Properties

Label 1575.4.a.q.1.1
Level $1575$
Weight $4$
Character 1575.1
Self dual yes
Analytic conductor $92.928$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,4,Mod(1,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.9280082590\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 1575.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.82843 q^{2} +6.65685 q^{4} +7.00000 q^{7} +5.14214 q^{8} +O(q^{10})\) \(q-3.82843 q^{2} +6.65685 q^{4} +7.00000 q^{7} +5.14214 q^{8} -48.5685 q^{11} +43.6569 q^{13} -26.7990 q^{14} -72.9411 q^{16} -67.6569 q^{17} -93.2548 q^{19} +185.941 q^{22} -104.167 q^{23} -167.137 q^{26} +46.5980 q^{28} +58.7351 q^{29} -9.08831 q^{31} +238.113 q^{32} +259.019 q^{34} +252.676 q^{37} +357.019 q^{38} -276.274 q^{41} +92.6375 q^{43} -323.314 q^{44} +398.794 q^{46} -582.794 q^{47} +49.0000 q^{49} +290.617 q^{52} +623.019 q^{53} +35.9949 q^{56} -224.863 q^{58} +524.999 q^{59} -352.794 q^{61} +34.7939 q^{62} -328.068 q^{64} +736.520 q^{67} -450.382 q^{68} +492.264 q^{71} -1164.75 q^{73} -967.352 q^{74} -620.784 q^{76} -339.980 q^{77} -872.195 q^{79} +1057.70 q^{82} -529.588 q^{83} -354.656 q^{86} -249.746 q^{88} +385.216 q^{89} +305.598 q^{91} -693.421 q^{92} +2231.18 q^{94} +463.892 q^{97} -187.593 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} + 14 q^{7} - 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{4} + 14 q^{7} - 18 q^{8} + 16 q^{11} + 76 q^{13} - 14 q^{14} - 78 q^{16} - 124 q^{17} - 96 q^{19} + 304 q^{22} - 16 q^{23} - 108 q^{26} + 14 q^{28} - 188 q^{29} - 120 q^{31} + 414 q^{32} + 156 q^{34} + 132 q^{37} + 352 q^{38} - 100 q^{41} + 536 q^{43} - 624 q^{44} + 560 q^{46} - 928 q^{47} + 98 q^{49} + 140 q^{52} + 884 q^{53} - 126 q^{56} - 676 q^{58} - 104 q^{59} - 468 q^{61} - 168 q^{62} + 34 q^{64} + 1688 q^{67} - 188 q^{68} + 136 q^{71} - 508 q^{73} - 1188 q^{74} - 608 q^{76} + 112 q^{77} - 432 q^{79} + 1380 q^{82} - 584 q^{83} + 456 q^{86} - 1744 q^{88} + 1404 q^{89} + 532 q^{91} - 1104 q^{92} + 1600 q^{94} + 1188 q^{97} - 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.82843 −1.35355 −0.676777 0.736188i \(-0.736624\pi\)
−0.676777 + 0.736188i \(0.736624\pi\)
\(3\) 0 0
\(4\) 6.65685 0.832107
\(5\) 0 0
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 5.14214 0.227252
\(9\) 0 0
\(10\) 0 0
\(11\) −48.5685 −1.33127 −0.665635 0.746278i \(-0.731839\pi\)
−0.665635 + 0.746278i \(0.731839\pi\)
\(12\) 0 0
\(13\) 43.6569 0.931403 0.465701 0.884942i \(-0.345802\pi\)
0.465701 + 0.884942i \(0.345802\pi\)
\(14\) −26.7990 −0.511595
\(15\) 0 0
\(16\) −72.9411 −1.13971
\(17\) −67.6569 −0.965247 −0.482623 0.875828i \(-0.660316\pi\)
−0.482623 + 0.875828i \(0.660316\pi\)
\(18\) 0 0
\(19\) −93.2548 −1.12601 −0.563003 0.826455i \(-0.690354\pi\)
−0.563003 + 0.826455i \(0.690354\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 185.941 1.80194
\(23\) −104.167 −0.944357 −0.472179 0.881503i \(-0.656532\pi\)
−0.472179 + 0.881503i \(0.656532\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −167.137 −1.26070
\(27\) 0 0
\(28\) 46.5980 0.314507
\(29\) 58.7351 0.376098 0.188049 0.982160i \(-0.439784\pi\)
0.188049 + 0.982160i \(0.439784\pi\)
\(30\) 0 0
\(31\) −9.08831 −0.0526551 −0.0263276 0.999653i \(-0.508381\pi\)
−0.0263276 + 0.999653i \(0.508381\pi\)
\(32\) 238.113 1.31540
\(33\) 0 0
\(34\) 259.019 1.30651
\(35\) 0 0
\(36\) 0 0
\(37\) 252.676 1.12269 0.561347 0.827580i \(-0.310283\pi\)
0.561347 + 0.827580i \(0.310283\pi\)
\(38\) 357.019 1.52411
\(39\) 0 0
\(40\) 0 0
\(41\) −276.274 −1.05236 −0.526180 0.850373i \(-0.676376\pi\)
−0.526180 + 0.850373i \(0.676376\pi\)
\(42\) 0 0
\(43\) 92.6375 0.328537 0.164268 0.986416i \(-0.447474\pi\)
0.164268 + 0.986416i \(0.447474\pi\)
\(44\) −323.314 −1.10776
\(45\) 0 0
\(46\) 398.794 1.27824
\(47\) −582.794 −1.80871 −0.904354 0.426784i \(-0.859646\pi\)
−0.904354 + 0.426784i \(0.859646\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 290.617 0.775026
\(53\) 623.019 1.61468 0.807342 0.590083i \(-0.200905\pi\)
0.807342 + 0.590083i \(0.200905\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 35.9949 0.0858933
\(57\) 0 0
\(58\) −224.863 −0.509068
\(59\) 524.999 1.15846 0.579229 0.815165i \(-0.303354\pi\)
0.579229 + 0.815165i \(0.303354\pi\)
\(60\) 0 0
\(61\) −352.794 −0.740502 −0.370251 0.928932i \(-0.620728\pi\)
−0.370251 + 0.928932i \(0.620728\pi\)
\(62\) 34.7939 0.0712715
\(63\) 0 0
