Properties

Label 1575.4.a.s.1.2
Level $1575$
Weight $4$
Character 1575.1
Self dual yes
Analytic conductor $92.928$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,4,Mod(1,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.9280082590\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{41}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 175)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.70156\) of defining polynomial
Character \(\chi\) \(=\) 1575.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.70156 q^{2} -0.701562 q^{4} +7.00000 q^{7} -23.5078 q^{8} -4.01562 q^{11} +51.6125 q^{13} +18.9109 q^{14} -57.8953 q^{16} +67.5078 q^{17} -50.9109 q^{19} -10.8485 q^{22} -0.507811 q^{23} +139.434 q^{26} -4.91093 q^{28} +120.058 q^{29} -292.303 q^{31} +31.6547 q^{32} +182.377 q^{34} -144.989 q^{37} -137.539 q^{38} +57.2047 q^{41} -283.020 q^{43} +2.81721 q^{44} -1.37188 q^{46} +233.769 q^{47} +49.0000 q^{49} -36.2094 q^{52} +406.334 q^{53} -164.555 q^{56} +324.344 q^{58} +577.328 q^{59} +322.116 q^{61} -789.675 q^{62} +548.680 q^{64} +985.459 q^{67} -47.3609 q^{68} -1033.57 q^{71} +692.720 q^{73} -391.697 q^{74} +35.7172 q^{76} -28.1093 q^{77} -428.236 q^{79} +154.542 q^{82} +537.592 q^{83} -764.597 q^{86} +94.3985 q^{88} +802.073 q^{89} +361.287 q^{91} +0.356261 q^{92} +631.541 q^{94} +1752.82 q^{97} +132.377 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 5 q^{4} + 14 q^{7} - 15 q^{8} + 56 q^{11} + 52 q^{13} - 7 q^{14} - 135 q^{16} + 103 q^{17} - 57 q^{19} - 233 q^{22} + 31 q^{23} + 138 q^{26} + 35 q^{28} + 413 q^{29} - 162 q^{31} + 249 q^{32}+ \cdots - 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.70156 0.955146 0.477573 0.878592i \(-0.341517\pi\)
0.477573 + 0.878592i \(0.341517\pi\)
\(3\) 0 0
\(4\) −0.701562 −0.0876953
\(5\) 0 0
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) −23.5078 −1.03891
\(9\) 0 0
\(10\) 0 0
\(11\) −4.01562 −0.110069 −0.0550343 0.998484i \(-0.517527\pi\)
−0.0550343 + 0.998484i \(0.517527\pi\)
\(12\) 0 0
\(13\) 51.6125 1.10113 0.550567 0.834791i \(-0.314412\pi\)
0.550567 + 0.834791i \(0.314412\pi\)
\(14\) 18.9109 0.361011
\(15\) 0 0
\(16\) −57.8953 −0.904614
\(17\) 67.5078 0.963121 0.481560 0.876413i \(-0.340070\pi\)
0.481560 + 0.876413i \(0.340070\pi\)
\(18\) 0 0
\(19\) −50.9109 −0.614725 −0.307362 0.951593i \(-0.599446\pi\)
−0.307362 + 0.951593i \(0.599446\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −10.8485 −0.105132
\(23\) −0.507811 −0.00460373 −0.00230187 0.999997i \(-0.500733\pi\)
−0.00230187 + 0.999997i \(0.500733\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 139.434 1.05174
\(27\) 0 0
\(28\) −4.91093 −0.0331457
\(29\) 120.058 0.768765 0.384382 0.923174i \(-0.374414\pi\)
0.384382 + 0.923174i \(0.374414\pi\)
\(30\) 0 0
\(31\) −292.303 −1.69352 −0.846761 0.531973i \(-0.821451\pi\)
−0.846761 + 0.531973i \(0.821451\pi\)
\(32\) 31.6547 0.174869
\(33\) 0 0
\(34\) 182.377 0.919921
\(35\) 0 0
\(36\) 0 0
\(37\) −144.989 −0.644218 −0.322109 0.946703i \(-0.604392\pi\)
−0.322109 + 0.946703i \(0.604392\pi\)
\(38\) −137.539 −0.587152
\(39\) 0 0
\(40\) 0 0
\(41\) 57.2047 0.217899 0.108950 0.994047i \(-0.465251\pi\)
0.108950 + 0.994047i \(0.465251\pi\)
\(42\) 0 0
\(43\) −283.020 −1.00373 −0.501863 0.864947i \(-0.667352\pi\)
−0.501863 + 0.864947i \(0.667352\pi\)
\(44\) 2.81721 0.00965250
\(45\) 0 0
\(46\) −1.37188 −0.00439724
\(47\) 233.769 0.725504 0.362752 0.931886i \(-0.381837\pi\)
0.362752 + 0.931886i \(0.381837\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) −36.2094 −0.0965642
\(53\) 406.334 1.05310 0.526550 0.850144i \(-0.323485\pi\)
0.526550 + 0.850144i \(0.323485\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −164.555 −0.392670
\(57\) 0 0
\(58\) 324.344 0.734283
\(59\) 577.328 1.27393 0.636964 0.770894i \(-0.280190\pi\)
0.636964 + 0.770894i \(0.280190\pi\)
\(60\) 0 0
\(61\) 322.116 0.676110 0.338055 0.941126i \(-0.390231\pi\)
0.338055 + 0.941126i \(0.390231\pi\)
\(62\) −789.675 −1.61756
\(63\) 0 0
\(64\) 548.680 1.07164
\(65\) 0 0
\(66\) 0 0
\(67\) 985.459 1.79691 0.898455 0.439065i \(-0.144690\pi\)
0.898455 + 0.439065i \(0.144690\pi\)
\(68\) −47.3609 −0.0844611
\(69\) 0 0
\(70\) 0 0
\(71\) −1033.57 −1.72764 −0.863821 0.503799i \(-0.831935\pi\)
−0.863821 + 0.503799i \(0.831935\pi\)
\(72\) 0 0
\(73\) 692.720 1.11064 0.555320 0.831637i \(-0.312596\pi\)
