
\(418\) 7794.75 0.912090
\(419\) 3212.74 0.374588 0.187294 0.982304i \(-0.440028\pi\)
0.187294 + 0.982304i \(0.440028\pi\)
\(420\) 0 0
\(421\) 15757.8 1.82420 0.912101 0.409965i \(-0.134459\pi\)
0.912101 + 0.409965i \(0.134459\pi\)
\(422\) −3871.79 −0.446626
\(423\) 0 0
\(424\) 19422.1 2.22457
\(425\) 0 0
\(426\) 0 0
\(427\) 4962.52 0.562419
\(428\) 22772.5 2.57184
\(429\) 0 0
\(430\) 0 0
\(431\) 405.917 0.0453650 0.0226825 0.999743i \(-0.492779\pi\)
0.0226825 + 0.999743i \(0.492779\pi\)
\(432\) 0 0
\(433\) 7845.25 0.870713 0.435357 0.900258i \(-0.356622\pi\)
0.435357 + 0.900258i \(0.356622\pi\)
\(434\) 2917.86 0.322723
\(435\) 0 0
\(436\) 3063.63 0.336516
\(437\) 9818.95 1.07484
\(438\) 0 0
\(439\) 423.029 0.0459911 0.0229955 0.999736i \(-0.492680\pi\)
0.0229955 + 0.999736i \(0.492680\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −3032.24 −0.326310
\(443\) −16058.7 −1.72229 −0.861143 0.508362i \(-0.830251\pi\)
−0.861143 + 0.508362i \(0.830251\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −3842.09 −0.407911
\(447\) 0 0
\(448\) 5374.30 0.566768
\(449\) −2186.75 −0.229842 −0.114921 0.993375i \(-0.536662\pi\)
−0.114921 + 0.993375i \(0.536662\pi\)
\(450\) 0 0
\(451\) −8308.05 −0.867430
\(452\) −23388.3 −2.43384
\(453\) 0 0
\(454\) 17188.2 1.77683
\(455\) 0 0
\(456\) 0 0
\(457\) 5799.22 0.593602 0.296801 0.954939i \(-0.404080\pi\)
0.296801 + 0.954939i \(0.404080\pi\)
\(458\) 4416.62 0.450600
\(459\) 0 0
\(460\) 0 0
\(461\) −9873.35 −0.997500 −0.498750 0.866746i \(-0.666207\pi\)
−0.498750 + 0.866746i \(0.666207\pi\)
\(462\) 0 0
\(463\) 6181.84 0.620506 0.310253 0.950654i \(-0.399586\pi\)
0.310253 + 0.950654i \(0.399586\pi\)
\(464\) −4739.66 −0.474209
\(465\) 0 0
\(466\) −35.9529 −0.00357400
\(467\) 6145.50 0.608950 0.304475 0.952520i \(-0.401519\pi\)
0.304475 + 0.952520i \(0.401519\pi\)
\(468\) 0 0
\(469\) −6355.69 −0.625754
\(470\) 0 0
\(471\) 0 0
\(472\) −14388.6 −1.40316
\(473\) 3004.66 0.292081
\(474\) 0 0
\(475\) 0 0
\(476\) 1818.53 0.175110
\(477\) 0 0
\(478\) 4180.23 0.399999
\(479\) −10879.4 −1.03777 −0.518887 0.854843i \(-0.673653\pi\)
−0.518887 + 0.854843i \(0.673653\pi\)
\(480\) 0 0
\(481\) −5676.91 −0.538139
\(482\) 10062.4 0.950894
\(483\) 0 0
\(484\) −10239.9 −0.961675
\(485\) 0 0
\(486\) 0 0
\(487\) −8087.51 −0.752526 −0.376263 0.926513i \(-0.622791\pi\)
−0.376263 + 0.926513i \(0.622791\pi\)
\(488\) −20347.4 −1.88747
\(489\) 0 0
\(490\) 0 0
\(491\) 6959.90 0.639707 0.319853 0.947467i \(-0.396366\pi\)
0.319853 + 0.947467i \(0.396366\pi\)
\(492\) 0 0
\(493\) 3949.32 0.360788
\(494\) −11096.4 −1.01063
\(495\) 0 0
\(496\) −1959.79 −0.177413
\(497\) 3012.34 0.271875
\(498\) 0 0