\(64\) −328.068 −0.640758
\(65\) 0 0
\(66\) 0 0
\(67\) 736.520 1.34299 0.671494 0.741010i \(-0.265653\pi\)
0.671494 + 0.741010i \(0.265653\pi\)
\(68\) −450.382 −0.803188
\(69\) 0 0
\(70\) 0 0
\(71\) 492.264 0.822831 0.411415 0.911448i \(-0.365035\pi\)
0.411415 + 0.911448i \(0.365035\pi\)
\(72\) 0 0
\(73\) −1164.75 −1.86745 −0.933727 0.357987i \(-0.883463\pi\)
−0.933727 + 0.357987i \(0.883463\pi\)
\(74\) −967.352 −1.51963
\(75\) 0 0
\(76\) −620.784 −0.936958
\(77\) −339.980 −0.503173
\(78\) 0 0
\(79\) −872.195 −1.24215 −0.621074 0.783752i \(-0.713303\pi\)
−0.621074 + 0.783752i \(0.713303\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 1057.70 1.42443
\(83\) −529.588 −0.700359 −0.350180 0.936683i \(-0.613879\pi\)
−0.350180 + 0.936683i \(0.613879\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −354.656 −0.444692
\(87\) 0 0
\(88\) −249.746 −0.302534
\(89\) 385.216 0.458796 0.229398 0.973333i \(-0.426324\pi\)
0.229398 + 0.973333i \(0.426324\pi\)
\(90\) 0 0
\(91\) 305.598 0.352037
\(92\) −693.421 −0.785806
\(93\) 0 0
\(94\) 2231.18 2.44818
\(95\) 0 0
\(96\) 0 0
\(97\) 463.892 0.485579 0.242789 0.970079i \(-0.421938\pi\)
0.242789 + 0.970079i \(0.421938\pi\)
\(98\) −187.593 −0.193365
\(99\) 0 0
\(100\) 0 0
\(101\) 432.725 0.426314 0.213157 0.977018i \(-0.431625\pi\)
0.213157 + 0.977018i \(0.431625\pi\)
\(102\) 0 0
\(103\) −512.626 −0.490393 −0.245197 0.969473i \(-0.578853\pi\)
−0.245197 + 0.969473i \(0.578853\pi\)
\(104\) 224.489 0.211663
\(105\) 0 0
\(106\) −2385.18 −2.18556
\(107\) 1963.09 1.77363 0.886817 0.462122i \(-0.152912\pi\)
0.886817 + 0.462122i \(0.152912\pi\)
\(108\) 0 0
\(109\) 545.176 0.479068 0.239534 0.970888i \(-0.423005\pi\)
0.239534 + 0.970888i \(0.423005\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −510.588 −0.430768
\(113\) −231.823 −0.192992 −0.0964961 0.995333i \(-0.530764\pi\)
−0.0964961 + 0.995333i \(0.530764\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 390.991 0.312953
\(117\) 0 0
\(118\) −2009.92 −1.56804
\(119\) −473.598 −0.364829
\(120\) 0 0
\(121\) 1027.90 0.772279
\(122\) 1350.65 1.00231
\(123\) 0 0
\(124\) −60.4996 −0.0438147
\(125\) 0 0
\(126\) 0 0
\(127\) −2372.90 −1.65796 −0.828979 0.559280i \(-0.811078\pi\)
−0.828979 + 0.559280i \(0.811078\pi\)
\(128\) −648.917 −0.448099
\(129\) 0 0
\(130\) 0 0
\(131\) −1200.04 −0.800364 −0.400182 0.916436i \(-0.631053\pi\)
−0.400182 + 0.916436i \(0.631053\pi\)
\(132\) 0 0
\(133\) −652.784 −0.425591
\(134\) −2819.71 −1.81781
\(135\) 0 0
\(136\) −347.901 −0.219355
\(137\) 2781.25 1.73444 0.867221 0.497924i \(-0.165904\pi\)
0.867221 + 0.497924i \(0.165904\pi\)
\(138\) 0 0
\(139\) −1245.60 −0.760078 −0.380039 0.924971i \(-0.624089\pi\)
−0.380039 + 0.924971i \(0.624089\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −1884.60 −1.11375
\(143\) −2120.35 −1.23995
\(144\) 0 0
\(145\) 0 0
\(146\) 4459.17 2.52770
\(147\) 0 0
\(148\) 1682.03 0.934202
\(149\) −19.4046 −0.0106690 −0.00533452 0.999986i \(-0.501698\pi\)
−0.00533452 + 0.999986i \(0.501698\pi\)
\(150\) 0 0
\(151\) −2349.80 −1.26638 −0.633192 0.773995i \(-0.718256\pi\)
−0.633192 + 0.773995i \(0.718256\pi\)
\(152\) −479.529 −0.255888
\(153\) 0 0
\(154\) 1301.59 0.681071
\(155\) 0 0
\(156\) 0 0
\(157\) 3898.46 1.98172 0.990862 0.134880i \(-0.0430650\pi\)
0.990862 + 0.134880i \(0.0430650\pi\)
\(158\) 3339.14 1.68131
\(159\) 0 0
\(160\) 0 0
\(161\) −729.166 −0.356934
\(162\) 0 0
\(163\) −1527.54 −0.734024 −0.367012 0.930216i \(-0.619619\pi\)
−0.367012 + 0.930216i \(0.619619\pi\)
\(164\) −1839.12 −0.875676
\(165\) 0 0
\(166\) 2027.49 0.947974
\(167\) −998.518 −0.462681 −0.231340 0.972873i \(-0.574311\pi\)
−0.231340 + 0.972873i \(0.574311\pi\)
\(168\) 0 0
\(169\) −291.079 −0.132489
\(170\) 0 0
\(171\) 0 0
\(172\) 616.674 0.273378
\(173\) 685.253 0.301149 0.150575 0.988599i \(-0.451888\pi\)
0.150575 + 0.988599i \(0.451888\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3542.64 1.51725
\(177\) 0 0
\(178\) −1474.77 −0.621005
\(179\) −1025.58 −0.428245 −0.214122 0.976807i \(-0.568689\pi\)
−0.214122 + 0.976807i \(0.568689\pi\)
\(180\) 0 0
\(181\) 2899.40 1.19067 0.595333 0.803479i \(-0.297020\pi\)
0.595333 + 0.803479i \(0.297020\pi\)
\(182\) −1169.96 −0.476501
\(183\) 0 0
\(184\) −535.638 −0.214608
\(185\) 0 0
\(186\) 0 0
\(187\) 3285.99 1.28500
\(188\) −3879.57 −1.50504
\(189\) 0 0
\(190\) 0 0