0.555320 + 0.831637i \(0.312596\pi\)
\(74\) −391.697 −0.615322
\(75\) 0 0
\(76\) 35.7172 0.0539084
\(77\) −28.1093 −0.0416020
\(78\) 0 0
\(79\) −428.236 −0.609877 −0.304939 0.952372i \(-0.598636\pi\)
−0.304939 + 0.952372i \(0.598636\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 154.542 0.208126
\(83\) 537.592 0.710945 0.355472 0.934687i \(-0.384320\pi\)
0.355472 + 0.934687i \(0.384320\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −764.597 −0.958705
\(87\) 0 0
\(88\) 94.3985 0.114351
\(89\) 802.073 0.955277 0.477638 0.878557i \(-0.341493\pi\)
0.477638 + 0.878557i \(0.341493\pi\)
\(90\) 0 0
\(91\) 361.287 0.416189
\(92\) 0.356261 0.000403725 0
\(93\) 0 0
\(94\) 631.541 0.692962
\(95\) 0 0
\(96\) 0 0
\(97\) 1752.82 1.83477 0.917384 0.398004i \(-0.130297\pi\)
0.917384 + 0.398004i \(0.130297\pi\)
\(98\) 132.377 0.136449
\(99\) 0 0
\(100\) 0 0
\(101\) 1987.85 1.95840 0.979200 0.202896i \(-0.0650354\pi\)
0.979200 + 0.202896i \(0.0650354\pi\)
\(102\) 0 0
\(103\) −389.122 −0.372246 −0.186123 0.982526i \(-0.559592\pi\)
−0.186123 + 0.982526i \(0.559592\pi\)
\(104\) −1213.30 −1.14398
\(105\) 0 0
\(106\) 1097.74 1.00586
\(107\) 508.595 0.459512 0.229756 0.973248i \(-0.426207\pi\)
0.229756 + 0.973248i \(0.426207\pi\)
\(108\) 0 0
\(109\) 344.130 0.302400 0.151200 0.988503i \(-0.451686\pi\)
0.151200 + 0.988503i \(0.451686\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −405.267 −0.341912
\(113\) 1218.12 1.01408 0.507040 0.861923i \(-0.330740\pi\)
0.507040 + 0.861923i \(0.330740\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −84.2280 −0.0674170
\(117\) 0 0
\(118\) 1559.69 1.21679
\(119\) 472.555 0.364025
\(120\) 0 0
\(121\) −1314.87 −0.987885
\(122\) 870.215 0.645784
\(123\) 0 0
\(124\) 205.069 0.148514
\(125\) 0 0
\(126\) 0 0
\(127\) −281.652 −0.196792 −0.0983958 0.995147i \(-0.531371\pi\)
−0.0983958 + 0.995147i \(0.531371\pi\)
\(128\) 1229.05 0.848704
\(129\) 0 0
\(130\) 0 0
\(131\) 699.706 0.466669 0.233334 0.972397i \(-0.425036\pi\)
0.233334 + 0.972397i \(0.425036\pi\)
\(132\) 0 0
\(133\) −356.377 −0.232344
\(134\) 2662.28 1.71631
\(135\) 0 0
\(136\) −1586.96 −1.00059
\(137\) −1588.77 −0.990789 −0.495394 0.868668i \(-0.664976\pi\)
−0.495394 + 0.868668i \(0.664976\pi\)
\(138\) 0 0
\(139\) 2564.09 1.56463 0.782315 0.622884i \(-0.214039\pi\)
0.782315 + 0.622884i \(0.214039\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −2792.26 −1.65015
\(143\) −207.256 −0.121200
\(144\) 0 0
\(145\) 0 0
\(146\) 1871.43 1.06082
\(147\) 0 0
\(148\) 101.719 0.0564948
\(149\) 3386.03 1.86171 0.930854 0.365390i \(-0.119065\pi\)
0.930854 + 0.365390i \(0.119065\pi\)
\(150\) 0 0
\(151\) −2301.98 −1.24061 −0.620306 0.784360i \(-0.712992\pi\)
−0.620306 + 0.784360i \(0.712992\pi\)
\(152\) 1196.80 0.638643
\(153\) 0 0
\(154\) −75.9392 −0.0397360
\(155\) 0 0
\(156\) 0 0
\(157\) 587.325 0.298558 0.149279 0.988795i \(-0.452305\pi\)
0.149279 + 0.988795i \(0.452305\pi\)
\(158\) −1156.91 −0.582522
\(159\) 0 0
\(160\) 0 0
\(161\) −3.55467 −0.00174005
\(162\) 0 0
\(163\) 914.189 0.439293 0.219647 0.975579i \(-0.429510\pi\)
0.219647 + 0.975579i \(0.429510\pi\)
\(164\) −40.1327 −0.0191087
\(165\) 0 0
\(166\) 1452.34 0.679056
\(167\) −3316.66 −1.53683 −0.768416 0.639951i \(-0.778955\pi\)
−0.768416 + 0.639951i \(0.778955\pi\)
\(168\) 0 0
\(169\) 466.850 0.212494
\(170\) 0 0
\(171\) 0 0
\(172\) 198.556 0.0880220
\(173\) −1542.16 −0.677737 −0.338868 0.940834i \(-0.610044\pi\)
−0.338868 + 0.940834i \(0.610044\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 232.486 0.0995697
\(177\) 0 0
\(178\) 2166.85 0.912429
\(179\) 550.755 0.229974 0.114987 0.993367i \(-0.463317\pi\)
0.114987 + 0.993367i \(0.463317\pi\)
\(180\) 0 0
\(181\) −3562.15 −1.46283 −0.731416 0.681931i \(-0.761140\pi\)
−0.731416 + 0.681931i \(0.761140\pi\)
\(182\) 976.041 0.397522
\(183\) 0 0
\(184\) 11.9375 0.00478285
\(185\) 0 0
\(186\) 0 0
\(187\) −271.086 −0.106009
\(188\) −164.003 −0.0636232
\(189\) 0 0
\(190\) 0 0
\(191\) −3436.00 −1.30168 −0.650838 0.759217i \(-0.725582\pi\)
−0.650838 + 0.759217i \(0.725582\pi\)
\(192\) 0 0
\(193\) 1047.12 0.390534 0.195267 0.980750i \(-0.437443\pi\)
0.195267 + 0.980750i \(0.437443\pi\)
\(194\) 4735.37 1.75247
\(195\) 0 0
\(196\) −34.3765 −0.0125279
\(197\) 3205.61 1.15934 0.579670 0.814851i \(-0.303181\pi\)
0.579670 + 0.814851i \(0.303181\pi\)