\(499\) 18632.0 1.67151 0.835756 0.549101i \(-0.185030\pi\)
0.835756 + 0.549101i \(0.185030\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 31734.6 2.82149
\(503\) 4627.62 0.410209 0.205105 0.978740i \(-0.434247\pi\)
0.205105 + 0.978740i \(0.434247\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 16846.4 1.48007
\(507\) 0 0
\(508\) 15639.4 1.36592
\(509\) 11351.8 0.988528 0.494264 0.869312i \(-0.335438\pi\)
0.494264 + 0.869312i \(0.335438\pi\)
\(510\) 0 0
\(511\) 289.384 0.0250521
\(512\) −7853.76 −0.677911
\(513\) 0 0
\(514\) 14427.4 1.23806
\(515\) 0 0
\(516\) 0 0
\(517\) −8712.67 −0.741166
\(518\) 5335.68 0.452580
\(519\) 0 0
\(520\) 0 0
\(521\) −19096.1 −1.60579 −0.802893 0.596123i \(-0.796707\pi\)
−0.802893 + 0.596123i \(0.796707\pi\)
\(522\) 0 0
\(523\) 3145.11 0.262956 0.131478 0.991319i \(-0.458028\pi\)
0.131478 + 0.991319i \(0.458028\pi\)
\(524\) −2616.24 −0.218113
\(525\) 0 0
\(526\) −21975.7 −1.82164
\(527\) 1632.99 0.134980
\(528\) 0 0
\(529\) 9054.20 0.744160
\(530\) 0 0
\(531\) 0 0
\(532\) 6654.90 0.542343
\(533\) 11827.2 0.961148
\(534\) 0 0
\(535\) 0 0
\(536\) 26059.8 2.10002
\(537\) 0 0
\(538\) −11365.5 −0.910781
\(539\) −1205.25 −0.0963148
\(540\) 0 0
\(541\) 8776.12 0.697440 0.348720 0.937227i \(-0.386616\pi\)
0.348720 + 0.937227i \(0.386616\pi\)
\(542\) 36316.3 2.87808
\(543\) 0 0
\(544\) 2314.98 0.182452
\(545\) 0 0
\(546\) 0 0
\(547\) 13695.1 1.07049 0.535247 0.844696i \(-0.320219\pi\)
0.535247 + 0.844696i \(0.320219\pi\)
\(548\) −535.847 −0.0417705
\(549\) 0 0
\(550\) 0 0
\(551\) 14452.5 1.11742
\(552\) 0 0
\(553\) −6232.71 −0.479280
\(554\) 21515.2 1.64999
\(555\) 0 0
\(556\) 2589.75 0.197536
\(557\) 7850.44 0.597188 0.298594 0.954380i \(-0.403482\pi\)
0.298594 + 0.954380i \(0.403482\pi\)
\(558\) 0 0
\(559\) −4277.38 −0.323638
\(560\) 0 0
\(561\) 0 0
\(562\) 6387.33 0.479419
\(563\) −4948.81 −0.370457 −0.185229 0.982695i \(-0.559303\pi\)
−0.185229 + 0.982695i \(0.559303\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −18265.7 −1.35648
\(567\) 0 0
\(568\) −12351.3 −0.912408
\(569\) 8115.76 0.597945 0.298972 0.954262i \(-0.403356\pi\)
0.298972 + 0.954262i \(0.403356\pi\)
\(570\) 0 0
\(571\) 5656.42 0.414560 0.207280 0.978282i \(-0.433539\pi\)
0.207280 + 0.978282i \(0.433539\pi\)
\(572\) −12148.0 −0.887996
\(573\) 0 0
\(574\) −11116.3 −0.808336
\(575\) 0 0
\(576\) 0 0
\(577\) 9536.77 0.688078 0.344039 0.938955i \(-0.388205\pi\)
0.344039 + 0.938955i \(0.388205\pi\)
\(578\) −21503.8 −1.54747
\(579\) 0 0
\(580\) 0 0
\(581\) 7400.05 0.528409
\(582\) 0 0
\(583\) −16644.5 −1.18241
\(584\) −1186.54 −0.0840743
\(585\) 0 0
\(586\) −18965.7 −1.33697
\(587\) −13089.6 −0.920383 −0.460191 0.887820i \(-0.652219\pi\)