\(191\) −1074.18 −0.406939 −0.203469 0.979081i \(-0.565222\pi\)
−0.203469 + 0.979081i \(0.565222\pi\)
\(192\) 0 0
\(193\) −898.999 −0.335292 −0.167646 0.985847i \(-0.553617\pi\)
−0.167646 + 0.985847i \(0.553617\pi\)
\(194\) −1775.98 −0.657257
\(195\) 0 0
\(196\) 326.186 0.118872
\(197\) 3063.63 1.10799 0.553996 0.832519i \(-0.313102\pi\)
0.553996 + 0.832519i \(0.313102\pi\)
\(198\) 0 0
\(199\) −949.522 −0.338240 −0.169120 0.985595i \(-0.554093\pi\)
−0.169120 + 0.985595i \(0.554093\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −1656.66 −0.577039
\(203\) 411.145 0.142151
\(204\) 0 0
\(205\) 0 0
\(206\) 1962.55 0.663774
\(207\) 0 0
\(208\) −3184.38 −1.06152
\(209\) 4529.25 1.49902
\(210\) 0 0
\(211\) 2306.64 0.752587 0.376294 0.926500i \(-0.377198\pi\)
0.376294 + 0.926500i \(0.377198\pi\)
\(212\) 4147.35 1.34359
\(213\) 0 0
\(214\) −7515.53 −2.40071
\(215\) 0 0
\(216\) 0 0
\(217\) −63.6182 −0.0199018
\(218\) −2087.17 −0.648444
\(219\) 0 0
\(220\) 0 0
\(221\) −2953.69 −0.899033
\(222\) 0 0
\(223\) 3227.61 0.969222 0.484611 0.874730i \(-0.338961\pi\)
0.484611 + 0.874730i \(0.338961\pi\)
\(224\) 1666.79 0.497174
\(225\) 0 0
\(226\) 887.519 0.261225
\(227\) −637.820 −0.186492 −0.0932458 0.995643i \(-0.529724\pi\)
−0.0932458 + 0.995643i \(0.529724\pi\)
\(228\) 0 0
\(229\) 544.774 0.157204 0.0786019 0.996906i \(-0.474954\pi\)
0.0786019 + 0.996906i \(0.474954\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 302.024 0.0854691
\(233\) −5748.54 −1.61631 −0.808154 0.588972i \(-0.799533\pi\)
−0.808154 + 0.588972i \(0.799533\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 3494.84 0.963961
\(237\) 0 0
\(238\) 1813.14 0.493816
\(239\) 2678.10 0.724820 0.362410 0.932019i \(-0.381954\pi\)
0.362410 + 0.932019i \(0.381954\pi\)
\(240\) 0 0
\(241\) −2202.16 −0.588604 −0.294302 0.955713i \(-0.595087\pi\)
−0.294302 + 0.955713i \(0.595087\pi\)
\(242\) −3935.25 −1.04532
\(243\) 0 0
\(244\) −2348.50 −0.616177
\(245\) 0 0
\(246\) 0 0
\(247\) −4071.21 −1.04877
\(248\) −46.7333 −0.0119660
\(249\) 0 0
\(250\) 0 0
\(251\) 5716.90 1.43764 0.718820 0.695196i \(-0.244683\pi\)
0.718820 + 0.695196i \(0.244683\pi\)
\(252\) 0 0
\(253\) 5059.22 1.25719
\(254\) 9084.47 2.24413
\(255\) 0 0
\(256\) 5108.88 1.24728
\(257\) 4724.29 1.14666 0.573332 0.819323i \(-0.305650\pi\)
0.573332 + 0.819323i \(0.305650\pi\)
\(258\) 0 0
\(259\) 1768.73 0.424339
\(260\) 0 0
\(261\) 0 0
\(262\) 4594.25 1.08334
\(263\) 5975.36 1.40097 0.700487 0.713665i \(-0.252966\pi\)
0.700487 + 0.713665i \(0.252966\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 2499.14 0.576059
\(267\) 0 0
\(268\) 4902.90 1.11751
\(269\) −4486.11 −1.01681 −0.508407 0.861117i \(-0.669766\pi\)
−0.508407 + 0.861117i \(0.669766\pi\)
\(270\) 0 0
\(271\) 3827.68 0.857989 0.428994 0.903307i \(-0.358868\pi\)
0.428994 + 0.903307i \(0.358868\pi\)
\(272\) 4934.97 1.10010
\(273\) 0 0
\(274\) −10647.8 −2.34766
\(275\) 0 0
\(276\) 0 0
\(277\) 3420.54 0.741950 0.370975 0.928643i \(-0.379024\pi\)
0.370975 + 0.928643i \(0.379024\pi\)
\(278\) 4768.71 1.02881
\(279\) 0 0
\(280\) 0 0
\(281\) −5235.92 −1.11156 −0.555781 0.831329i \(-0.687581\pi\)
−0.555781 + 0.831329i \(0.687581\pi\)
\(282\) 0 0
\(283\) 6985.88 1.46738 0.733688 0.679486i \(-0.237797\pi\)
0.733688 + 0.679486i \(0.237797\pi\)
\(284\) 3276.93 0.684683
\(285\) 0 0
\(286\) 8117.60 1.67834
\(287\) −1933.92 −0.397755
\(288\) 0 0
\(289\) −335.550 −0.0682984
\(290\) 0 0
\(291\) 0 0
\(292\) −7753.59 −1.55392
\(293\) 7399.70 1.47541 0.737705 0.675123i \(-0.235910\pi\)
0.737705 + 0.675123i \(0.235910\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1299.30 0.255135
\(297\) 0 0
\(298\) 74.2892 0.0144411
\(299\) −4547.58 −0.879577
\(300\) 0 0
\(301\) 648.463 0.124175
\(302\) 8996.04 1.71412
\(303\) 0 0
\(304\) 6802.11 1.28332
\(305\) 0 0
\(306\) 0 0
\(307\) −2668.64 −0.496116 −0.248058 0.968745i \(-0.579792\pi\)
−0.248058 + 0.968745i \(0.579792\pi\)
\(308\) −2263.20 −0.418693
\(309\) 0 0
\(310\) 0 0
\(311\) −6189.25 −1.12849 −0.564244 0.825608i \(-0.690832\pi\)
−0.564244 + 0.825608i \(0.690832\pi\)
\(312\) 0 0
\(313\) 2921.59 0.527598 0.263799 0.964578i \(-0.415024\pi\)
0.263799 + 0.964578i \(0.415024\pi\)
\(314\) −14925.0 −2.68237
\(315\) 0 0
\(316\) −5806.08 −1.03360
\(317\) 9825.56 1.74088 0.870439 0.492276i \(-0.163835\pi\)
0.870439 + 0.492276i \(0.163835\pi\)
\(318\) 0 0
\(319\) −2852.68 −0.500687
\(320\) 0 0