\(198\) 0 0
\(199\) 22.0532 0.00785581 0.00392791 0.999992i \(-0.498750\pi\)
0.00392791 + 0.999992i \(0.498750\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 5370.30 1.87056
\(203\) 840.405 0.290566
\(204\) 0 0
\(205\) 0 0
\(206\) −1051.24 −0.355549
\(207\) 0 0
\(208\) −2988.12 −0.996101
\(209\) 204.439 0.0676619
\(210\) 0 0
\(211\) 2362.52 0.770819 0.385410 0.922746i \(-0.374060\pi\)
0.385410 + 0.922746i \(0.374060\pi\)
\(212\) −285.069 −0.0923519
\(213\) 0 0
\(214\) 1374.00 0.438901
\(215\) 0 0
\(216\) 0 0
\(217\) −2046.12 −0.640091
\(218\) 929.688 0.288837
\(219\) 0 0
\(220\) 0 0
\(221\) 3484.25 1.06052
\(222\) 0 0
\(223\) −1428.67 −0.429016 −0.214508 0.976722i \(-0.568815\pi\)
−0.214508 + 0.976722i \(0.568815\pi\)
\(224\) 221.583 0.0660943
\(225\) 0 0
\(226\) 3290.82 0.968594
\(227\) −5979.38 −1.74831 −0.874153 0.485651i \(-0.838582\pi\)
−0.874153 + 0.485651i \(0.838582\pi\)
\(228\) 0 0
\(229\) 6377.77 1.84042 0.920208 0.391430i \(-0.128020\pi\)
0.920208 + 0.391430i \(0.128020\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2822.30 −0.798676
\(233\) 4947.18 1.39099 0.695495 0.718531i \(-0.255185\pi\)
0.695495 + 0.718531i \(0.255185\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −405.031 −0.111717
\(237\) 0 0
\(238\) 1276.64 0.347698
\(239\) 348.213 0.0942427 0.0471213 0.998889i \(-0.484995\pi\)
0.0471213 + 0.998889i \(0.484995\pi\)
\(240\) 0 0
\(241\) 4702.23 1.25683 0.628417 0.777876i \(-0.283703\pi\)
0.628417 + 0.777876i \(0.283703\pi\)
\(242\) −3552.22 −0.943575
\(243\) 0 0
\(244\) −225.984 −0.0592916
\(245\) 0 0
\(246\) 0 0
\(247\) −2627.64 −0.676894
\(248\) 6871.41 1.75941
\(249\) 0 0
\(250\) 0 0
\(251\) 2431.64 0.611489 0.305745 0.952114i \(-0.401095\pi\)
0.305745 + 0.952114i \(0.401095\pi\)
\(252\) 0 0
\(253\) 2.03917 0.000506727 0
\(254\) −760.899 −0.187965
\(255\) 0 0
\(256\) −1069.07 −0.261003
\(257\) 1631.76 0.396055 0.198028 0.980196i \(-0.436546\pi\)
0.198028 + 0.980196i \(0.436546\pi\)
\(258\) 0 0
\(259\) −1014.92 −0.243491
\(260\) 0 0
\(261\) 0 0
\(262\) 1890.30 0.445737
\(263\) 3563.67 0.835534 0.417767 0.908554i \(-0.362813\pi\)
0.417767 + 0.908554i \(0.362813\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −962.773 −0.221923
\(267\) 0 0
\(268\) −691.361 −0.157581
\(269\) −791.631 −0.179430 −0.0897149 0.995967i \(-0.528596\pi\)
−0.0897149 + 0.995967i \(0.528596\pi\)
\(270\) 0 0
\(271\) 7823.17 1.75359 0.876796 0.480862i \(-0.159676\pi\)
0.876796 + 0.480862i \(0.159676\pi\)
\(272\) −3908.39 −0.871253
\(273\) 0 0
\(274\) −4292.17 −0.946348
\(275\) 0 0
\(276\) 0 0
\(277\) −1554.16 −0.337114 −0.168557 0.985692i \(-0.553911\pi\)
−0.168557 + 0.985692i \(0.553911\pi\)
\(278\) 6927.05 1.49445
\(279\) 0 0
\(280\) 0 0
\(281\) 5043.72 1.07076 0.535379 0.844612i \(-0.320169\pi\)
0.535379 + 0.844612i \(0.320169\pi\)
\(282\) 0 0
\(283\) −5897.15 −1.23869 −0.619345 0.785119i \(-0.712602\pi\)
−0.619345 + 0.785119i \(0.712602\pi\)
\(284\) 725.116 0.151506
\(285\) 0 0
\(286\) −559.916 −0.115764
\(287\) 400.433 0.0823582
\(288\) 0 0
\(289\) −355.696 −0.0723988
\(290\) 0 0
\(291\) 0 0
\(292\) −485.986 −0.0973979
\(293\) −8592.25 −1.71319 −0.856595 0.515990i \(-0.827424\pi\)
−0.856595 + 0.515990i \(0.827424\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 3408.37 0.669283
\(297\) 0 0
\(298\) 9147.58 1.77820
\(299\) −26.2094 −0.00506932
\(300\) 0 0
\(301\) −1981.14 −0.379373
\(302\) −6218.94 −1.18497
\(303\) 0 0
\(304\) 2947.50 0.556089
\(305\) 0 0
\(306\) 0 0
\(307\) −3682.20 −0.684542 −0.342271 0.939601i \(-0.611196\pi\)
−0.342271 + 0.939601i \(0.611196\pi\)
\(308\) 19.7205 0.00364830
\(309\) 0 0
\(310\) 0 0
\(311\) −6866.18 −1.25191 −0.625957 0.779858i \(-0.715291\pi\)
−0.625957 + 0.779858i \(0.715291\pi\)
\(312\) 0 0
\(313\) 2958.60 0.534281 0.267140 0.963658i \(-0.413921\pi\)
0.267140 + 0.963658i \(0.413921\pi\)
\(314\) 1586.69 0.285167
\(315\) 0 0
\(316\) 300.434 0.0534834
\(317\) −1585.21 −0.280866 −0.140433 0.990090i \(-0.544849\pi\)
−0.140433 + 0.990090i \(0.544849\pi\)
\(318\) 0 0
\(319\) −482.107 −0.0846169
\(320\) 0 0
\(321\) 0 0
\(322\) −9.60317 −0.00166200
\(323\) −3436.89 −0.592054
\(324\) 0 0
\(325\) 0 0
\(326\) 2469.74 0.419589
\(327\) 0 0
\(328\) −1344.76 −0.226377
\(329\) 1636.38 0.274215
\(330\) 0 0
\(331\) 6045.84 1.00396 0.501978 0.864880i \(-0.332606\pi\)