−0.460191 + 0.887820i \(0.652219\pi\)
\(588\) 0 0
\(589\) 5975.92 0.418053
\(590\) 0 0
\(591\) 0 0
\(592\) −3583.72 −0.248801
\(593\) 4281.96 0.296524 0.148262 0.988948i \(-0.452632\pi\)
0.148262 + 0.988948i \(0.452632\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 19511.5 1.34098
\(597\) 0 0
\(598\) −23982.2 −1.63997
\(599\) −3699.92 −0.252378 −0.126189 0.992006i \(-0.540275\pi\)
−0.126189 + 0.992006i \(0.540275\pi\)
\(600\) 0 0
\(601\) −17286.1 −1.17323 −0.586616 0.809865i \(-0.699540\pi\)
−0.586616 + 0.809865i \(0.699540\pi\)
\(602\) 4020.28 0.272183
\(603\) 0 0
\(604\) 10793.7 0.727135
\(605\) 0 0
\(606\) 0 0
\(607\) −14456.7 −0.966689 −0.483344 0.875430i \(-0.660578\pi\)
−0.483344 + 0.875430i \(0.660578\pi\)
\(608\) 8471.63 0.565082
\(609\) 0 0
\(610\) 0 0
\(611\) 12403.2 0.821243
\(612\) 0 0
\(613\) −17981.9 −1.18480 −0.592400 0.805644i \(-0.701819\pi\)
−0.592400 + 0.805644i \(0.701819\pi\)
\(614\) 21722.9 1.42779
\(615\) 0 0
\(616\) 4941.78 0.323231
\(617\) 19614.7 1.27983 0.639916 0.768445i \(-0.278969\pi\)
0.639916 + 0.768445i \(0.278969\pi\)
\(618\) 0 0
\(619\) −10462.9 −0.679385 −0.339692 0.940537i \(-0.610323\pi\)
−0.339692 + 0.940537i \(0.610323\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −31387.1 −2.02332
\(623\) 10316.1 0.663411
\(624\) 0 0
\(625\) 0 0
\(626\) −13337.3 −0.851544
\(627\) 0 0
\(628\) 33382.4 2.12118
\(629\) 2986.14 0.189293
\(630\) 0 0
\(631\) 24481.9 1.54454 0.772272 0.635292i \(-0.219120\pi\)
0.772272 + 0.635292i \(0.219120\pi\)
\(632\) 25555.5 1.60846
\(633\) 0 0
\(634\) 18856.2 1.18119
\(635\) 0 0
\(636\) 0 0
\(637\) 1715.77 0.106721
\(638\) 24796.2 1.53870
\(639\) 0 0
\(640\) 0 0
\(641\) 1109.39 0.0683595 0.0341797 0.999416i \(-0.489118\pi\)
0.0341797 + 0.999416i \(0.489118\pi\)
\(642\) 0 0
\(643\) −30112.5 −1.84684 −0.923422 0.383787i \(-0.874620\pi\)
−0.923422 + 0.383787i \(0.874620\pi\)
\(644\) 14382.9 0.880071
\(645\) 0 0
\(646\) 5836.90 0.355495
\(647\) −4260.27 −0.258869 −0.129435 0.991588i \(-0.541316\pi\)
−0.129435 + 0.991588i \(0.541316\pi\)
\(648\) 0 0
\(649\) 12330.9 0.745808
\(650\) 0 0
\(651\) 0 0
\(652\) 44256.2 2.65829
\(653\) −10576.8 −0.633844 −0.316922 0.948452i \(-0.602649\pi\)
−0.316922 + 0.948452i \(0.602649\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 7466.27 0.444373
\(657\) 0 0
\(658\) −11657.7 −0.690674
\(659\) −3394.70 −0.200666 −0.100333 0.994954i \(-0.531991\pi\)
−0.100333 + 0.994954i \(0.531991\pi\)
\(660\) 0 0
\(661\) −33174.4 −1.95210 −0.976048 0.217554i \(-0.930192\pi\)
−0.976048 + 0.217554i \(0.930192\pi\)
\(662\) 52128.7 3.06048
\(663\) 0 0
\(664\) −30341.9 −1.77333
\(665\) 0 0
\(666\) 0 0
\(667\) 31235.4 1.81326
\(668\) 2065.89 0.119658