\(321\) 0 0
\(322\) 2791.56 0.483129
\(323\) 6309.33 1.08687
\(324\) 0 0
\(325\) 0 0
\(326\) 5848.07 0.993541
\(327\) 0 0
\(328\) −1420.64 −0.239151
\(329\) −4079.56 −0.683627
\(330\) 0 0
\(331\) −9258.17 −1.53739 −0.768693 0.639618i \(-0.779093\pi\)
−0.768693 + 0.639618i \(0.779093\pi\)
\(332\) −3525.39 −0.582774
\(333\) 0 0
\(334\) 3822.75 0.626263
\(335\) 0 0
\(336\) 0 0
\(337\) 3693.98 0.597103 0.298552 0.954394i \(-0.403497\pi\)
0.298552 + 0.954394i \(0.403497\pi\)
\(338\) 1114.38 0.179331
\(339\) 0 0
\(340\) 0 0
\(341\) 441.406 0.0700982
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 476.355 0.0746608
\(345\) 0 0
\(346\) −2623.44 −0.407622
\(347\) 3832.83 0.592960 0.296480 0.955039i \(-0.404187\pi\)
0.296480 + 0.955039i \(0.404187\pi\)
\(348\) 0 0
\(349\) 8325.22 1.27690 0.638451 0.769662i \(-0.279575\pi\)
0.638451 + 0.769662i \(0.279575\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −11564.8 −1.75115
\(353\) −8991.52 −1.35572 −0.677862 0.735189i \(-0.737093\pi\)
−0.677862 + 0.735189i \(0.737093\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 2564.33 0.381767
\(357\) 0 0
\(358\) 3926.38 0.579652
\(359\) 12893.8 1.89557 0.947783 0.318917i \(-0.103319\pi\)
0.947783 + 0.318917i \(0.103319\pi\)
\(360\) 0 0
\(361\) 1837.46 0.267891
\(362\) −11100.1 −1.61163
\(363\) 0 0
\(364\) 2034.32 0.292932
\(365\) 0 0
\(366\) 0 0
\(367\) 7480.17 1.06393 0.531964 0.846767i \(-0.321454\pi\)
0.531964 + 0.846767i \(0.321454\pi\)
\(368\) 7598.02 1.07629
\(369\) 0 0
\(370\) 0 0
\(371\) 4361.14 0.610293
\(372\) 0 0
\(373\) 3523.32 0.489090 0.244545 0.969638i \(-0.421361\pi\)
0.244545 + 0.969638i \(0.421361\pi\)
\(374\) −12580.2 −1.73932
\(375\) 0 0
\(376\) −2996.81 −0.411033
\(377\) 2564.19 0.350298
\(378\) 0 0
\(379\) 13515.4 1.83177 0.915886 0.401438i \(-0.131490\pi\)
0.915886 + 0.401438i \(0.131490\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 4112.44 0.550813
\(383\) −657.182 −0.0876774 −0.0438387 0.999039i \(-0.513959\pi\)
−0.0438387 + 0.999039i \(0.513959\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 3441.75 0.453836
\(387\) 0 0
\(388\) 3088.06 0.404053
\(389\) 9741.87 1.26975 0.634875 0.772615i \(-0.281052\pi\)
0.634875 + 0.772615i \(0.281052\pi\)
\(390\) 0 0
\(391\) 7047.58 0.911538
\(392\) 251.965 0.0324646
\(393\) 0 0
\(394\) −11728.9 −1.49973
\(395\) 0 0
\(396\) 0 0
\(397\) −4407.42 −0.557184 −0.278592 0.960410i \(-0.589868\pi\)
−0.278592 + 0.960410i \(0.589868\pi\)
\(398\) 3635.18 0.457827
\(399\) 0 0
\(400\) 0 0
\(401\) 11569.5 1.44078 0.720391 0.693568i \(-0.243963\pi\)
0.720391 + 0.693568i \(0.243963\pi\)
\(402\) 0 0
\(403\) −396.767 −0.0490431
\(404\) 2880.59 0.354739
\(405\) 0 0
\(406\) −1574.04 −0.192410
\(407\) −12272.1 −1.49461
\(408\) 0 0
\(409\) −3083.03 −0.372729 −0.186364 0.982481i \(-0.559670\pi\)
−0.186364 + 0.982481i \(0.559670\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −3412.47 −0.408060
\(413\) 3674.99 0.437856
\(414\) 0 0
\(415\) 0 0
\(416\) 10395.3 1.22517
\(417\) 0 0
\(418\) −17339.9 −2.02900
\(419\) 5415.21 0.631385 0.315692 0.948862i \(-0.397763\pi\)
0.315692 + 0.948862i \(0.397763\pi\)
\(420\) 0 0
\(421\) 4188.34 0.484863 0.242432 0.970168i \(-0.422055\pi\)
0.242432 + 0.970168i \(0.422055\pi\)
\(422\) −8830.82 −1.01867
\(423\) 0 0
\(424\) 3203.65 0.366941
\(425\) 0 0
\(426\) 0 0
\(427\) −2469.56 −0.279884
\(428\) 13068.0 1.47585
\(429\) 0 0
\(430\) 0 0
\(431\) 9108.41 1.01795 0.508975 0.860781i \(-0.330024\pi\)
0.508975 + 0.860781i \(0.330024\pi\)
\(432\) 0 0
\(433\) 16847.0 1.86979 0.934893 0.354930i \(-0.115495\pi\)
0.934893 + 0.354930i \(0.115495\pi\)
\(434\) 243.558 0.0269381
\(435\) 0 0
\(436\) 3629.16 0.398635
\(437\) 9714.03 1.06335
\(438\) 0 0
\(439\) 8434.14 0.916946 0.458473 0.888708i \(-0.348397\pi\)
0.458473 + 0.888708i \(0.348397\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 11308.0 1.21689
\(443\) −4298.49 −0.461010 −0.230505 0.973071i \(-0.574038\pi\)
−0.230505 + 0.973071i \(0.574038\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −12356.7 −1.31189
\(447\) 0 0
\(448\) −2296.48 −0.242184
\(449\) −10545.0 −1.10835 −0.554173 0.832402i \(-0.686965\pi\)
−0.554173 + 0.832402i \(0.686965\pi\)
\(450\) 0 0
\(451\) 13418.2 1.40098
\(452\) −1543.21 −0.160590
\(453\) 0 0
\(454\) 2441.85 0.252426
\(455\) 0 0
\(456\) 0 0
\(457\) −11952.4 −1.22344 −0.611719 0.791075i \(-0.709522\pi\)
