Properties

Label 1575.4.a.n.1.2
Level $1575$
Weight $4$
Character 1575.1
Self dual yes
Analytic conductor $92.928$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,4,Mod(1,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.9280082590\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 1575.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.236068 q^{2} -7.94427 q^{4} +7.00000 q^{7} -3.76393 q^{8} +O(q^{10})\) \(q+0.236068 q^{2} -7.94427 q^{4} +7.00000 q^{7} -3.76393 q^{8} +50.4721 q^{11} +80.9706 q^{13} +1.65248 q^{14} +62.6656 q^{16} +76.3870 q^{17} +4.13777 q^{19} +11.9149 q^{22} -204.721 q^{23} +19.1146 q^{26} -55.6099 q^{28} +91.1672 q^{29} +198.079 q^{31} +44.9048 q^{32} +18.0325 q^{34} -155.666 q^{37} +0.976794 q^{38} +156.885 q^{41} -354.217 q^{43} -400.964 q^{44} -48.3282 q^{46} -175.659 q^{47} +49.0000 q^{49} -643.252 q^{52} +200.302 q^{53} -26.3475 q^{56} +21.5217 q^{58} +312.498 q^{59} -154.170 q^{61} +46.7601 q^{62} -490.724 q^{64} -734.715 q^{67} -606.839 q^{68} +678.577 q^{71} +60.8003 q^{73} -36.7477 q^{74} -32.8715 q^{76} +353.305 q^{77} -1286.26 q^{79} +37.0356 q^{82} +116.170 q^{83} -83.6192 q^{86} -189.974 q^{88} +916.440 q^{89} +566.794 q^{91} +1626.36 q^{92} -41.4676 q^{94} +1416.30 q^{97} +11.5673 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 2 q^{4} + 14 q^{7} - 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{2} + 2 q^{4} + 14 q^{7} - 12 q^{8} + 92 q^{11} - 8 q^{13} - 28 q^{14} + 18 q^{16} - 44 q^{17} - 108 q^{19} - 164 q^{22} - 320 q^{23} + 396 q^{26} + 14 q^{28} + 236 q^{29} - 60 q^{31} + 300 q^{32} + 528 q^{34} - 204 q^{37} + 476 q^{38} - 44 q^{41} - 136 q^{43} + 12 q^{44} + 440 q^{46} + 400 q^{47} + 98 q^{49} - 1528 q^{52} + 16 q^{53} - 84 q^{56} - 592 q^{58} + 464 q^{59} - 684 q^{61} + 1140 q^{62} - 1214 q^{64} - 736 q^{67} - 1804 q^{68} + 740 q^{71} - 424 q^{73} + 168 q^{74} - 1148 q^{76} + 644 q^{77} - 408 q^{79} + 888 q^{82} + 608 q^{83} - 1008 q^{86} - 532 q^{88} + 1332 q^{89} - 56 q^{91} + 480 q^{92} - 2480 q^{94} + 2448 q^{97} - 196 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.236068 0.0834626 0.0417313 0.999129i \(-0.486713\pi\)
0.0417313 + 0.999129i \(0.486713\pi\)
\(3\) 0 0
\(4\) −7.94427 −0.993034
\(5\) 0 0
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) −3.76393 −0.166344
\(9\) 0 0
\(10\) 0 0
\(11\) 50.4721 1.38345 0.691724 0.722162i \(-0.256852\pi\)
0.691724 + 0.722162i \(0.256852\pi\)
\(12\) 0 0
\(13\) 80.9706 1.72748 0.863738 0.503940i \(-0.168117\pi\)
0.863738 + 0.503940i \(0.168117\pi\)
\(14\) 1.65248 0.0315459
\(15\) 0 0
\(16\) 62.6656 0.979150
\(17\) 76.3870 1.08980 0.544899 0.838502i \(-0.316568\pi\)