\(669\) 0 0
\(670\) 0 0
\(671\) 17437.5 1.00323
\(672\) 0 0
\(673\) −753.881 −0.0431797 −0.0215899 0.999767i \(-0.506873\pi\)
−0.0215899 + 0.999767i \(0.506873\pi\)
\(674\) −56976.9 −3.25619
\(675\) 0 0
\(676\) −13694.3 −0.779149
\(677\) 15668.8 0.889511 0.444756 0.895652i \(-0.353291\pi\)
0.444756 + 0.895652i \(0.353291\pi\)
\(678\) 0 0
\(679\) 3885.24 0.219590
\(680\) 0 0
\(681\) 0 0
\(682\) 10252.9 0.575665
\(683\) −11557.4 −0.647485 −0.323742 0.946145i \(-0.604941\pi\)
−0.323742 + 0.946145i \(0.604941\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1612.64 −0.0897532
\(687\) 0 0
\(688\) −2700.22 −0.149630
\(689\) 23694.7 1.31016
\(690\) 0 0
\(691\) −18503.1 −1.01866 −0.509328 0.860572i \(-0.670106\pi\)
−0.509328 + 0.860572i \(0.670106\pi\)
\(692\) −20086.8 −1.10344
\(693\) 0 0
\(694\) −29907.7 −1.63585
\(695\) 0 0
\(696\) 0 0
\(697\) −6221.28 −0.338088
\(698\) −14646.2 −0.794223
\(699\) 0 0
\(700\) 0 0
\(701\) −22580.4 −1.21662 −0.608311 0.793699i \(-0.708153\pi\)
−0.608311 + 0.793699i \(0.708153\pi\)
\(702\) 0 0
\(703\) 10927.7 0.586269
\(704\) 18884.4 1.01099
\(705\) 0 0
\(706\) −56077.4 −2.98938
\(707\) 13231.0 0.703823
\(708\) 0 0
\(709\) −27426.6 −1.45279 −0.726394 0.687278i \(-0.758805\pi\)
−0.726394 + 0.687278i \(0.758805\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −42298.2 −2.22639
\(713\) 12915.5 0.678383
\(714\) 0 0
\(715\) 0 0
\(716\) −17556.1 −0.916342
\(717\) 0 0
\(718\) 28886.1 1.50142
\(719\) −19383.0 −1.00538 −0.502688 0.864468i \(-0.667656\pi\)
−0.502688 + 0.864468i \(0.667656\pi\)
\(720\) 0 0
\(721\) 4638.90 0.239614
\(722\) −10888.0 −0.561230
\(723\) 0 0
\(724\) −54713.3 −2.80857
\(725\) 0 0
\(726\) 0 0
\(727\) 12317.3 0.628368 0.314184 0.949362i \(-0.398269\pi\)
0.314184 + 0.949362i \(0.398269\pi\)
\(728\) −7035.02 −0.358153
\(729\) 0 0
\(730\) 0 0
\(731\) 2249.96 0.113841
\(732\) 0 0
\(733\) −1234.02 −0.0621822 −0.0310911 0.999517i \(-0.509898\pi\)
−0.0310911 + 0.999517i \(0.509898\pi\)
\(734\) 9063.05 0.455754
\(735\) 0 0
\(736\) 18309.3 0.916970
\(737\) −22332.9 −1.11620
\(738\) 0 0
\(739\) −15257.3 −0.759473 −0.379736 0.925095i \(-0.623985\pi\)
−0.379736 + 0.925095i \(0.623985\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −22270.5 −1.10186
\(743\) −35565.1 −1.75606 −0.878032 0.478602i \(-0.841144\pi\)
−0.878032 + 0.478602i \(0.841144\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −49140.8 −2.41176
\(747\) 0 0
\(748\) 6390.04 0.312357
\(749\) −11301.7 −0.551343
\(750\) 0 0
\(751\) 14266.7 0.693209 0.346605 0.938011i \(-0.387335\pi\)
0.346605 + 0.938011i \(0.387335\pi\)
\(752\) 7829.89 0.379690
\(753\) 0 0
\(754\) −35299.4 −1.70494
\(755\) 0 0
\(756\) 0 0
