# Properties

 Label 1575.4.a.w Level $1575$ Weight $4$ Character orbit 1575.a Self dual yes Analytic conductor $92.928$ Analytic rank $0$ Dimension $2$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1575,4,Mod(1,1575)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1575, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1575.1");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1575 = 3^{2} \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 1575.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$92.9280082590$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{65})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x - 16$$ x^2 - x - 16 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 105) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \frac{1}{2}(1 + \sqrt{65})$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta q^{2} + (\beta + 8) q^{4} + 7 q^{7} + (\beta + 16) q^{8}+O(q^{10})$$ q + b * q^2 + (b + 8) * q^4 + 7 * q^7 + (b + 16) * q^8 $$q + \beta q^{2} + (\beta + 8) q^{4} + 7 q^{7} + (\beta + 16) q^{8} + (2 \beta + 10) q^{11} + ( - 2 \beta + 12) q^{13} + 7 \beta q^{14} + (9 \beta - 48) q^{16} + ( - 16 \beta + 66) q^{17} + ( - 14 \beta + 58) q^{19} + (12 \beta + 32) q^{22} + ( - 20 \beta + 140) q^{23} + (10 \beta - 32) q^{26} + (7 \beta + 56) q^{28} + (48 \beta + 74) q^{29} + (42 \beta + 54) q^{31} + ( - 47 \beta + 16) q^{32} + (50 \beta - 256) q^{34} + (36 \beta + 30) q^{37} + (44 \beta - 224) q^{38} + ( - 100 \beta + 138) q^{41} + (32 \beta + 156) q^{43} + (28 \beta + 112) q^{44} + (120 \beta - 320) q^{46} + ( - 48 \beta + 304) q^{47} + 49 q^{49} + ( - 6 \beta + 64) q^{52} + (86 \beta + 120) q^{53} + (7 \beta + 112) q^{56} + (122 \beta + 768) q^{58} + ( - 84 \beta + 464) q^{59} + (24 \beta - 114) q^{61} + (96 \beta + 672) q^{62} + ( - 103 \beta - 368) q^{64} + ( - 64 \beta + 84) q^{67} + ( - 78 \beta + 272) q^{68} + ( - 42 \beta - 814) q^{71} + (202 \beta + 92) q^{73} + (66 \beta + 576) q^{74} + ( - 68 \beta + 240) q^{76} + (14 \beta + 70) q^{77} + ( - 104 \beta - 392) q^{79} + (38 \beta - 1600) q^{82} + (216 \beta + 356) q^{83} + (188 \beta + 512) q^{86} + (44 \beta + 192) q^{88} + ( - 8 \beta - 290) q^{89} + ( - 14 \beta + 84) q^{91} + ( - 40 \beta + 800) q^{92} + (256 \beta - 768) q^{94} + ( - 314 \beta - 104) q^{97} + 49 \beta q^{98}+O(q^{100})$$ q + b * q^2 + (b + 8) * q^4 + 7 * q^7 + (b + 16) * q^8 + (2*b + 10) * q^11 + (-2*b + 12) * q^13 + 7*b * q^14 + (9*b - 48) * q^16 + (-16*b + 66) * q^17 + (-14*b + 58) * q^19 + (12*b + 32) * q^22 + (-20*b + 140) * q^23 + (10*b - 32) * q^26 + (7*b + 56) * q^28 + (48*b + 74) * q^29 + (42*b + 54) * q^31 + (-47*b + 16) * q^32 + (50*b - 256) * q^34 + (36*b + 30) * q^37 + (44*b - 224) * q^38 + (-100*b + 138) * q^41 + (32*b + 156) * q^43 + (28*b + 112) * q^44 + (120*b - 320) * q^46 + (-48*b + 304) * q^47 + 49 * q^49 + (-6*b + 64) * q^52 + (86*b + 120) * q^53 + (7*b + 112) * q^56 + (122*b + 768) * q^58 + (-84*b + 464) * q^59 + (24*b - 114) * q^61 + (96*b + 672) * q^62 + (-103*b - 368) * q^64 + (-64*b + 84) * q^67 + (-78*b + 272) * q^68 + (-42*b - 814) * q^71 + (202*b + 92) * q^73 + (66*b + 576) * q^74 + (-68*b + 240) * q^76 + (14*b + 70) * q^77 + (-104*b - 392) * q^79 + (38*b - 1600) * q^82 + (216*b + 356) * q^83 + (188*b + 512) * q^86 + (44*b + 192) * q^88 + (-8*b - 290) * q^89 + (-14*b + 84) * q^91 + (-40*b + 800) * q^92 + (256*b - 768) * q^94 + (-314*b - 104) * q^97 + 49*b * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + q^{2} + 17 q^{4} + 14 q^{7} + 33 q^{8}+O(q^{10})$$ 2 * q + q^2 + 17 * q^4 + 14 * q^7 + 33 * q^8 $$2 q + q^{2} + 17 q^{4} + 14 q^{7} + 33 q^{8} + 22 q^{11} + 22 q^{13} + 7 q^{14} - 87 q^{16} + 116 q^{17} + 102 q^{19} + 76 q^{22} + 260 q^{23} - 54 q^{26} + 119 q^{28} + 196 q^{29} + 150 q^{31} - 15 q^{32} - 462 q^{34} + 96 q^{37} - 404 q^{38} + 176 q^{41} + 344 q^{43} + 252 q^{44} - 520 q^{46} + 560 q^{47} + 98 q^{49} + 122 q^{52} + 326 q^{53} + 231 q^{56} + 1658 q^{58} + 844 q^{59} - 204 q^{61} + 1440 q^{62} - 839 q^{64} + 104 q^{67} + 466 q^{68} - 1670 q^{71} + 386 q^{73} + 1218 q^{74} + 412 q^{76} + 154 q^{77} - 888 q^{79} - 3162 q^{82} + 928 q^{83} + 1212 q^{86} + 428 q^{88} - 588 q^{89} + 154 q^{91} + 1560 q^{92} - 1280 q^{94} - 522 q^{97} + 49 q^{98}+O(q^{100})$$ 2 * q + q^2 + 17 * q^4 + 14 * q^7 + 33 * q^8 + 22 * q^11 + 22 * q^13 + 7 * q^14 - 87 * q^16 + 116 * q^17 + 102 * q^19 + 76 * q^22 + 260 * q^23 - 54 * q^26 + 119 * q^28 + 196 * q^29 + 150 * q^31 - 15 * q^32 - 462 * q^34 + 96 * q^37 - 404 * q^38 + 176 * q^41 + 344 * q^43 + 252 * q^44 - 520 * q^46 + 560 * q^47 + 98 * q^49 + 122 * q^52 + 326 * q^53 + 231 * q^56 + 1658 * q^58 + 844 * q^59 - 204 * q^61 + 1440 * q^62 - 839 * q^64 + 104 * q^67 + 466 * q^68 - 1670 * q^71 + 386 * q^73 + 1218 * q^74 + 412 * q^76 + 154 * q^77 - 888 * q^79 - 3162 * q^82 + 928 * q^83 + 1212 * q^86 + 428 * q^88 - 588 * q^89 + 154 * q^91 + 1560 * q^92 - 1280 * q^94 - 522 * q^97 + 49 * q^98