0.544899 + 0.838502i \(0.316568\pi\)
\(18\) 0 0
\(19\) 4.13777 0.0499615 0.0249808 0.999688i \(-0.492048\pi\)
0.0249808 + 0.999688i \(0.492048\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 11.9149 0.115466
\(23\) −204.721 −1.85597 −0.927986 0.372615i \(-0.878461\pi\)
−0.927986 + 0.372615i \(0.878461\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 19.1146 0.144180
\(27\) 0 0
\(28\) −55.6099 −0.375332
\(29\) 91.1672 0.583770 0.291885 0.956453i \(-0.405718\pi\)
0.291885 + 0.956453i \(0.405718\pi\)
\(30\) 0 0
\(31\) 198.079 1.14761 0.573807 0.818991i \(-0.305466\pi\)
0.573807 + 0.818991i \(0.305466\pi\)
\(32\) 44.9048 0.248066
\(33\) 0 0
\(34\) 18.0325 0.0909574
\(35\) 0 0
\(36\) 0 0
\(37\) −155.666 −0.691656 −0.345828 0.938298i \(-0.612402\pi\)
−0.345828 + 0.938298i \(0.612402\pi\)
\(38\) 0.976794 0.00416992
\(39\) 0 0
\(40\) 0 0
\(41\) 156.885 0.597595 0.298797 0.954317i \(-0.403415\pi\)
0.298797 + 0.954317i \(0.403415\pi\)
\(42\) 0 0
\(43\) −354.217 −1.25622 −0.628111 0.778124i \(-0.716172\pi\)
−0.628111 + 0.778124i \(0.716172\pi\)
\(44\) −400.964 −1.37381
\(45\) 0 0
\(46\) −48.3282 −0.154904
\(47\) −175.659 −0.545161 −0.272580 0.962133i \(-0.587877\pi\)
−0.272580 + 0.962133i \(0.587877\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) −643.252 −1.71544
\(53\) 200.302 0.519124 0.259562 0.965726i \(-0.416422\pi\)
0.259562 + 0.965726i \(0.416422\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −26.3475 −0.0628721
\(57\) 0 0
\(58\) 21.5217 0.0487230
\(59\) 312.498 0.689556 0.344778 0.938684i \(-0.387954\pi\)
0.344778 + 0.938684i \(0.387954\pi\)
\(60\) 0 0
\(61\) −154.170 −0.323598 −0.161799 0.986824i \(-0.551730\pi\)
−0.161799 + 0.986824i \(0.551730\pi\)
\(62\) 46.7601 0.0957829
\(63\) 0 0
\(64\) −490.724 −0.958446
\(65\) 0 0
\(66\) 0 0
\(67\) −734.715 −1.33970 −0.669849 0.742498i \(-0.733641\pi\)
−0.669849 + 0.742498i \(0.733641\pi\)
\(68\) −606.839 −1.08221
\(69\) 0 0
\(70\) 0 0
\(71\) 678.577 1.13426 0.567129 0.823629i \(-0.308054\pi\)
0.567129 + 0.823629i \(0.308054\pi\)
\(72\) 0 0
\(73\) 60.8003 0.0974813 0.0487407 0.998811i \(-0.484479\pi\)
0.0487407 + 0.998811i \(0.484479\pi\)
\(74\) −36.7477 −0.0577274
\(75\) 0 0
\(76\) −32.8715 −0.0496135
\(77\) 353.305 0.522894
\(78\) 0 0
\(79\) −1286.26 −1.83184 −0.915919 0.401363i \(-0.868537\pi\)
−0.915919 + 0.401363i \(0.868537\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 37.0356 0.0498768
\(83\) 116.170 0.153631 0.0768153 0.997045i \(-0.475525\pi\)
0.0768153 + 0.997045i \(0.475525\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −83.6192 −0.104848
\(87\) 0 0
\(88\) −189.974 −0.230128
\(89\) 916.440 1.09149 0.545744 0.837952i \(-0.316247\pi\)