\(757\) 15927.9 0.764744 0.382372 0.924009i \(-0.375107\pi\)
0.382372 + 0.924009i \(0.375107\pi\)
\(758\) 33223.3 1.59198
\(759\) 0 0
\(760\) 0 0
\(761\) 2566.48 0.122253 0.0611266 0.998130i \(-0.480531\pi\)
0.0611266 + 0.998130i \(0.480531\pi\)
\(762\) 0 0
\(763\) −1520.44 −0.0721413
\(764\) −22213.5 −1.05191
\(765\) 0 0
\(766\) 33701.0 1.58964
\(767\) −17554.0 −0.826386
\(768\) 0 0
\(769\) 14433.1 0.676816 0.338408 0.940999i \(-0.390112\pi\)
0.338408 + 0.940999i \(0.390112\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 67359.4 3.14031
\(773\) −29443.2 −1.36999 −0.684993 0.728550i \(-0.740195\pi\)
−0.684993 + 0.728550i \(0.740195\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −15930.4 −0.736941
\(777\) 0 0
\(778\) 34857.7 1.60631
\(779\) −22766.7 −1.04711
\(780\) 0 0
\(781\) 10584.9 0.484964
\(782\) 12615.0 0.576869
\(783\) 0 0
\(784\) 1083.13 0.0493408
\(785\) 0 0
\(786\) 0 0
\(787\) −26390.6 −1.19533 −0.597664 0.801747i \(-0.703904\pi\)
−0.597664 + 0.801747i \(0.703904\pi\)
\(788\) −39543.6 −1.78767
\(789\) 0 0
\(790\) 0 0
\(791\) 11607.4 0.521758
\(792\) 0 0
\(793\) −24823.7 −1.11162
\(794\) 42013.2 1.87783
\(795\) 0 0
\(796\) 57870.3 2.57683
\(797\) −3738.33 −0.166146 −0.0830730 0.996543i \(-0.526473\pi\)
−0.0830730 + 0.996543i \(0.526473\pi\)
\(798\) 0 0
\(799\) −6524.26 −0.288876
\(800\) 0 0
\(801\) 0 0
\(802\) −8382.48 −0.369072
\(803\) 1016.85 0.0446873
\(804\) 0 0
\(805\) 0 0
\(806\) −14595.8 −0.637861
\(807\) 0 0
\(808\) −54250.1 −2.36202
\(809\) −43204.1 −1.87760 −0.938798 0.344468i \(-0.888059\pi\)
−0.938798 + 0.344468i \(0.888059\pi\)
\(810\) 0 0
\(811\) −30192.4 −1.30727 −0.653637 0.756809i \(-0.726758\pi\)
−0.653637 + 0.756809i \(0.726758\pi\)
\(812\) 21170.2 0.914935
\(813\) 0 0
\(814\) 18748.7 0.807301
\(815\) 0 0
\(816\) 0 0
\(817\) 8233.71 0.352584
\(818\) −41185.3 −1.76041
\(819\) 0 0
\(820\) 0 0
\(821\) 40274.7 1.71206 0.856028 0.516929i \(-0.172925\pi\)
0.856028 + 0.516929i \(0.172925\pi\)
\(822\) 0 0
\(823\) −25184.2 −1.06667 −0.533334 0.845905i \(-0.679061\pi\)
−0.533334 + 0.845905i \(0.679061\pi\)
\(824\) −19020.5 −0.804140
\(825\) 0 0
\(826\) 16498.9 0.694999
\(827\) −38941.7 −1.63741 −0.818703 0.574218i \(-0.805306\pi\)
−0.818703 + 0.574218i \(0.805306\pi\)
\(828\) 0 0
\(829\) −8327.05 −0.348867 −0.174433 0.984669i \(-0.555809\pi\)
−0.174433 + 0.984669i \(0.555809\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −26883.5 −1.12021
\(833\) −902.519 −0.0375395
\(834\) 0 0
\(835\) 0 0
\(836\) 23384.2 0.967418
\(837\) 0 0
\(838\) 15104.9 0.622660
\(839\) −8784.41 −0.361468 −0.180734 0.983532i \(-0.557847\pi\)
−0.180734 + 0.983532i \(0.557847\pi\)
\(840\) 0 0
\(841\) 21586.4 0.885087