0.501978 + 0.864880i \(0.332606\pi\)
\(332\) −377.154 −0.0623465
\(333\) 0 0
\(334\) −8960.16 −1.46790
\(335\) 0 0
\(336\) 0 0
\(337\) −9205.64 −1.48802 −0.744010 0.668168i \(-0.767079\pi\)
−0.744010 + 0.668168i \(0.767079\pi\)
\(338\) 1261.22 0.202963
\(339\) 0 0
\(340\) 0 0
\(341\) 1173.78 0.186404
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 6653.19 1.04278
\(345\) 0 0
\(346\) −4166.25 −0.647338
\(347\) 3092.28 0.478393 0.239196 0.970971i \(-0.423116\pi\)
0.239196 + 0.970971i \(0.423116\pi\)
\(348\) 0 0
\(349\) −5231.61 −0.802412 −0.401206 0.915988i \(-0.631409\pi\)
−0.401206 + 0.915988i \(0.631409\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −127.113 −0.0192476
\(353\) −9013.71 −1.35907 −0.679534 0.733644i \(-0.737818\pi\)
−0.679534 + 0.733644i \(0.737818\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −562.704 −0.0837732
\(357\) 0 0
\(358\) 1487.90 0.219659
\(359\) 4779.38 0.702635 0.351317 0.936256i \(-0.385734\pi\)
0.351317 + 0.936256i \(0.385734\pi\)
\(360\) 0 0
\(361\) −4267.08 −0.622114
\(362\) −9623.38 −1.39722
\(363\) 0 0
\(364\) −253.466 −0.0364978
\(365\) 0 0
\(366\) 0 0
\(367\) 175.769 0.0250001 0.0125001 0.999922i \(-0.496021\pi\)
0.0125001 + 0.999922i \(0.496021\pi\)
\(368\) 29.3999 0.00416460
\(369\) 0 0
\(370\) 0 0
\(371\) 2844.34 0.398034
\(372\) 0 0
\(373\) 7982.98 1.10816 0.554079 0.832464i \(-0.313070\pi\)
0.554079 + 0.832464i \(0.313070\pi\)
\(374\) −732.355 −0.101254
\(375\) 0 0
\(376\) −5495.39 −0.753732
\(377\) 6196.48 0.846512
\(378\) 0 0
\(379\) 12663.1 1.71626 0.858129 0.513434i \(-0.171627\pi\)
0.858129 + 0.513434i \(0.171627\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −9282.56 −1.24329
\(383\) −4678.68 −0.624202 −0.312101 0.950049i \(-0.601033\pi\)
−0.312101 + 0.950049i \(0.601033\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2828.85 0.373017
\(387\) 0 0
\(388\) −1229.72 −0.160900
\(389\) 50.2546 0.00655015 0.00327508 0.999995i \(-0.498958\pi\)
0.00327508 + 0.999995i \(0.498958\pi\)
\(390\) 0 0
\(391\) −34.2812 −0.00443395
\(392\) −1151.88 −0.148415
\(393\) 0 0
\(394\) 8660.15 1.10734
\(395\) 0 0
\(396\) 0 0
\(397\) −11059.9 −1.39819 −0.699095 0.715029i \(-0.746413\pi\)
−0.699095 + 0.715029i \(0.746413\pi\)
\(398\) 59.5780 0.00750345
\(399\) 0 0
\(400\) 0 0
\(401\) 13667.8 1.70209 0.851046 0.525092i \(-0.175969\pi\)
0.851046 + 0.525092i \(0.175969\pi\)
\(402\) 0 0
\(403\) −15086.5 −1.86479
\(404\) −1394.60 −0.171742
\(405\) 0 0
\(406\) 2270.41 0.277533
\(407\) 582.221 0.0709082
\(408\) 0 0
\(409\) −10990.5 −1.32872 −0.664359 0.747414i \(-0.731295\pi\)
−0.664359 + 0.747414i \(0.731295\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 272.993 0.0326442
\(413\) 4041.30 0.481499
\(414\) 0 0
\(415\) 0 0
\(416\) 1633.78 0.192554
\(417\) 0 0
\(418\) 552.305 0.0646271
\(419\) −1115.39 −0.130049 −0.0650246 0.997884i \(-0.520713\pi\)
−0.0650246 + 0.997884i \(0.520713\pi\)
\(420\) 0 0
\(421\) −2395.26 −0.277287 −0.138643 0.990342i \(-0.544274\pi\)
−0.138643 + 0.990342i \(0.544274\pi\)
\(422\) 6382.50 0.736245
\(423\) 0 0
\(424\) −9552.03 −1.09407
\(425\) 0 0
\(426\) 0 0
\(427\) 2254.81 0.255545
\(428\) −356.811 −0.0402970
\(429\) 0 0
\(430\) 0 0
\(431\) −1684.62 −0.188272 −0.0941360 0.995559i \(-0.530009\pi\)
−0.0941360 + 0.995559i \(0.530009\pi\)
\(432\) 0 0
\(433\) −13355.7 −1.48230 −0.741150 0.671340i \(-0.765719\pi\)
−0.741150 + 0.671340i \(0.765719\pi\)
\(434\) −5527.72 −0.611381
\(435\) 0 0
\(436\) −241.428 −0.0265191
\(437\) 25.8531 0.00283003
\(438\) 0 0
\(439\) 13817.4 1.50220 0.751101 0.660188i \(-0.229523\pi\)
0.751101 + 0.660188i \(0.229523\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 9412.91 1.01296
\(443\) −6305.19 −0.676227 −0.338114 0.941105i \(-0.609789\pi\)
−0.338114 + 0.941105i \(0.609789\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −3859.63 −0.409773
\(447\) 0 0
\(448\) 3840.76 0.405042
\(449\) −5446.85 −0.572501 −0.286250 0.958155i \(-0.592409\pi\)
−0.286250 + 0.958155i \(0.592409\pi\)
\(450\) 0 0
\(451\) −229.712 −0.0239839
\(452\) −854.586 −0.0889300
\(453\) 0 0
\(454\) −16153.7 −1.66989
\(455\) 0 0
\(456\) 0 0
\(457\) 1221.02 0.124982 0.0624910 0.998046i \(-0.480096\pi\)
0.0624910 + 0.998046i \(0.480096\pi\)
\(458\) 17230.0 1.75787
\(459\) 0 0
\(460\) 0 0
\(461\) −9967.46 −1.00701 −0.503504 0.863993i \(-0.667956\pi\)