0.545744 + 0.837952i \(0.316247\pi\)
\(90\) 0 0
\(91\) 566.794 0.652925
\(92\) 1626.36 1.84304
\(93\) 0 0
\(94\) −41.4676 −0.0455006
\(95\) 0 0
\(96\) 0 0
\(97\) 1416.30 1.48251 0.741256 0.671222i \(-0.234230\pi\)
0.741256 + 0.671222i \(0.234230\pi\)
\(98\) 11.5673 0.0119232
\(99\) 0 0
\(100\) 0 0
\(101\) 1379.19 1.35876 0.679381 0.733785i \(-0.262248\pi\)
0.679381 + 0.733785i \(0.262248\pi\)
\(102\) 0 0
\(103\) 1308.43 1.25169 0.625844 0.779949i \(-0.284755\pi\)
0.625844 + 0.779949i \(0.284755\pi\)
\(104\) −304.768 −0.287355
\(105\) 0 0
\(106\) 47.2849 0.0433275
\(107\) 1265.65 1.14351 0.571754 0.820425i \(-0.306263\pi\)
0.571754 + 0.820425i \(0.306263\pi\)
\(108\) 0 0
\(109\) 2069.32 1.81839 0.909196 0.416368i \(-0.136697\pi\)
0.909196 + 0.416368i \(0.136697\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 438.659 0.370084
\(113\) −1953.89 −1.62661 −0.813303 0.581840i \(-0.802333\pi\)
−0.813303 + 0.581840i \(0.802333\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −724.257 −0.579703
\(117\) 0 0
\(118\) 73.7709 0.0575522
\(119\) 534.709 0.411905
\(120\) 0 0
\(121\) 1216.44 0.913927
\(122\) −36.3947 −0.0270083
\(123\) 0 0
\(124\) −1573.59 −1.13962
\(125\) 0 0
\(126\) 0 0
\(127\) −224.251 −0.156685 −0.0783426 0.996926i \(-0.524963\pi\)
−0.0783426 + 0.996926i \(0.524963\pi\)
\(128\) −475.083 −0.328061
\(129\) 0 0
\(130\) 0 0
\(131\) 490.898 0.327404 0.163702 0.986510i \(-0.447656\pi\)
0.163702 + 0.986510i \(0.447656\pi\)
\(132\) 0 0
\(133\) 28.9644 0.0188837
\(134\) −173.443 −0.111815
\(135\) 0 0
\(136\) −287.515 −0.181281
\(137\) 1831.12 1.14192 0.570961 0.820977i \(-0.306571\pi\)
0.570961 + 0.820977i \(0.306571\pi\)
\(138\) 0 0
\(139\) −3050.84 −1.86165 −0.930823 0.365469i \(-0.880909\pi\)
−0.930823 + 0.365469i \(0.880909\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 160.190 0.0946682
\(143\) 4086.76 2.38987
\(144\) 0 0
\(145\) 0 0
\(146\) 14.3530 0.00813605
\(147\) 0 0
\(148\) 1236.65 0.686838
\(149\) −2246.55 −1.23520 −0.617599 0.786493i \(-0.711895\pi\)
−0.617599 + 0.786493i \(0.711895\pi\)
\(150\) 0 0
\(151\) −1311.53 −0.706826 −0.353413 0.935467i \(-0.614979\pi\)
−0.353413 + 0.935467i \(0.614979\pi\)
\(152\) −15.5743 −0.00831079
\(153\) 0 0
\(154\) 83.4040 0.0436421
\(155\) 0 0
\(156\) 0 0
\(157\) −1790.94 −0.910398 −0.455199 0.890390i \(-0.650432\pi\)
−0.455199 + 0.890390i \(0.650432\pi\)
\(158\) −303.644 −0.152890
\(159\) 0 0
\(160\) 0 0
\(161\) −1433.05 −0.701491
\(162\) 0 0
\(163\) 491.108 0.235991 0.117996 0.993014i \(-0.462353\pi\)
0.117996 + 0.993014i \(0.462353\pi\)
\(164\) −1246.34 −0.593432
\(165\) 0 0
\(166\) 27.4241 0.0128224
\(167\) −826.059 −0.382769 −0.191384 0.981515i \(-0.561298\pi\)