\(842\) 74086.4 3.03229
\(843\) 0 0
\(844\) −11615.4 −0.473718
\(845\) 0 0
\(846\) 0 0
\(847\) 5081.96 0.206161
\(848\) 14958.0 0.605732
\(849\) 0 0
\(850\) 0 0
\(851\) 23617.6 0.951350
\(852\) 0 0
\(853\) 9076.15 0.364316 0.182158 0.983269i \(-0.441692\pi\)
0.182158 + 0.983269i \(0.441692\pi\)
\(854\) 23331.6 0.934884
\(855\) 0 0
\(856\) 46339.6 1.85030
\(857\) 36396.7 1.45074 0.725372 0.688357i \(-0.241668\pi\)
0.725372 + 0.688357i \(0.241668\pi\)
\(858\) 0 0
\(859\) 8915.27 0.354115 0.177058 0.984200i \(-0.443342\pi\)
0.177058 + 0.984200i \(0.443342\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 1908.44 0.0754081
\(863\) −6148.26 −0.242514 −0.121257 0.992621i \(-0.538692\pi\)
−0.121257 + 0.992621i \(0.538692\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 36884.9 1.44735
\(867\) 0 0
\(868\) 8753.59 0.342300
\(869\) −21900.8 −0.854928
\(870\) 0 0
\(871\) 31792.6 1.23680
\(872\) 6234.16 0.242105
\(873\) 0 0
\(874\) 46164.4 1.78665
\(875\) 0 0
\(876\) 0 0
\(877\) 14287.0 0.550101 0.275050 0.961430i \(-0.411306\pi\)
0.275050 + 0.961430i \(0.411306\pi\)
\(878\) 1988.90 0.0764488
\(879\) 0 0
\(880\) 0 0
\(881\) 13315.9 0.509221 0.254610 0.967044i \(-0.418053\pi\)
0.254610 + 0.967044i \(0.418053\pi\)
\(882\) 0 0
\(883\) 5271.78 0.200917 0.100458 0.994941i \(-0.467969\pi\)
0.100458 + 0.994941i \(0.467969\pi\)
\(884\) −9096.73 −0.346104
\(885\) 0 0
\(886\) −75501.1 −2.86288
\(887\) 2606.07 0.0986507 0.0493253 0.998783i \(-0.484293\pi\)
0.0493253 + 0.998783i \(0.484293\pi\)
\(888\) 0 0
\(889\) −7761.69 −0.292822
\(890\) 0 0
\(891\) 0 0
\(892\) −11526.3 −0.432654
\(893\) −23875.4 −0.894694
\(894\) 0 0
\(895\) 0 0
\(896\) 18229.2 0.679682
\(897\) 0 0
\(898\) −10281.1 −0.382056
\(899\) 19010.2 0.705258
\(900\) 0 0
\(901\) −12463.8 −0.460854
\(902\) −39060.8 −1.44189
\(903\) 0 0
\(904\) −47592.8 −1.75101
\(905\) 0 0
\(906\) 0 0
\(907\) −18610.6 −0.681317 −0.340659 0.940187i \(-0.610650\pi\)
−0.340659 + 0.940187i \(0.610650\pi\)
\(908\) 51564.6 1.88462
\(909\) 0 0
\(910\) 0 0
\(911\) −41091.7 −1.49443 −0.747216 0.664581i \(-0.768610\pi\)
−0.747216 + 0.664581i \(0.768610\pi\)
\(912\) 0 0
\(913\) 26002.6 0.942563
\(914\) 27265.4 0.986716
\(915\) 0 0
\(916\) 13249.8 0.477934
\(917\) 1298.41 0.0467583
\(918\) 0 0
\(919\) 38891.3 1.39598 0.697990 0.716107i \(-0.254078\pi\)
0.697990 + 0.716107i \(0.254078\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −46420.2 −1.65810
\(923\) −15068.4 −0.537360
\(924\) 0 0
\(925\) 0 0
\(926\) 29064.3 1.03144
\(927\) 0 0
\(928\) 26949.4 0.953295
\(929\) −18699.4 −0.660396 −0.330198 0.943912i \(-0.607115\pi\)
−0.330198 + 0.943912i \(0.607115\pi\)
\(930\) 0 0
\(931\) −3302.75 −0.116266