−0.611719 + 0.791075i \(0.709522\pi\)
\(458\) −2085.63 −0.212784
\(459\) 0 0
\(460\) 0 0
\(461\) 17200.9 1.73780 0.868900 0.494988i \(-0.164827\pi\)
0.868900 + 0.494988i \(0.164827\pi\)
\(462\) 0 0
\(463\) 10368.7 1.04076 0.520381 0.853934i \(-0.325790\pi\)
0.520381 + 0.853934i \(0.325790\pi\)
\(464\) −4284.20 −0.428640
\(465\) 0 0
\(466\) 22007.9 2.18776
\(467\) −16879.5 −1.67257 −0.836284 0.548296i \(-0.815277\pi\)
−0.836284 + 0.548296i \(0.815277\pi\)
\(468\) 0 0
\(469\) 5155.64 0.507602
\(470\) 0 0
\(471\) 0 0
\(472\) 2699.62 0.263263
\(473\) −4499.27 −0.437371
\(474\) 0 0
\(475\) 0 0
\(476\) −3152.67 −0.303577
\(477\) 0 0
\(478\) −10252.9 −0.981082
\(479\) −7329.12 −0.699115 −0.349558 0.936915i \(-0.613668\pi\)
−0.349558 + 0.936915i \(0.613668\pi\)
\(480\) 0 0
\(481\) 11031.0 1.04568
\(482\) 8430.80 0.796706
\(483\) 0 0
\(484\) 6842.60 0.642619
\(485\) 0 0
\(486\) 0 0
\(487\) 17209.5 1.60131 0.800655 0.599125i \(-0.204485\pi\)
0.800655 + 0.599125i \(0.204485\pi\)
\(488\) −1814.11 −0.168281
\(489\) 0 0
\(490\) 0 0
\(491\) −11392.5 −1.04712 −0.523560 0.851989i \(-0.675396\pi\)
−0.523560 + 0.851989i \(0.675396\pi\)
\(492\) 0 0
\(493\) −3973.83 −0.363027
\(494\) 15586.3 1.41956
\(495\) 0 0
\(496\) 662.912 0.0600113
\(497\) 3445.85 0.311001
\(498\) 0 0
\(499\) 19079.4 1.71164 0.855822 0.517271i \(-0.173052\pi\)
0.855822 + 0.517271i \(0.173052\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −21886.7 −1.94592
\(503\) −13499.4 −1.19663 −0.598317 0.801259i \(-0.704164\pi\)
−0.598317 + 0.801259i \(0.704164\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −19368.8 −1.70168
\(507\) 0 0
\(508\) −15796.0 −1.37960
\(509\) 4328.85 0.376960 0.188480 0.982077i \(-0.439644\pi\)
0.188480 + 0.982077i \(0.439644\pi\)
\(510\) 0 0
\(511\) −8153.27 −0.705831
\(512\) −14367.6 −1.24017
\(513\) 0 0
\(514\) −18086.6 −1.55207
\(515\) 0 0
\(516\) 0 0
\(517\) 28305.5 2.40788
\(518\) −6771.47 −0.574365
\(519\) 0 0
\(520\) 0 0
\(521\) −19395.7 −1.63098 −0.815490 0.578771i \(-0.803532\pi\)
−0.815490 + 0.578771i \(0.803532\pi\)
\(522\) 0 0
\(523\) −20413.8 −1.70675 −0.853377 0.521294i \(-0.825450\pi\)
−0.853377 + 0.521294i \(0.825450\pi\)
\(524\) −7988.47 −0.665989
\(525\) 0 0
\(526\) −22876.2 −1.89629
\(527\) 614.887 0.0508252
\(528\) 0 0
\(529\) −1316.34 −0.108189
\(530\) 0 0
\(531\) 0 0
\(532\) −4345.49 −0.354137
\(533\) −12061.3 −0.980171
\(534\) 0 0
\(535\) 0 0
\(536\) 3787.28 0.305197
\(537\) 0 0
\(538\) 17174.8 1.37631
\(539\) −2379.86 −0.190181
\(540\) 0 0
\(541\) −4919.18 −0.390928 −0.195464 0.980711i \(-0.562621\pi\)
−0.195464 + 0.980711i \(0.562621\pi\)
\(542\) −14654.0 −1.16133
\(543\) 0 0
\(544\) −16110.0 −1.26969
\(545\) 0 0
\(546\) 0 0
\(547\) −15334.2 −1.19862 −0.599308 0.800518i \(-0.704558\pi\)
−0.599308 + 0.800518i \(0.704558\pi\)
\(548\) 18514.4 1.44324
\(549\) 0 0
\(550\) 0 0
\(551\) −5477.33 −0.423488
\(552\) 0 0
\(553\) −6105.37 −0.469487
\(554\) −13095.3 −1.00427
\(555\) 0 0
\(556\) −8291.81 −0.632466
\(557\) −8613.78 −0.655256 −0.327628 0.944807i \(-0.606249\pi\)
−0.327628 + 0.944807i \(0.606249\pi\)
\(558\) 0 0
\(559\) 4044.26 0.306000
\(560\) 0 0
\(561\) 0 0
\(562\) 20045.3 1.50456
\(563\) −2320.81 −0.173731 −0.0868654 0.996220i \(-0.527685\pi\)
−0.0868654 + 0.996220i \(0.527685\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −26744.9 −1.98617
\(567\) 0 0
\(568\) 2531.29 0.186990
\(569\) 1736.04 0.127906 0.0639529 0.997953i \(-0.479629\pi\)
0.0639529 + 0.997953i \(0.479629\pi\)
\(570\) 0 0
\(571\) 23897.8 1.75148 0.875738 0.482786i \(-0.160375\pi\)
0.875738 + 0.482786i \(0.160375\pi\)
\(572\) −14114.9 −1.03177
\(573\) 0 0
\(574\) 7403.87 0.538382
\(575\) 0 0
\(576\) 0 0
\(577\) −8029.26 −0.579311 −0.289655 0.957131i \(-0.593541\pi\)
−0.289655 + 0.957131i \(0.593541\pi\)
\(578\) 1284.63 0.0924455
\(579\) 0 0
\(580\) 0 0
\(581\) −3707.12 −0.264711
\(582\) 0 0
\(583\) −30259.1 −2.14958
\(584\) −5989.32 −0.424383
\(585\) 0 0
\(586\) −28329.2 −1.99705
\(587\) −8015.14 −0.563578 −0.281789 0.959476i \(-0.590928\pi\)
−0.281789 + 0.959476i \(0.590928\pi\)
\(588\) 0 0
\(589\) 847.529 0.0592900
\(590\) 0 0
\(591\) 0 0
\(592\) −18430.5 −1.27954
\(593\) 12820.3 0.887801 0.443901 0.896076i \(-0.353594\pi\)
0.443901 + 0.896076i \(0.353594\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −129.174 −0.00887779
\(597\) 0 0
\(598\) 17410.1 1.19055