−0.191384 + 0.981515i \(0.561298\pi\)
\(168\) 0 0
\(169\) 4359.24 1.98418
\(170\) 0 0
\(171\) 0 0
\(172\) 2813.99 1.24747
\(173\) 2918.00 1.28238 0.641190 0.767382i \(-0.278441\pi\)
0.641190 + 0.767382i \(0.278441\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3162.87 1.35460
\(177\) 0 0
\(178\) 216.342 0.0910984
\(179\) −955.745 −0.399082 −0.199541 0.979889i \(-0.563945\pi\)
−0.199541 + 0.979889i \(0.563945\pi\)
\(180\) 0 0
\(181\) 206.080 0.0846289 0.0423145 0.999104i \(-0.486527\pi\)
0.0423145 + 0.999104i \(0.486527\pi\)
\(182\) 133.802 0.0544948
\(183\) 0 0
\(184\) 770.557 0.308730
\(185\) 0 0
\(186\) 0 0
\(187\) 3855.41 1.50768
\(188\) 1395.49 0.541363
\(189\) 0 0
\(190\) 0 0
\(191\) 2018.63 0.764727 0.382364 0.924012i \(-0.375110\pi\)
0.382364 + 0.924012i \(0.375110\pi\)
\(192\) 0 0
\(193\) −1031.69 −0.384781 −0.192390 0.981318i \(-0.561624\pi\)
−0.192390 + 0.981318i \(0.561624\pi\)
\(194\) 334.344 0.123734
\(195\) 0 0
\(196\) −389.269 −0.141862
\(197\) −205.955 −0.0744857 −0.0372429 0.999306i \(-0.511858\pi\)
−0.0372429 + 0.999306i \(0.511858\pi\)
\(198\) 0 0
\(199\) −1831.38 −0.652376 −0.326188 0.945305i \(-0.605764\pi\)
−0.326188 + 0.945305i \(0.605764\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 325.584 0.113406
\(203\) 638.170 0.220644
\(204\) 0 0
\(205\) 0 0
\(206\) 308.879 0.104469
\(207\) 0 0
\(208\) 5074.07 1.69146
\(209\) 208.842 0.0691191
\(210\) 0 0
\(211\) 1030.19 0.336119 0.168060 0.985777i \(-0.446250\pi\)
0.168060 + 0.985777i \(0.446250\pi\)
\(212\) −1591.25 −0.515508
\(213\) 0 0
\(214\) 298.780 0.0954402
\(215\) 0 0
\(216\) 0 0
\(217\) 1386.55 0.433757
\(218\) 488.500 0.151768
\(219\) 0 0
\(220\) 0 0
\(221\) 6185.10 1.88260
\(222\) 0 0
\(223\) −5368.67 −1.61217 −0.806083 0.591803i \(-0.798416\pi\)
−0.806083 + 0.591803i \(0.798416\pi\)
\(224\) 314.334 0.0937603
\(225\) 0 0
\(226\) −461.251 −0.135761
\(227\) −932.121 −0.272542 −0.136271 0.990672i \(-0.543512\pi\)
−0.136271 + 0.990672i \(0.543512\pi\)
\(228\) 0 0
\(229\) 3163.05 0.912752 0.456376 0.889787i \(-0.349147\pi\)
0.456376 + 0.889787i \(0.349147\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −343.147 −0.0971065
\(233\) 436.562 0.122747 0.0613737 0.998115i \(-0.480452\pi\)
0.0613737 + 0.998115i \(0.480452\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −2482.57 −0.684753
\(237\) 0 0
\(238\) 126.228 0.0343787
\(239\) 1980.82 0.536103 0.268051 0.963405i \(-0.413620\pi\)
0.268051 + 0.963405i \(0.413620\pi\)
\(240\) 0 0
\(241\) 5303.55 1.41756 0.708780 0.705430i \(-0.249246\pi\)
0.708780 + 0.705430i \(0.249246\pi\)
\(242\) 287.162 0.0762787
\(243\) 0 0
\(244\) 1224.77 0.321344