−0.503504 + 0.863993i \(0.667956\pi\)
\(462\) 0 0
\(463\) −6309.54 −0.633324 −0.316662 0.948538i \(-0.602562\pi\)
−0.316662 + 0.948538i \(0.602562\pi\)
\(464\) −6950.79 −0.695436
\(465\) 0 0
\(466\) 13365.1 1.32860
\(467\) −7784.79 −0.771386 −0.385693 0.922627i \(-0.626038\pi\)
−0.385693 + 0.922627i \(0.626038\pi\)
\(468\) 0 0
\(469\) 6898.22 0.679168
\(470\) 0 0
\(471\) 0 0
\(472\) −13571.7 −1.32349
\(473\) 1136.50 0.110479
\(474\) 0 0
\(475\) 0 0
\(476\) −331.526 −0.0319233
\(477\) 0 0
\(478\) 940.718 0.0900156
\(479\) 4425.28 0.422122 0.211061 0.977473i \(-0.432308\pi\)
0.211061 + 0.977473i \(0.432308\pi\)
\(480\) 0 0
\(481\) −7483.25 −0.709369
\(482\) 12703.4 1.20046
\(483\) 0 0
\(484\) 922.466 0.0866328
\(485\) 0 0
\(486\) 0 0
\(487\) 13075.3 1.21663 0.608315 0.793695i \(-0.291846\pi\)
0.608315 + 0.793695i \(0.291846\pi\)
\(488\) −7572.23 −0.702416
\(489\) 0 0
\(490\) 0 0
\(491\) −11455.7 −1.05293 −0.526463 0.850198i \(-0.676482\pi\)
−0.526463 + 0.850198i \(0.676482\pi\)
\(492\) 0 0
\(493\) 8104.84 0.740413
\(494\) −7098.73 −0.646533
\(495\) 0 0
\(496\) 16923.0 1.53198
\(497\) −7235.01 −0.652987
\(498\) 0 0
\(499\) 5521.10 0.495307 0.247654 0.968849i \(-0.420340\pi\)
0.247654 + 0.968849i \(0.420340\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 6569.23 0.584062
\(503\) 11491.6 1.01866 0.509328 0.860573i \(-0.329894\pi\)
0.509328 + 0.860573i \(0.329894\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 5.50896 0.000483998 0
\(507\) 0 0
\(508\) 197.596 0.0172577
\(509\) 9207.84 0.801828 0.400914 0.916116i \(-0.368693\pi\)
0.400914 + 0.916116i \(0.368693\pi\)
\(510\) 0 0
\(511\) 4849.04 0.419783
\(512\) −12720.6 −1.09800
\(513\) 0 0
\(514\) 4408.29 0.378291
\(515\) 0 0
\(516\) 0 0
\(517\) −938.727 −0.0798552
\(518\) −2741.88 −0.232570
\(519\) 0 0
\(520\) 0 0
\(521\) 11598.0 0.975271 0.487636 0.873047i \(-0.337859\pi\)
0.487636 + 0.873047i \(0.337859\pi\)
\(522\) 0 0
\(523\) 4596.93 0.384340 0.192170 0.981362i \(-0.438448\pi\)
0.192170 + 0.981362i \(0.438448\pi\)
\(524\) −490.887 −0.0409246
\(525\) 0 0
\(526\) 9627.49 0.798058
\(527\) −19732.7 −1.63107
\(528\) 0 0
\(529\) −12166.7 −0.999979
\(530\) 0 0
\(531\) 0 0
\(532\) 250.020 0.0203755
\(533\) 2952.48 0.239936
\(534\) 0 0
\(535\) 0 0
\(536\) −23166.0 −1.86683
\(537\) 0 0
\(538\) −2138.64 −0.171382
\(539\) −196.765 −0.0157241
\(540\) 0 0
\(541\) −8427.65 −0.669747 −0.334874 0.942263i \(-0.608694\pi\)
−0.334874 + 0.942263i \(0.608694\pi\)
\(542\) 21134.8 1.67494
\(543\) 0 0
\(544\) 2136.94 0.168420
\(545\) 0 0
\(546\) 0 0
\(547\) 12864.6 1.00557 0.502787 0.864410i \(-0.332308\pi\)
0.502787 + 0.864410i \(0.332308\pi\)
\(548\) 1114.62 0.0868875
\(549\) 0 0
\(550\) 0 0
\(551\) −6112.26 −0.472579
\(552\) 0 0
\(553\) −2997.65 −0.230512
\(554\) −4198.67 −0.321993
\(555\) 0 0
\(556\) −1798.87 −0.137211
\(557\) 19219.4 1.46203 0.731016 0.682360i \(-0.239046\pi\)
0.731016 + 0.682360i \(0.239046\pi\)
\(558\) 0 0
\(559\) −14607.4 −1.10524
\(560\) 0 0
\(561\) 0 0
\(562\) 13625.9 1.02273
\(563\) −17253.3 −1.29155 −0.645774 0.763529i \(-0.723465\pi\)
−0.645774 + 0.763529i \(0.723465\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −15931.5 −1.18313
\(567\) 0 0
\(568\) 24297.0 1.79486
\(569\) 6242.80 0.459950 0.229975 0.973197i \(-0.426136\pi\)
0.229975 + 0.973197i \(0.426136\pi\)
\(570\) 0 0
\(571\) 5904.17 0.432718 0.216359 0.976314i \(-0.430582\pi\)
0.216359 + 0.976314i \(0.430582\pi\)
\(572\) 145.403 0.0106287
\(573\) 0 0
\(574\) 1081.79 0.0786642
\(575\) 0 0
\(576\) 0 0
\(577\) 11390.2 0.821806 0.410903 0.911679i \(-0.365214\pi\)
0.410903 + 0.911679i \(0.365214\pi\)
\(578\) −960.934 −0.0691515
\(579\) 0 0
\(580\) 0 0
\(581\) 3763.15 0.268712
\(582\) 0 0
\(583\) −1631.68 −0.115913
\(584\) −16284.3 −1.15385
\(585\) 0 0
\(586\) −23212.5 −1.63635
\(587\) 20459.5 1.43859 0.719295 0.694704i \(-0.244465\pi\)
0.719295 + 0.694704i \(0.244465\pi\)
\(588\) 0 0
\(589\) 14881.4 1.04105
\(590\) 0 0
\(591\) 0 0
\(592\) 8394.19 0.582768
\(593\) −20051.1 −1.38853 −0.694266 0.719719i \(-0.744271\pi\)
−0.694266 + 0.719719i \(0.744271\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −2375.51 −0.163263
\(597\) 0 0
\(598\) −70.8062 −0.00484194
\(599\) −10578.4 −0.721572 −0.360786 0.932649i \(-0.617492\pi\)
−0.360786 + 0.932649i \(0.617492\pi\)
\(600\) 0 0
\(601\) −4619.46 −0.313530 −0.156765 0.987636i \(-0.550107\pi\)
