Properties

Label 1575.4.a.u
Level $1575$
Weight $4$
Character orbit 1575.a
Self dual yes
Analytic conductor $92.928$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1575,4,Mod(1,1575)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1575.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1575, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1575.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,0,-7,0,0,14,-3,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.9280082590\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 315)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + (\beta - 4) q^{4} + 7 q^{7} + ( - 11 \beta + 4) q^{8} + ( - 4 \beta + 4) q^{11} + 22 \beta q^{13} + 7 \beta q^{14} + ( - 15 \beta - 12) q^{16} + (26 \beta - 42) q^{17} + ( - 44 \beta + 22) q^{19}+ \cdots + 49 \beta q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - 7 q^{4} + 14 q^{7} - 3 q^{8} + 4 q^{11} + 22 q^{13} + 7 q^{14} - 39 q^{16} - 58 q^{17} - 32 q^{22} - 82 q^{23} + 198 q^{26} - 49 q^{28} + 334 q^{29} - 210 q^{31} - 123 q^{32} + 192 q^{34}+ \cdots + 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.56155
2.56155
−1.56155 0 −5.56155 0 0 7.00000 21.1771 0 0
1.2 2.56155 0 −1.43845 0 0 7.00000 −24.1771 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1575.4.a.u 2
3.b odd 2 1 1575.4.a.r 2
5.b even 2 1 315.4.a.h 2
15.d odd 2 1 315.4.a.j yes 2
35.c odd 2 1 2205.4.a.y 2
105.g even 2 1 2205.4.a.ba 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
315.4.a.h 2 5.b even 2 1
315.4.a.j yes 2 15.d odd 2 1
1575.4.a.r 2 3.b odd 2 1
1575.4.a.u 2 1.a even 1 1 trivial
2205.4.a.y 2 35.c odd 2 1
2205.4.a.ba 2 105.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1575))\):

\( T_{2}^{2} - T_{2} - 4 \) Copy content Toggle raw display
\( T_{11}^{2} - 4T_{11} - 64 \) Copy content Toggle raw display
\( T_{13}^{2} - 22T_{13} - 1936 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T - 4 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T - 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 4T - 64 \) Copy content Toggle raw display
$13$ \( T^{2} - 22T - 1936 \) Copy content Toggle raw display
$17$ \( T^{2} + 58T - 2032 \) Copy content Toggle raw display
$19$ \( T^{2} - 8228 \) Copy content Toggle raw display
$23$ \( T^{2} + 82T + 848 \) Copy content Toggle raw display
$29$ \( T^{2} - 334T + 24064 \) Copy content Toggle raw display
$31$ \( T^{2} + 210T + 9648 \) Copy content Toggle raw display
$37$ \( T^{2} + 6T - 3816 \) Copy content Toggle raw display
$41$ \( T^{2} - 176T - 3748 \) Copy content Toggle raw display
$43$ \( T^{2} + 46T - 116584 \) Copy content Toggle raw display
$47$ \( T^{2} + 514T + 62224 \) Copy content Toggle raw display
$53$ \( T^{2} + 808T + 151724 \) Copy content Toggle raw display
$59$ \( (T - 284)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 618T + 61056 \) Copy content Toggle raw display
$67$ \( T^{2} + 694T + 79592 \) Copy content Toggle raw display
$71$ \( T^{2} - 814T + 54112 \) Copy content Toggle raw display
$73$ \( T^{2} + 82T - 355744 \) Copy content Toggle raw display
$79$ \( T^{2} - 600T - 367232 \) Copy content Toggle raw display
$83$ \( T^{2} - 268T - 364544 \) Copy content Toggle raw display
$89$ \( T^{2} + 72T - 961652 \) Copy content Toggle raw display
$97$ \( T^{2} + 1626 T - 326408 \) Copy content Toggle raw display
show more
show less