\(245\) 0 0
\(246\) 0 0
\(247\) 335.037 0.0863074
\(248\) −745.556 −0.190899
\(249\) 0 0
\(250\) 0 0
\(251\) 2996.04 0.753420 0.376710 0.926331i \(-0.377055\pi\)
0.376710 + 0.926331i \(0.377055\pi\)
\(252\) 0 0
\(253\) −10332.7 −2.56764
\(254\) −52.9384 −0.0130774
\(255\) 0 0
\(256\) 3813.64 0.931065
\(257\) 968.861 0.235159 0.117580 0.993063i \(-0.462487\pi\)
0.117580 + 0.993063i \(0.462487\pi\)
\(258\) 0 0
\(259\) −1089.66 −0.261421
\(260\) 0 0
\(261\) 0 0
\(262\) 115.885 0.0273260
\(263\) −4830.18 −1.13248 −0.566239 0.824241i \(-0.691602\pi\)
−0.566239 + 0.824241i \(0.691602\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 6.83756 0.00157608
\(267\) 0 0
\(268\) 5836.78 1.33037
\(269\) 4774.97 1.08229 0.541143 0.840930i \(-0.317992\pi\)
0.541143 + 0.840930i \(0.317992\pi\)
\(270\) 0 0
\(271\) 141.909 0.0318094 0.0159047 0.999874i \(-0.494937\pi\)
0.0159047 + 0.999874i \(0.494937\pi\)
\(272\) 4786.84 1.06708
\(273\) 0 0
\(274\) 432.269 0.0953078
\(275\) 0 0
\(276\) 0 0
\(277\) 3621.13 0.785460 0.392730 0.919654i \(-0.371531\pi\)
0.392730 + 0.919654i \(0.371531\pi\)
\(278\) −720.206 −0.155378
\(279\) 0 0
\(280\) 0 0
\(281\) −5790.87 −1.22937 −0.614687 0.788771i \(-0.710718\pi\)
−0.614687 + 0.788771i \(0.710718\pi\)
\(282\) 0 0
\(283\) −526.043 −0.110495 −0.0552474 0.998473i \(-0.517595\pi\)
−0.0552474 + 0.998473i \(0.517595\pi\)
\(284\) −5390.80 −1.12636
\(285\) 0 0
\(286\) 964.753 0.199465
\(287\) 1098.20 0.225870
\(288\) 0 0
\(289\) 921.972 0.187660
\(290\) 0 0
\(291\) 0 0
\(292\) −483.014 −0.0968023
\(293\) 1914.88 0.381803 0.190901 0.981609i \(-0.438859\pi\)
0.190901 + 0.981609i \(0.438859\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 585.915 0.115053
\(297\) 0 0
\(298\) −530.339 −0.103093
\(299\) −16576.4 −3.20615
\(300\) 0 0
\(301\) −2479.52 −0.474807
\(302\) −309.610 −0.0589936
\(303\) 0 0
\(304\) 259.296 0.0489199
\(305\) 0 0
\(306\) 0 0
\(307\) 6244.17 1.16083 0.580413 0.814322i \(-0.302891\pi\)
0.580413 + 0.814322i \(0.302891\pi\)
\(308\) −2806.75 −0.519251
\(309\) 0 0
\(310\) 0 0
\(311\) 9658.78 1.76109 0.880545 0.473962i \(-0.157177\pi\)
0.880545 + 0.473962i \(0.157177\pi\)
\(312\) 0 0
\(313\) −2198.34 −0.396988 −0.198494 0.980102i \(-0.563605\pi\)
−0.198494 + 0.980102i \(0.563605\pi\)
\(314\) −422.783 −0.0759842
\(315\) 0 0
\(316\) 10218.4 1.81908
\(317\) 3030.78 0.536990 0.268495 0.963281i \(-0.413474\pi\)
0.268495 + 0.963281i \(0.413474\pi\)
\(318\) 0 0
\(319\) 4601.40 0.807615
\(320\) 0 0
\(321\) 0 0
\(322\) −338.297 −0.0585483
\(323\) 316.072 0.0544480
\(324\) 0 0
\(325\) 0 0
\(326\) 115.935 0.0196965
\(327\) 0 0
\(328\) −590.506 −0.0994062
\(329\) −1229.62 −0.206051