−0.156765 + 0.987636i \(0.550107\pi\)
\(602\) −5352.18 −0.362356
\(603\) 0 0
\(604\) 1614.98 0.108796
\(605\) 0 0
\(606\) 0 0
\(607\) 5724.50 0.382785 0.191392 0.981514i \(-0.438700\pi\)
0.191392 + 0.981514i \(0.438700\pi\)
\(608\) −1611.57 −0.107496
\(609\) 0 0
\(610\) 0 0
\(611\) 12065.4 0.798876
\(612\) 0 0
\(613\) −19286.4 −1.27075 −0.635375 0.772204i \(-0.719154\pi\)
−0.635375 + 0.772204i \(0.719154\pi\)
\(614\) −9947.70 −0.653838
\(615\) 0 0
\(616\) 660.789 0.0432207
\(617\) −6864.84 −0.447922 −0.223961 0.974598i \(-0.571899\pi\)
−0.223961 + 0.974598i \(0.571899\pi\)
\(618\) 0 0
\(619\) −17559.4 −1.14018 −0.570090 0.821582i \(-0.693092\pi\)
−0.570090 + 0.821582i \(0.693092\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −18549.4 −1.19576
\(623\) 5614.51 0.361061
\(624\) 0 0
\(625\) 0 0
\(626\) 7992.84 0.510317
\(627\) 0 0
\(628\) −412.045 −0.0261821
\(629\) −9787.89 −0.620459
\(630\) 0 0
\(631\) −24780.6 −1.56339 −0.781694 0.623662i \(-0.785644\pi\)
−0.781694 + 0.623662i \(0.785644\pi\)
\(632\) 10066.9 0.633607
\(633\) 0 0
\(634\) −4282.55 −0.268268
\(635\) 0 0
\(636\) 0 0
\(637\) 2529.01 0.157305
\(638\) −1302.44 −0.0808215
\(639\) 0 0
\(640\) 0 0
\(641\) 21724.3 1.33863 0.669313 0.742980i \(-0.266588\pi\)
0.669313 + 0.742980i \(0.266588\pi\)
\(642\) 0 0
\(643\) −18736.1 −1.14911 −0.574555 0.818466i \(-0.694825\pi\)
−0.574555 + 0.818466i \(0.694825\pi\)
\(644\) 2.49382 0.000152594 0
\(645\) 0 0
\(646\) −9284.96 −0.565498
\(647\) 25687.8 1.56088 0.780442 0.625228i \(-0.214994\pi\)
0.780442 + 0.625228i \(0.214994\pi\)
\(648\) 0 0
\(649\) −2318.33 −0.140219
\(650\) 0 0
\(651\) 0 0
\(652\) −641.360 −0.0385239
\(653\) −15450.7 −0.925929 −0.462964 0.886377i \(-0.653214\pi\)
−0.462964 + 0.886377i \(0.653214\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −3311.88 −0.197115
\(657\) 0 0
\(658\) 4420.78 0.261915
\(659\) 1402.85 0.0829246 0.0414623 0.999140i \(-0.486798\pi\)
0.0414623 + 0.999140i \(0.486798\pi\)
\(660\) 0 0
\(661\) 6896.75 0.405828 0.202914 0.979197i \(-0.434959\pi\)
0.202914 + 0.979197i \(0.434959\pi\)
\(662\) 16333.2 0.958926
\(663\) 0 0
\(664\) −12637.6 −0.738606
\(665\) 0 0
\(666\) 0 0
\(667\) −60.9666 −0.00353919
\(668\) 2326.84 0.134773
\(669\) 0 0
\(670\) 0 0
\(671\) −1293.49 −0.0744185
\(672\) 0 0
\(673\) −3869.29 −0.221620 −0.110810 0.993842i \(-0.535344\pi\)
−0.110810 + 0.993842i \(0.535344\pi\)
\(674\) −24869.6 −1.42128
\(675\) 0 0
\(676\) −327.524 −0.0186347
\(677\) −711.604 −0.0403976 −0.0201988 0.999796i \(-0.506430\pi\)
−0.0201988 + 0.999796i \(0.506430\pi\)
\(678\) 0 0
\(679\) 12269.8 0.693477
\(680\) 0 0
\(681\) 0 0
\(682\) 3171.04 0.178043
\(683\) 13112.0 0.734577 0.367288 0.930107i \(-0.380286\pi\)
0.367288 + 0.930107i \(0.380286\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 926.636 0.0515731
\(687\) 0 0
\(688\) 16385.5 0.907984
\(689\) 20971.9 1.15960
\(690\) 0 0
\(691\) −12573.5 −0.692211 −0.346105 0.938196i \(-0.612496\pi\)
−0.346105 + 0.938196i \(0.612496\pi\)
\(692\) 1081.92 0.0594343
\(693\) 0 0
\(694\) 8353.98 0.456935
\(695\) 0 0
\(696\) 0 0
\(697\) 3861.76 0.209863
\(698\) −14133.5 −0.766421
\(699\) 0 0
\(700\) 0 0
\(701\) 7489.24 0.403516 0.201758 0.979435i \(-0.435335\pi\)
0.201758 + 0.979435i \(0.435335\pi\)
\(702\) 0 0
\(703\) 7381.53 0.396016
\(704\) −2203.29 −0.117954
\(705\) 0 0
\(706\) −24351.1 −1.29811
\(707\) 13914.9 0.740206
\(708\) 0 0
\(709\) 20869.6 1.10547 0.552733 0.833358i \(-0.313585\pi\)
0.552733 + 0.833358i \(0.313585\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −18855.0 −0.992445
\(713\) 148.435 0.00779652
\(714\) 0 0
\(715\) 0 0
\(716\) −386.389 −0.0201676
\(717\) 0 0
\(718\) 12911.8 0.671119
\(719\) 5889.90 0.305503 0.152751 0.988265i \(-0.451187\pi\)
0.152751 + 0.988265i \(0.451187\pi\)
\(720\) 0 0
\(721\) −2723.85 −0.140696
\(722\) −11527.8 −0.594210
\(723\) 0 0
\(724\) 2499.07 0.128284
\(725\) 0 0
\(726\) 0 0
\(727\) 24760.2 1.26314 0.631571 0.775318i \(-0.282411\pi\)
0.631571 + 0.775318i \(0.282411\pi\)
\(728\) −8493.08 −0.432382
\(729\) 0 0
\(730\) 0 0
\(731\) −19106.1 −0.966708
\(732\) 0 0
\(733\) −4537.53 −0.228646 −0.114323 0.993444i \(-0.536470\pi\)
−0.114323 + 0.993444i \(0.536470\pi\)
\(734\) 474.850 0.0238788
\(735\) 0 0
\(736\) −16.0746 −0.000805051 0
\(737\) −3957.23 −0.197784
\(738\) 0 0