\(599\) 15330.5 1.04572 0.522860 0.852418i \(-0.324865\pi\)
0.522860 + 0.852418i \(0.324865\pi\)
\(600\) 0 0
\(601\) 107.658 0.00730694 0.00365347 0.999993i \(-0.498837\pi\)
0.00365347 + 0.999993i \(0.498837\pi\)
\(602\) −2482.59 −0.168078
\(603\) 0 0
\(604\) −15642.3 −1.05377
\(605\) 0 0
\(606\) 0 0
\(607\) 8213.06 0.549189 0.274595 0.961560i \(-0.411456\pi\)
0.274595 + 0.961560i \(0.411456\pi\)
\(608\) −22205.2 −1.48115
\(609\) 0 0
\(610\) 0 0
\(611\) −25443.0 −1.68463
\(612\) 0 0
\(613\) −1242.60 −0.0818732 −0.0409366 0.999162i \(-0.513034\pi\)
−0.0409366 + 0.999162i \(0.513034\pi\)
\(614\) 10216.7 0.671519
\(615\) 0 0
\(616\) −1748.22 −0.114347
\(617\) −13170.6 −0.859367 −0.429683 0.902980i \(-0.641375\pi\)
−0.429683 + 0.902980i \(0.641375\pi\)
\(618\) 0 0
\(619\) 19774.1 1.28399 0.641993 0.766711i \(-0.278108\pi\)
0.641993 + 0.766711i \(0.278108\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 23695.1 1.52747
\(623\) 2696.51 0.173409
\(624\) 0 0
\(625\) 0 0
\(626\) −11185.1 −0.714132
\(627\) 0 0
\(628\) 25951.5 1.64901
\(629\) −17095.3 −1.08368
\(630\) 0 0
\(631\) −14308.8 −0.902735 −0.451367 0.892338i \(-0.649064\pi\)
−0.451367 + 0.892338i \(0.649064\pi\)
\(632\) −4484.95 −0.282281
\(633\) 0 0
\(634\) −37616.4 −2.35637
\(635\) 0 0
\(636\) 0 0
\(637\) 2139.19 0.133058
\(638\) 10921.3 0.677707
\(639\) 0 0
\(640\) 0 0
\(641\) −11537.5 −0.710925 −0.355463 0.934691i \(-0.615677\pi\)
−0.355463 + 0.934691i \(0.615677\pi\)
\(642\) 0 0
\(643\) −19603.0 −1.20228 −0.601139 0.799144i \(-0.705286\pi\)
−0.601139 + 0.799144i \(0.705286\pi\)
\(644\) −4853.95 −0.297007
\(645\) 0 0
\(646\) −24154.8 −1.47114
\(647\) 21650.0 1.31553 0.657765 0.753223i \(-0.271502\pi\)
0.657765 + 0.753223i \(0.271502\pi\)
\(648\) 0 0
\(649\) −25498.4 −1.54222
\(650\) 0 0
\(651\) 0 0
\(652\) −10168.6 −0.610787
\(653\) −2927.33 −0.175429 −0.0877145 0.996146i \(-0.527956\pi\)
−0.0877145 + 0.996146i \(0.527956\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 20151.7 1.19938
\(657\) 0 0
\(658\) 15618.3 0.925326
\(659\) 4778.76 0.282480 0.141240 0.989975i \(-0.454891\pi\)
0.141240 + 0.989975i \(0.454891\pi\)
\(660\) 0 0
\(661\) −31510.3 −1.85417 −0.927086 0.374849i \(-0.877695\pi\)
−0.927086 + 0.374849i \(0.877695\pi\)
\(662\) 35444.2 2.08093
\(663\) 0 0
\(664\) −2723.21 −0.159158
\(665\) 0 0
\(666\) 0 0
\(667\) −6118.23 −0.355170
\(668\) −6646.99 −0.385000
\(669\) 0 0
\(670\) 0 0
\(671\) 17134.7 0.985808
\(672\) 0 0
\(673\) 8992.15 0.515040 0.257520 0.966273i \(-0.417095\pi\)
0.257520 + 0.966273i \(0.417095\pi\)
\(674\) −14142.1 −0.808211
\(675\) 0 0
\(676\) −1937.67 −0.110245
\(677\) 19340.8 1.09797 0.548985 0.835832i \(-0.315014\pi\)
0.548985 + 0.835832i \(0.315014\pi\)
\(678\) 0 0
\(679\) 3247.25 0.183531
\(680\) 0 0
\(681\) 0 0
\(682\) −1689.89 −0.0948816
\(683\) −4255.14 −0.238387 −0.119194 0.992871i \(-0.538031\pi\)
−0.119194 + 0.992871i \(0.538031\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1313.15 −0.0730850
\(687\) 0 0
\(688\) −6757.08 −0.374435
\(689\) 27199.1 1.50392
\(690\) 0 0
\(691\) −17505.5 −0.963733 −0.481867 0.876245i \(-0.660041\pi\)
−0.481867 + 0.876245i \(0.660041\pi\)
\(692\) 4561.63 0.250588
\(693\) 0 0
\(694\) −14673.7 −0.802603
\(695\) 0 0
\(696\) 0 0
\(697\) 18691.8 1.01579
\(698\) −31872.5 −1.72836
\(699\) 0 0
\(700\) 0 0
\(701\) 3240.77 0.174611 0.0873054 0.996182i \(-0.472174\pi\)
0.0873054 + 0.996182i \(0.472174\pi\)
\(702\) 0 0
\(703\) −23563.3 −1.26416
\(704\) 15933.8 0.853022
\(705\) 0 0
\(706\) 34423.4 1.83504
\(707\) 3029.07 0.161132
\(708\) 0 0
\(709\) 19949.3 1.05672 0.528358 0.849022i \(-0.322808\pi\)
0.528358 + 0.849022i \(0.322808\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1980.83 0.104262
\(713\) 946.698 0.0497253
\(714\) 0 0
\(715\) 0 0
\(716\) −6827.17 −0.356345
\(717\) 0 0
\(718\) −49362.9 −2.56575
\(719\) 11259.4 0.584011 0.292006 0.956417i \(-0.405677\pi\)
0.292006 + 0.956417i \(0.405677\pi\)
\(720\) 0 0
\(721\) −3588.38 −0.185351
\(722\) −7034.60 −0.362605
\(723\) 0 0
\(724\) 19300.9 0.990761
\(725\) 0 0
\(726\) 0 0
\(727\) 12228.5 0.623840 0.311920 0.950108i \(-0.399028\pi\)
0.311920 + 0.950108i \(0.399028\pi\)
\(728\) 1571.43 0.0800013
\(729\) 0 0
\(730\) 0 0
\(731\) −6267.56 −0.317119
\(732\) 0 0
\(733\) 26635.1 1.34214 0.671072 0.741392i \(-0.265834\pi\)
0.671072 + 0.741392i \(0.265834\pi\)
\(734\) −28637.3 −1.44008
\(735\) 0 0
\(736\) −24803.4 −1.24221