\(330\) 0 0
\(331\) 4753.74 0.789393 0.394696 0.918812i \(-0.370850\pi\)
0.394696 + 0.918812i \(0.370850\pi\)
\(332\) −922.888 −0.152560
\(333\) 0 0
\(334\) −195.006 −0.0319469
\(335\) 0 0
\(336\) 0 0
\(337\) −8824.40 −1.42640 −0.713199 0.700962i \(-0.752754\pi\)
−0.713199 + 0.700962i \(0.752754\pi\)
\(338\) 1029.08 0.165605
\(339\) 0 0
\(340\) 0 0
\(341\) 9997.47 1.58766
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 1333.25 0.208965
\(345\) 0 0
\(346\) 688.847 0.107031
\(347\) −3413.97 −0.528160 −0.264080 0.964501i \(-0.585068\pi\)
−0.264080 + 0.964501i \(0.585068\pi\)
\(348\) 0 0
\(349\) −5676.32 −0.870621 −0.435310 0.900280i \(-0.643361\pi\)
−0.435310 + 0.900280i \(0.643361\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2266.44 0.343187
\(353\) 6225.80 0.938713 0.469357 0.883009i \(-0.344486\pi\)
0.469357 + 0.883009i \(0.344486\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −7280.45 −1.08388
\(357\) 0 0
\(358\) −225.621 −0.0333084
\(359\) 4907.73 0.721505 0.360752 0.932662i \(-0.382520\pi\)
0.360752 + 0.932662i \(0.382520\pi\)
\(360\) 0 0
\(361\) −6841.88 −0.997504
\(362\) 48.6490 0.00706335
\(363\) 0 0
\(364\) −4502.77 −0.648377
\(365\) 0 0
\(366\) 0 0
\(367\) 3906.48 0.555631 0.277816 0.960634i \(-0.410390\pi\)
0.277816 + 0.960634i \(0.410390\pi\)
\(368\) −12829.0 −1.81728
\(369\) 0 0
\(370\) 0 0
\(371\) 1402.11 0.196210
\(372\) 0 0
\(373\) 2102.52 0.291862 0.145931 0.989295i \(-0.453382\pi\)
0.145931 + 0.989295i \(0.453382\pi\)
\(374\) 910.140 0.125835
\(375\) 0 0
\(376\) 661.170 0.0906842
\(377\) 7381.86 1.00845
\(378\) 0 0
\(379\) −6612.76 −0.896239 −0.448120 0.893974i \(-0.647906\pi\)
−0.448120 + 0.893974i \(0.647906\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 476.534 0.0638262
\(383\) 2.37457 0.000316801 0 0.000158401 1.00000i \(-0.499950\pi\)
0.000158401 1.00000i \(0.499950\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −243.549 −0.0321148
\(387\) 0 0
\(388\) −11251.5 −1.47218
\(389\) −7716.98 −1.00583 −0.502913 0.864337i \(-0.667739\pi\)
−0.502913 + 0.864337i \(0.667739\pi\)
\(390\) 0 0
\(391\) −15638.0 −2.02263
\(392\) −184.433 −0.0237634
\(393\) 0 0
\(394\) −48.6194 −0.00621678
\(395\) 0 0
\(396\) 0 0
\(397\) −6403.95 −0.809584 −0.404792 0.914409i \(-0.632656\pi\)
−0.404792 + 0.914409i \(0.632656\pi\)
\(398\) −432.329 −0.0544490
\(399\) 0 0
\(400\) 0 0
\(401\) 10969.9 1.36611 0.683054 0.730368i \(-0.260651\pi\)
0.683054 + 0.730368i \(0.260651\pi\)
\(402\) 0 0
\(403\) 16038.6 1.98248
\(404\) −10956.7 −1.34930
\(405\) 0 0
\(406\) 150.652 0.0184155
\(407\) −7856.78 −0.956870
\(408\) 0 0
\(409\) −400.353 −0.0484015 −0.0242007 0.999707i \(-0.507704\pi\)