\(739\) −24010.0 −1.19516 −0.597579 0.801810i \(-0.703870\pi\)
−0.597579 + 0.801810i \(0.703870\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 7684.16 0.380181
\(743\) −25175.4 −1.24306 −0.621532 0.783389i \(-0.713489\pi\)
−0.621532 + 0.783389i \(0.713489\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 21566.5 1.05845
\(747\) 0 0
\(748\) 190.184 0.00929652
\(749\) 3560.17 0.173679
\(750\) 0 0
\(751\) 24920.0 1.21085 0.605423 0.795904i \(-0.293004\pi\)
0.605423 + 0.795904i \(0.293004\pi\)
\(752\) −13534.1 −0.656301
\(753\) 0 0
\(754\) 16740.2 0.808543
\(755\) 0 0
\(756\) 0 0
\(757\) −28274.4 −1.35753 −0.678765 0.734356i \(-0.737484\pi\)
−0.678765 + 0.734356i \(0.737484\pi\)
\(758\) 34210.3 1.63928
\(759\) 0 0
\(760\) 0 0
\(761\) −12377.9 −0.589616 −0.294808 0.955557i \(-0.595256\pi\)
−0.294808 + 0.955557i \(0.595256\pi\)
\(762\) 0 0
\(763\) 2408.91 0.114297
\(764\) 2410.57 0.114151
\(765\) 0 0
\(766\) −12639.7 −0.596204
\(767\) 29797.3 1.40276
\(768\) 0 0
\(769\) −31845.7 −1.49335 −0.746674 0.665190i \(-0.768350\pi\)
−0.746674 + 0.665190i \(0.768350\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −734.617 −0.0342480
\(773\) −7342.21 −0.341631 −0.170816 0.985303i \(-0.554640\pi\)
−0.170816 + 0.985303i \(0.554640\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −41205.1 −1.90615
\(777\) 0 0
\(778\) 135.766 0.00625636
\(779\) −2912.35 −0.133948
\(780\) 0 0
\(781\) 4150.44 0.190159
\(782\) −92.6127 −0.00423507
\(783\) 0 0
\(784\) −2836.87 −0.129231
\(785\) 0 0
\(786\) 0 0
\(787\) 36457.4 1.65129 0.825646 0.564188i \(-0.190811\pi\)
0.825646 + 0.564188i \(0.190811\pi\)
\(788\) −2248.93 −0.101669
\(789\) 0 0
\(790\) 0 0
\(791\) 8526.83 0.383286
\(792\) 0 0
\(793\) 16625.2 0.744487
\(794\) −29879.0 −1.33548
\(795\) 0 0
\(796\) −15.4717 −0.000688918 0
\(797\) 9358.08 0.415910 0.207955 0.978138i \(-0.433319\pi\)
0.207955 + 0.978138i \(0.433319\pi\)
\(798\) 0 0
\(799\) 15781.2 0.698747
\(800\) 0 0
\(801\) 0 0
\(802\) 36924.5 1.62575
\(803\) −2781.70 −0.122247
\(804\) 0 0
\(805\) 0 0
\(806\) −40757.1 −1.78115
\(807\) 0 0
\(808\) −46730.0 −2.03460
\(809\) −28189.6 −1.22509 −0.612543 0.790437i \(-0.709853\pi\)
−0.612543 + 0.790437i \(0.709853\pi\)
\(810\) 0 0
\(811\) −22909.7 −0.991946 −0.495973 0.868338i \(-0.665189\pi\)
−0.495973 + 0.868338i \(0.665189\pi\)
\(812\) −589.596 −0.0254812
\(813\) 0 0
\(814\) 1572.91 0.0677277
\(815\) 0 0
\(816\) 0 0
\(817\) 14408.8 0.617015
\(818\) −29691.5 −1.26912
\(819\) 0 0
\(820\) 0 0
\(821\) −20512.6 −0.871980 −0.435990 0.899952i \(-0.643602\pi\)
−0.435990 + 0.899952i \(0.643602\pi\)
\(822\) 0 0
\(823\) 7882.78 0.333872 0.166936 0.985968i \(-0.446613\pi\)
0.166936 + 0.985968i \(0.446613\pi\)
\(824\) 9147.40 0.386729
\(825\) 0 0
\(826\) 10917.8 0.459902
\(827\) 19276.5 0.810531 0.405265 0.914199i \(-0.367179\pi\)
0.405265 + 0.914199i \(0.367179\pi\)
\(828\) 0 0
\(829\) 13771.7 0.576972 0.288486 0.957484i \(-0.406848\pi\)
0.288486 + 0.957484i \(0.406848\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 28318.7 1.18002
\(833\) 3307.88 0.137589
\(834\) 0 0
\(835\) 0 0
\(836\) −143.427 −0.00593363
\(837\) 0 0
\(838\) −3013.31 −0.124216
\(839\) −23175.4 −0.953640 −0.476820 0.879001i \(-0.658211\pi\)
−0.476820 + 0.879001i \(0.658211\pi\)
\(840\) 0 0
\(841\) −9975.12 −0.409001
\(842\) −6470.94 −0.264849
\(843\) 0 0
\(844\) −1657.46 −0.0675972
\(845\) 0 0
\(846\) 0 0
\(847\) −9204.12 −0.373385
\(848\) −23524.9 −0.952650
\(849\) 0 0
\(850\) 0 0
\(851\) 73.6270 0.00296581
\(852\) 0 0
\(853\) −31431.7 −1.26166 −0.630832 0.775920i \(-0.717286\pi\)
−0.630832 + 0.775920i \(0.717286\pi\)
\(854\) 6091.51 0.244083
\(855\) 0 0
\(856\) −11956.0 −0.477391
\(857\) −3992.52 −0.159139 −0.0795693 0.996829i \(-0.525354\pi\)
−0.0795693 + 0.996829i \(0.525354\pi\)
\(858\) 0 0
\(859\) 12909.8 0.512778 0.256389 0.966574i \(-0.417467\pi\)
0.256389 + 0.966574i \(0.417467\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −4551.10 −0.179827
\(863\) 40128.5 1.58284 0.791419 0.611274i \(-0.209343\pi\)
0.791419 + 0.611274i \(0.209343\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −36081.3 −1.41581
\(867\) 0 0
\(868\) 1435.48 0.0561330
\(869\) 1719.63 0.0671284
\(870\) 0 0
\(871\) 50862.0 1.97864
\(872\) −8089.73 −0.314166
\(873\) 0 0
\(874\) 69.8438 0.00270309
\(875\) 0 0
\(876\) 0 0