\(737\) −35771.7 −1.78788
\(738\) 0 0
\(739\) −6074.00 −0.302349 −0.151174 0.988507i \(-0.548306\pi\)
−0.151174 + 0.988507i \(0.548306\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −16696.3 −0.826065
\(743\) −4016.87 −0.198337 −0.0991686 0.995071i \(-0.531618\pi\)
−0.0991686 + 0.995071i \(0.531618\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −13488.8 −0.662010
\(747\) 0 0
\(748\) 21874.4 1.06926
\(749\) 13741.6 0.670370
\(750\) 0 0
\(751\) −23913.2 −1.16192 −0.580962 0.813931i \(-0.697324\pi\)
−0.580962 + 0.813931i \(0.697324\pi\)
\(752\) 42509.6 2.06139
\(753\) 0 0
\(754\) −9816.81 −0.474147
\(755\) 0 0
\(756\) 0 0
\(757\) −31044.9 −1.49055 −0.745275 0.666758i \(-0.767682\pi\)
−0.745275 + 0.666758i \(0.767682\pi\)
\(758\) −51742.9 −2.47940
\(759\) 0 0
\(760\) 0 0
\(761\) −14011.8 −0.667446 −0.333723 0.942671i \(-0.608305\pi\)
−0.333723 + 0.942671i \(0.608305\pi\)
\(762\) 0 0
\(763\) 3816.23 0.181071
\(764\) −7150.69 −0.338616
\(765\) 0 0
\(766\) 2515.97 0.118676
\(767\) 22919.8 1.07899
\(768\) 0 0
\(769\) 3342.49 0.156740 0.0783701 0.996924i \(-0.475028\pi\)
0.0783701 + 0.996924i \(0.475028\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −5984.51 −0.278999
\(773\) −21074.6 −0.980594 −0.490297 0.871555i \(-0.663112\pi\)
−0.490297 + 0.871555i \(0.663112\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 2385.40 0.110349
\(777\) 0 0
\(778\) −37296.0 −1.71867
\(779\) 25763.9 1.18496
\(780\) 0 0
\(781\) −23908.5 −1.09541
\(782\) −26981.1 −1.23382
\(783\) 0 0
\(784\) −3574.12 −0.162815
\(785\) 0 0
\(786\) 0 0
\(787\) −21394.8 −0.969048 −0.484524 0.874778i \(-0.661007\pi\)
−0.484524 + 0.874778i \(0.661007\pi\)
\(788\) 20394.1 0.921968
\(789\) 0 0
\(790\) 0 0
\(791\) −1622.76 −0.0729442
\(792\) 0 0
\(793\) −15401.9 −0.689706
\(794\) 16873.5 0.754179
\(795\) 0 0
\(796\) −6320.83 −0.281452
\(797\) 20645.0 0.917547 0.458773 0.888553i \(-0.348289\pi\)
0.458773 + 0.888553i \(0.348289\pi\)
\(798\) 0 0
\(799\) 39430.0 1.74585
\(800\) 0 0
\(801\) 0 0
\(802\) −44293.0 −1.95017
\(803\) 56570.4 2.48608
\(804\) 0 0
\(805\) 0 0
\(806\) 1518.99 0.0663825
\(807\) 0 0
\(808\) 2225.13 0.0968810
\(809\) 15939.0 0.692688 0.346344 0.938108i \(-0.387423\pi\)
0.346344 + 0.938108i \(0.387423\pi\)
\(810\) 0 0
\(811\) 22829.2 0.988460 0.494230 0.869331i \(-0.335450\pi\)
0.494230 + 0.869331i \(0.335450\pi\)
\(812\) 2736.94 0.118285
\(813\) 0 0
\(814\) 46982.9 2.02303
\(815\) 0 0
\(816\) 0 0
\(817\) −8638.90 −0.369935
\(818\) 11803.2 0.504508
\(819\) 0 0
\(820\) 0 0
\(821\) 5700.22 0.242313 0.121157 0.992633i \(-0.461340\pi\)
0.121157 + 0.992633i \(0.461340\pi\)
\(822\) 0 0
\(823\) 32438.0 1.37390 0.686948 0.726707i \(-0.258950\pi\)
0.686948 + 0.726707i \(0.258950\pi\)
\(824\) −2635.99 −0.111443
\(825\) 0 0
\(826\) −14069.4 −0.592662
\(827\) −12762.6 −0.536638 −0.268319 0.963330i \(-0.586468\pi\)
−0.268319 + 0.963330i \(0.586468\pi\)
\(828\) 0 0
\(829\) −30766.7 −1.28899 −0.644494 0.764609i \(-0.722932\pi\)
−0.644494 + 0.764609i \(0.722932\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −14322.4 −0.596804
\(833\) −3315.19 −0.137892
\(834\) 0 0
\(835\) 0 0
\(836\) 30150.6 1.24734
\(837\) 0 0
\(838\) −20731.7 −0.854613
\(839\) 9779.71 0.402423 0.201212 0.979548i \(-0.435512\pi\)
0.201212 + 0.979548i \(0.435512\pi\)
\(840\) 0 0
\(841\) −20939.2 −0.858551
\(842\) −16034.8 −0.656288
\(843\) 0 0
\(844\) 15355.0 0.626233
\(845\) 0 0
\(846\) 0 0
\(847\) 7195.32 0.291894
\(848\) −45443.7 −1.84026
\(849\) 0 0
\(850\) 0 0
\(851\) −26320.4 −1.06023
\(852\) 0 0
\(853\) −24201.5 −0.971445 −0.485723 0.874113i \(-0.661444\pi\)
−0.485723 + 0.874113i \(0.661444\pi\)
\(854\) 9454.52 0.378837
\(855\) 0 0
\(856\) 10094.5 0.403062
\(857\) 21036.7 0.838507 0.419254 0.907869i \(-0.362292\pi\)
0.419254 + 0.907869i \(0.362292\pi\)
\(858\) 0 0
\(859\) −6179.19 −0.245438 −0.122719 0.992441i \(-0.539161\pi\)
−0.122719 + 0.992441i \(0.539161\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −34870.9 −1.37785
\(863\) 50256.2 1.98232 0.991160 0.132671i \(-0.0423555\pi\)
0.991160 + 0.132671i \(0.0423555\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −64497.7 −2.53085
\(867\) 0 0
\(868\) −423.497 −0.0165604
\(869\) 42361.2 1.65363
\(870\) 0 0
\(871\) 32154.1 1.25086
\(872\) 2803.37 0.108869
\(873\) 0 0
\(874\) −37189.5 −1.43930
\(875\) 0 0
\(876\) 0 0
\(877\) 9175.95 0.353306 0.176653 0.984273i \(-0.443473\pi\)