−0.0242007 + 0.999707i \(0.507704\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −10394.6 −1.24297
\(413\) 2187.49 0.260628
\(414\) 0 0
\(415\) 0 0
\(416\) 3635.97 0.428529
\(417\) 0 0
\(418\) 49.3009 0.00576887
\(419\) 15815.4 1.84399 0.921995 0.387201i \(-0.126558\pi\)
0.921995 + 0.387201i \(0.126558\pi\)
\(420\) 0 0
\(421\) 1936.53 0.224182 0.112091 0.993698i \(-0.464245\pi\)
0.112091 + 0.993698i \(0.464245\pi\)
\(422\) 243.195 0.0280534
\(423\) 0 0
\(424\) −753.923 −0.0863531
\(425\) 0 0
\(426\) 0 0
\(427\) −1079.19 −0.122309
\(428\) −10054.7 −1.13554
\(429\) 0 0
\(430\) 0 0
\(431\) −2030.91 −0.226973 −0.113487 0.993540i \(-0.536202\pi\)
−0.113487 + 0.993540i \(0.536202\pi\)
\(432\) 0 0
\(433\) 10784.1 1.19689 0.598443 0.801165i \(-0.295786\pi\)
0.598443 + 0.801165i \(0.295786\pi\)
\(434\) 327.321 0.0362025
\(435\) 0 0
\(436\) −16439.2 −1.80573
\(437\) −847.089 −0.0927272
\(438\) 0 0
\(439\) −6304.19 −0.685382 −0.342691 0.939448i \(-0.611338\pi\)
−0.342691 + 0.939448i \(0.611338\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 1460.10 0.157127
\(443\) 15494.8 1.66181 0.830905 0.556414i \(-0.187823\pi\)
0.830905 + 0.556414i \(0.187823\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −1267.37 −0.134556
\(447\) 0 0
\(448\) −3435.07 −0.362259
\(449\) 242.018 0.0254377 0.0127189 0.999919i \(-0.495951\pi\)
0.0127189 + 0.999919i \(0.495951\pi\)
\(450\) 0 0
\(451\) 7918.34 0.826741
\(452\) 15522.2 1.61528
\(453\) 0 0
\(454\) −220.044 −0.0227471
\(455\) 0 0
\(456\) 0 0
\(457\) 11670.4 1.19457 0.597283 0.802030i \(-0.296247\pi\)
0.597283 + 0.802030i \(0.296247\pi\)
\(458\) 746.695 0.0761807
\(459\) 0 0
\(460\) 0 0
\(461\) −12128.1 −1.22530 −0.612649 0.790355i \(-0.709896\pi\)
−0.612649 + 0.790355i \(0.709896\pi\)
\(462\) 0 0
\(463\) −5161.64 −0.518103 −0.259051 0.965864i \(-0.583410\pi\)
−0.259051 + 0.965864i \(0.583410\pi\)
\(464\) 5713.05 0.571598
\(465\) 0 0
\(466\) 103.058 0.0102448
\(467\) 11680.2 1.15738 0.578691 0.815547i \(-0.303564\pi\)
0.578691 + 0.815547i \(0.303564\pi\)
\(468\) 0 0
\(469\) −5143.01 −0.506358
\(470\) 0 0
\(471\) 0 0
\(472\) −1176.22 −0.114703
\(473\) −17878.1 −1.73792
\(474\) 0 0
\(475\) 0 0
\(476\) −4247.87 −0.409036
\(477\) 0 0
\(478\) 467.608 0.0447445
\(479\) 18458.7 1.76075 0.880373 0.474282i \(-0.157292\pi\)
0.880373 + 0.474282i \(0.157292\pi\)
\(480\) 0 0
\(481\) −12604.3 −1.19482
\(482\) 1252.00 0.118313
\(483\) 0 0
\(484\) −9663.70 −0.907560
\(485\) 0 0
\(486\) 0 0
\(487\) −8630.11 −0.803014 −0.401507 0.915856i \(-0.631513\pi\)
−0.401507 + 0.915856i \(0.631513\pi\)
\(488\) 580.286 0.0538286
\(489\) 0 0
\(490\) 0 0
\(491\) −17801.6 −1.63621 −0.818103 0.575072i \(-0.804974\pi\)