\(877\) 3222.42 0.124074 0.0620372 0.998074i \(-0.480240\pi\)
0.0620372 + 0.998074i \(0.480240\pi\)
\(878\) 37328.4 1.43482
\(879\) 0 0
\(880\) 0 0
\(881\) 18712.4 0.715591 0.357795 0.933800i \(-0.383529\pi\)
0.357795 + 0.933800i \(0.383529\pi\)
\(882\) 0 0
\(883\) −17924.0 −0.683114 −0.341557 0.939861i \(-0.610954\pi\)
−0.341557 + 0.939861i \(0.610954\pi\)
\(884\) −2444.42 −0.0930029
\(885\) 0 0
\(886\) −17033.9 −0.645896
\(887\) −9873.21 −0.373743 −0.186871 0.982384i \(-0.559835\pi\)
−0.186871 + 0.982384i \(0.559835\pi\)
\(888\) 0 0
\(889\) −1971.56 −0.0743803
\(890\) 0 0
\(891\) 0 0
\(892\) 1002.30 0.0376226
\(893\) −11901.4 −0.445985
\(894\) 0 0
\(895\) 0 0
\(896\) 8603.38 0.320780
\(897\) 0 0
\(898\) −14715.0 −0.546822
\(899\) −35093.3 −1.30192
\(900\) 0 0
\(901\) 27430.7 1.01426
\(902\) −620.582 −0.0229081
\(903\) 0 0
\(904\) −28635.3 −1.05354
\(905\) 0 0
\(906\) 0 0
\(907\) −30129.2 −1.10300 −0.551502 0.834174i \(-0.685945\pi\)
−0.551502 + 0.834174i \(0.685945\pi\)
\(908\) 4194.91 0.153318
\(909\) 0 0
\(910\) 0 0
\(911\) 37831.8 1.37588 0.687938 0.725769i \(-0.258516\pi\)
0.687938 + 0.725769i \(0.258516\pi\)
\(912\) 0 0
\(913\) −2158.77 −0.0782527
\(914\) 3298.65 0.119376
\(915\) 0 0
\(916\) −4474.40 −0.161396
\(917\) 4897.94 0.176384
\(918\) 0 0
\(919\) 4771.81 0.171281 0.0856407 0.996326i \(-0.472706\pi\)
0.0856407 + 0.996326i \(0.472706\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −26927.7 −0.961841
\(923\) −53345.3 −1.90236
\(924\) 0 0
\(925\) 0 0
\(926\) −17045.6 −0.604917
\(927\) 0 0
\(928\) 3800.39 0.134433
\(929\) 45138.3 1.59412 0.797061 0.603899i \(-0.206387\pi\)
0.797061 + 0.603899i \(0.206387\pi\)
\(930\) 0 0
\(931\) −2494.64 −0.0878178
\(932\) −3470.75 −0.121983
\(933\) 0 0
\(934\) −21031.1 −0.736786
\(935\) 0 0
\(936\) 0 0
\(937\) 22634.7 0.789161 0.394580 0.918861i \(-0.370890\pi\)
0.394580 + 0.918861i \(0.370890\pi\)
\(938\) 18636.0 0.648705
\(939\) 0 0
\(940\) 0 0
\(941\) −11695.3 −0.405160 −0.202580 0.979266i \(-0.564933\pi\)
−0.202580 + 0.979266i \(0.564933\pi\)
\(942\) 0 0
\(943\) −29.0492 −0.00100315
\(944\) −33424.6 −1.15241
\(945\) 0 0
\(946\) 3070.33 0.105523
\(947\) 45429.1 1.55887 0.779434 0.626485i \(-0.215507\pi\)
0.779434 + 0.626485i \(0.215507\pi\)
\(948\) 0 0
\(949\) 35753.0 1.22296
\(950\) 0 0
\(951\) 0 0
\(952\) −11108.7 −0.378189
\(953\) 39025.9 1.32652 0.663259 0.748390i \(-0.269173\pi\)
0.663259 + 0.748390i \(0.269173\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −244.293 −0.00826464
\(957\) 0 0
\(958\) 11955.2 0.403188
\(959\) −11121.4 −0.374483
\(960\) 0 0
\(961\) 55650.1 1.86802
\(962\) −20216.5 −0.677552
\(963\) 0 0
\(964\) −3298.91 −0.110218
\(965\) 0 0
\(966\) 0 0
\(967\) −12986.1 −0.431857 −0.215929 0.976409i \(-0.569278\pi\)
−0.215929 + 0.976409i \(0.569278\pi\)
\(968\) 30909.8 1.02632
\(969\) 0 0
\(970\) 0 0
\(971\) 15044.2 0.497210 0.248605 0.968605i \(-0.420028\pi\)
0.248605 + 0.968605i \(0.420028\pi\)
\(972\) 0 0
\(973\) 17948.6 0.591374
\(974\) 35323.8 1.16206
\(975\) 0 0
\(976\) −18649.0 −0.611618
\(977\) −26593.4 −0.870828 −0.435414 0.900230i \(-0.643398\pi\)
−0.435414 + 0.900230i \(0.643398\pi\)
\(978\) 0 0
\(979\) −3220.82 −0.105146
\(980\) 0 0
\(981\) 0 0
\(982\) −30948.2 −1.00570
\(983\) −36050.3 −1.16971 −0.584856 0.811137i \(-0.698849\pi\)
−0.584856 + 0.811137i \(0.698849\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 21895.7 0.707203
\(987\) 0 0
\(988\) 1843.45 0.0593604
\(989\) 143.721 0.00462088
\(990\) 0 0
\(991\) −54789.8 −1.75626 −0.878131 0.478420i \(-0.841210\pi\)
−0.878131 + 0.478420i \(0.841210\pi\)
\(992\) −9252.77 −0.296145
\(993\) 0 0
\(994\) −19545.8 −0.623699
\(995\) 0 0
\(996\) 0 0
\(997\) 23309.0 0.740426 0.370213 0.928947i \(-0.379285\pi\)
0.370213 + 0.928947i \(0.379285\pi\)
\(998\) 14915.6 0.473091
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.4.a.s.1.2 2
3.2 odd 2 175.4.a.e.1.1 yes 2
5.4 even 2 1575.4.a.v.1.1 2
15.2 even 4 175.4.b.d.99.2 4
15.8 even 4 175.4.b.d.99.3 4
15.14 odd 2 175.4.a.d.1.2 2
21.20 even 2 1225.4.a.t.1.1 2
105.104 even 2 1225.4.a.r.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.4.a.d.1.2 2 15.14 odd 2
175.4.a.e.1.1 yes 2 3.2 odd 2
175.4.b.d.99.2 4 15.2 even 4
175.4.b.d.99.3 4 15.8 even 4
1225.4.a.r.1.2 2 105.104 even 2
1225.4.a.t.1.1 2 21.20 even 2
1575.4.a.s.1.2 2 1.1 even 1 trivial
1575.4.a.v.1.1 2 5.4 even 2