\(932\) −107.859 −0.00379080
\(933\) 0 0
\(934\) 28893.4 1.01223
\(935\) 0 0
\(936\) 0 0
\(937\) −21509.6 −0.749933 −0.374967 0.927038i \(-0.622346\pi\)
−0.374967 + 0.927038i \(0.622346\pi\)
\(938\) −29881.7 −1.04016
\(939\) 0 0
\(940\) 0 0
\(941\) 11241.7 0.389448 0.194724 0.980858i \(-0.437619\pi\)
0.194724 + 0.980858i \(0.437619\pi\)
\(942\) 0 0
\(943\) −49204.5 −1.69917
\(944\) −11081.5 −0.382068
\(945\) 0 0
\(946\) 14126.6 0.485513
\(947\) −36556.3 −1.25441 −0.627203 0.778856i \(-0.715800\pi\)
−0.627203 + 0.778856i \(0.715800\pi\)
\(948\) 0 0
\(949\) −1447.57 −0.0495153
\(950\) 0 0
\(951\) 0 0
\(952\) 3700.53 0.125982
\(953\) −36633.4 −1.24520 −0.622598 0.782542i \(-0.713923\pi\)
−0.622598 + 0.782542i \(0.713923\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 12540.7 0.424263
\(957\) 0 0
\(958\) −51150.3 −1.72504
\(959\) 265.935 0.00895462
\(960\) 0 0
\(961\) −21930.5 −0.736146
\(962\) −26690.3 −0.894523
\(963\) 0 0
\(964\) 30187.3 1.00858
\(965\) 0 0
\(966\) 0 0
\(967\) 35515.8 1.18109 0.590544 0.807006i \(-0.298913\pi\)
0.590544 + 0.807006i \(0.298913\pi\)
\(968\) −20837.2 −0.691871
\(969\) 0 0
\(970\) 0 0
\(971\) 39661.0 1.31080 0.655398 0.755283i \(-0.272501\pi\)
0.655398 + 0.755283i \(0.272501\pi\)
\(972\) 0 0
\(973\) −1285.26 −0.0423471
\(974\) −38023.9 −1.25089
\(975\) 0 0
\(976\) −15670.7 −0.513942
\(977\) 50325.3 1.64795 0.823977 0.566624i \(-0.191751\pi\)
0.823977 + 0.566624i \(0.191751\pi\)
\(978\) 0 0
\(979\) 36249.0 1.18337
\(980\) 0 0
\(981\) 0 0
\(982\) 32722.4 1.06335
\(983\) 51189.0 1.66091 0.830456 0.557084i \(-0.188080\pi\)
0.830456 + 0.557084i \(0.188080\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 18568.0 0.599721
\(987\) 0 0
\(988\) −33289.3 −1.07194
\(989\) 17795.1 0.572145
\(990\) 0 0
\(991\) −55137.3 −1.76740 −0.883700 0.468054i \(-0.844955\pi\)
−0.883700 + 0.468054i \(0.844955\pi\)
\(992\) 11143.2 0.356651
\(993\) 0 0
\(994\) 14162.7 0.451925
\(995\) 0 0
\(996\) 0 0
\(997\) −41606.5 −1.32166 −0.660828 0.750537i \(-0.729795\pi\)
−0.660828 + 0.750537i \(0.729795\pi\)
\(998\) 87599.6 2.77848
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.4.a.y.1.2 2
3.2 odd 2 525.4.a.i.1.1 2
5.4 even 2 315.4.a.g.1.1 2
15.2 even 4 525.4.d.j.274.1 4
15.8 even 4 525.4.d.j.274.4 4
15.14 odd 2 105.4.a.g.1.2 2
35.34 odd 2 2205.4.a.v.1.1 2
60.59 even 2 1680.4.a.y.1.2 2
105.104 even 2 735.4.a.q.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.a.g.1.2 2 15.14 odd 2
315.4.a.g.1.1 2 5.4 even 2
525.4.a.i.1.1 2 3.2 odd 2
525.4.d.j.274.1 4 15.2 even 4
525.4.d.j.274.4 4 15.8 even 4
735.4.a.q.1.2 2 105.104 even 2
1575.4.a.y.1.2 2 1.1 even 1 trivial
1680.4.a.y.1.2 2 60.59 even 2
2205.4.a.v.1.1 2 35.34 odd 2