0.176653 + 0.984273i \(0.443473\pi\)
\(878\) −32289.5 −1.24114
\(879\) 0 0
\(880\) 0 0
\(881\) 26172.7 1.00089 0.500444 0.865769i \(-0.333170\pi\)
0.500444 + 0.865769i \(0.333170\pi\)
\(882\) 0 0
\(883\) −18615.5 −0.709471 −0.354736 0.934967i \(-0.615429\pi\)
−0.354736 + 0.934967i \(0.615429\pi\)
\(884\) −19662.3 −0.748092
\(885\) 0 0
\(886\) 16456.4 0.624001
\(887\) −12837.8 −0.485964 −0.242982 0.970031i \(-0.578126\pi\)
−0.242982 + 0.970031i \(0.578126\pi\)
\(888\) 0 0
\(889\) −16610.3 −0.626649
\(890\) 0 0
\(891\) 0 0
\(892\) 21485.7 0.806496
\(893\) 54348.4 2.03662
\(894\) 0 0
\(895\) 0 0
\(896\) −4542.42 −0.169366
\(897\) 0 0
\(898\) 40370.6 1.50020
\(899\) −533.803 −0.0198035
\(900\) 0 0
\(901\) −42151.5 −1.55857
\(902\) −51370.7 −1.89630
\(903\) 0 0
\(904\) −1192.07 −0.0438579
\(905\) 0 0
\(906\) 0 0
\(907\) 26766.1 0.979885 0.489942 0.871755i \(-0.337018\pi\)
0.489942 + 0.871755i \(0.337018\pi\)
\(908\) −4245.87 −0.155181
\(909\) 0 0
\(910\) 0 0
\(911\) −5022.67 −0.182666 −0.0913328 0.995820i \(-0.529113\pi\)
−0.0913328 + 0.995820i \(0.529113\pi\)
\(912\) 0 0
\(913\) 25721.3 0.932367
\(914\) 45759.0 1.65599
\(915\) 0 0
\(916\) 3626.48 0.130810
\(917\) −8400.26 −0.302509
\(918\) 0 0
\(919\) 9541.79 0.342497 0.171248 0.985228i \(-0.445220\pi\)
0.171248 + 0.985228i \(0.445220\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −65852.4 −2.35220
\(923\) 21490.7 0.766387
\(924\) 0 0
\(925\) 0 0
\(926\) −39695.7 −1.40873
\(927\) 0 0
\(928\) 13985.6 0.494718
\(929\) 25479.6 0.899846 0.449923 0.893067i \(-0.351451\pi\)
0.449923 + 0.893067i \(0.351451\pi\)
\(930\) 0 0
\(931\) −4569.49 −0.160858
\(932\) −38267.2 −1.34494
\(933\) 0 0
\(934\) 64621.9 2.26391
\(935\) 0 0
\(936\) 0 0
\(937\) 33608.3 1.17176 0.585878 0.810399i \(-0.300750\pi\)
0.585878 + 0.810399i \(0.300750\pi\)
\(938\) −19738.0 −0.687066
\(939\) 0 0
\(940\) 0 0
\(941\) 19173.6 0.664232 0.332116 0.943239i \(-0.392238\pi\)
0.332116 + 0.943239i \(0.392238\pi\)
\(942\) 0 0
\(943\) 28778.5 0.993804
\(944\) −38294.0 −1.32030
\(945\) 0 0
\(946\) 17225.1 0.592005
\(947\) −979.315 −0.0336045 −0.0168023 0.999859i \(-0.505349\pi\)
−0.0168023 + 0.999859i \(0.505349\pi\)
\(948\) 0 0
\(949\) −50849.5 −1.73935
\(950\) 0 0
\(951\) 0 0
\(952\) −2435.31 −0.0829083
\(953\) 3048.61 0.103624 0.0518122 0.998657i \(-0.483500\pi\)
0.0518122 + 0.998657i \(0.483500\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 17827.7 0.603127
\(957\) 0 0
\(958\) 28059.0 0.946290
\(959\) 19468.8 0.655557
\(960\) 0 0
\(961\) −29708.4 −0.997227
\(962\) −42231.6 −1.41538
\(963\) 0 0
\(964\) −14659.4 −0.489781
\(965\) 0 0
\(966\) 0 0
\(967\) 14467.9 0.481133 0.240567 0.970633i \(-0.422667\pi\)
0.240567 + 0.970633i \(0.422667\pi\)
\(968\) 5285.62 0.175502
\(969\) 0 0
\(970\) 0 0
\(971\) −12952.8 −0.428090 −0.214045 0.976824i \(-0.568664\pi\)
−0.214045 + 0.976824i \(0.568664\pi\)
\(972\) 0 0
\(973\) −8719.23 −0.287282
\(974\) −65885.4 −2.16746
\(975\) 0 0
\(976\) 25733.2 0.843954
\(977\) 47244.2 1.54706 0.773529 0.633760i \(-0.218489\pi\)
0.773529 + 0.633760i \(0.218489\pi\)
\(978\) 0 0
\(979\) −18709.4 −0.610781
\(980\) 0 0
\(981\) 0 0
\(982\) 43615.3 1.41733
\(983\) −1536.84 −0.0498651 −0.0249326 0.999689i \(-0.507937\pi\)
−0.0249326 + 0.999689i \(0.507937\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 15213.5 0.491376
\(987\) 0 0
\(988\) −27101.5 −0.872685
\(989\) −9649.73 −0.310256
\(990\) 0 0
\(991\) 3785.22 0.121334 0.0606668 0.998158i \(-0.480677\pi\)
0.0606668 + 0.998158i \(0.480677\pi\)
\(992\) −2164.04 −0.0692625
\(993\) 0 0
\(994\) −13192.2 −0.420956
\(995\) 0 0
\(996\) 0 0
\(997\) 25894.9 0.822566 0.411283 0.911508i \(-0.365081\pi\)
0.411283 + 0.911508i \(0.365081\pi\)
\(998\) −73044.0 −2.31680
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.4.a.q.1.1 2
3.2 odd 2 525.4.a.l.1.2 2
5.4 even 2 315.4.a.k.1.2 2
15.2 even 4 525.4.d.l.274.4 4
15.8 even 4 525.4.d.l.274.1 4
15.14 odd 2 105.4.a.e.1.1 2
35.34 odd 2 2205.4.a.bb.1.2 2
60.59 even 2 1680.4.a.bo.1.1 2
105.104 even 2 735.4.a.o.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.a.e.1.1 2 15.14 odd 2
315.4.a.k.1.2 2 5.4 even 2
525.4.a.l.1.2 2 3.2 odd 2
525.4.d.l.274.1 4 15.8 even 4
525.4.d.l.274.4 4 15.2 even 4
735.4.a.o.1.1 2 105.104 even 2
1575.4.a.q.1.1 2 1.1 even 1 trivial
1680.4.a.bo.1.1 2 60.59 even 2
2205.4.a.bb.1.2 2 35.34 odd 2