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −3.53113 4.53113
−3.53113 0 4.46887 0 0 7.00000 12.4689 0 0
1.2 4.53113 0 12.5311 0 0 7.00000 20.5311 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$-1$$
$$5$$ $$+1$$
$$7$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1575.4.a.w 2
3.b odd 2 1 525.4.a.k 2
5.b even 2 1 315.4.a.i 2
15.d odd 2 1 105.4.a.f 2
15.e even 4 2 525.4.d.h 4
35.c odd 2 1 2205.4.a.z 2
60.h even 2 1 1680.4.a.bg 2
105.g even 2 1 735.4.a.p 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.4.a.f 2 15.d odd 2 1
315.4.a.i 2 5.b even 2 1
525.4.a.k 2 3.b odd 2 1
525.4.d.h 4 15.e even 4 2
735.4.a.p 2 105.g even 2 1
1575.4.a.w 2 1.a even 1 1 trivial
1680.4.a.bg 2 60.h even 2 1
2205.4.a.z 2 35.c odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{4}^{\mathrm{new}}(\Gamma_0(1575))$$:

 $$T_{2}^{2} - T_{2} - 16$$ T2^2 - T2 - 16 $$T_{11}^{2} - 22T_{11} + 56$$ T11^2 - 22*T11 + 56 $$T_{13}^{2} - 22T_{13} + 56$$ T13^2 - 22*T13 + 56

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} - T - 16$$
$3$ $$T^{2}$$
$5$ $$T^{2}$$
$7$ $$(T - 7)^{2}$$
$11$ $$T^{2} - 22T + 56$$
$13$ $$T^{2} - 22T + 56$$
$17$ $$T^{2} - 116T - 796$$
$19$ $$T^{2} - 102T - 584$$
$23$ $$T^{2} - 260T + 10400$$
$29$ $$T^{2} - 196T - 27836$$
$31$ $$T^{2} - 150T - 23040$$
$37$ $$T^{2} - 96T - 18756$$
$41$ $$T^{2} - 176T - 154756$$
$43$ $$T^{2} - 344T + 12944$$
$47$ $$T^{2} - 560T + 40960$$
$53$ $$T^{2} - 326T - 93616$$
$59$ $$T^{2} - 844T + 63424$$
$61$ $$T^{2} + 204T + 1044$$
$67$ $$T^{2} - 104T - 63856$$
$71$ $$T^{2} + 1670 T + 668560$$
$73$ $$T^{2} - 386T - 625816$$
$79$ $$T^{2} + 888T + 21376$$
$83$ $$T^{2} - 928T - 542864$$
$89$ $$T^{2} + 588T + 85396$$
$97$ $$T^{2} + 522 T - 1534064$$