−0.818103 + 0.575072i \(0.804974\pi\)
\(492\) 0 0
\(493\) 6963.99 0.636191
\(494\) 79.0916 0.00720344
\(495\) 0 0
\(496\) 12412.7 1.12369
\(497\) 4750.04 0.428709
\(498\) 0 0
\(499\) 200.167 0.0179574 0.00897868 0.999960i \(-0.497142\pi\)
0.00897868 + 0.999960i \(0.497142\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 707.269 0.0628824
\(503\) 16400.4 1.45379 0.726896 0.686747i \(-0.240962\pi\)
0.726896 + 0.686747i \(0.240962\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −2439.23 −0.214302
\(507\) 0 0
\(508\) 1781.51 0.155594
\(509\) 15006.6 1.30679 0.653394 0.757018i \(-0.273344\pi\)
0.653394 + 0.757018i \(0.273344\pi\)
\(510\) 0 0
\(511\) 425.602 0.0368445
\(512\) 4700.94 0.405770
\(513\) 0 0
\(514\) 228.717 0.0196270
\(515\) 0 0
\(516\) 0 0
\(517\) −8865.91 −0.754201
\(518\) −257.234 −0.0218189
\(519\) 0 0
\(520\) 0 0
\(521\) −7113.18 −0.598146 −0.299073 0.954230i \(-0.596677\pi\)
−0.299073 + 0.954230i \(0.596677\pi\)
\(522\) 0 0
\(523\) 8888.46 0.743146 0.371573 0.928404i \(-0.378819\pi\)
0.371573 + 0.928404i \(0.378819\pi\)
\(524\) −3899.83 −0.325123
\(525\) 0 0
\(526\) −1140.25 −0.0945196
\(527\) 15130.7 1.25067
\(528\) 0 0
\(529\) 29743.8 2.44463
\(530\) 0 0
\(531\) 0 0
\(532\) −230.101 −0.0187521
\(533\) 12703.1 1.03233
\(534\) 0 0
\(535\) 0 0
\(536\) 2765.42 0.222850
\(537\) 0 0
\(538\) 1127.22 0.0903305
\(539\) 2473.13 0.197635
\(540\) 0 0
\(541\) −653.827 −0.0519597 −0.0259799 0.999662i \(-0.508271\pi\)
−0.0259799 + 0.999662i \(0.508271\pi\)
\(542\) 33.5001 0.00265489
\(543\) 0 0
\(544\) 3430.14 0.270342
\(545\) 0 0
\(546\) 0 0
\(547\) −1138.52 −0.0889940 −0.0444970 0.999010i \(-0.514169\pi\)
−0.0444970 + 0.999010i \(0.514169\pi\)
\(548\) −14546.9 −1.13397
\(549\) 0 0
\(550\) 0 0
\(551\) 377.229 0.0291660
\(552\) 0 0
\(553\) −9003.80 −0.692370
\(554\) 854.832 0.0655566
\(555\) 0 0
\(556\) 24236.7 1.84868
\(557\) −19804.8 −1.50657 −0.753283 0.657696i \(-0.771531\pi\)
−0.753283 + 0.657696i \(0.771531\pi\)
\(558\) 0 0
\(559\) −28681.1 −2.17009
\(560\) 0 0
\(561\) 0 0
\(562\) −1367.04 −0.102607
\(563\) 10276.3 0.769265 0.384632 0.923070i \(-0.374328\pi\)
0.384632 + 0.923070i \(0.374328\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −124.182 −0.00922219
\(567\) 0 0
\(568\) −2554.12 −0.188677
\(569\) −4139.03 −0.304951 −0.152475 0.988307i \(-0.548724\pi\)
−0.152475 + 0.988307i \(0.548724\pi\)
\(570\) 0 0
\(571\) −4486.81 −0.328839 −0.164420 0.986390i \(-0.552575\pi\)
−0.164420 + 0.986390i \(0.552575\pi\)
\(572\) −32466.3 −2.37323
\(573\) 0 0
\(574\) 259.249 0.0188517
\(575\) 0 0
\(576\) 0 0
\(577\) 1104.77 0.0797093 0.0398547 0.999205i \(-0.487311\pi\)
0.0398547 + 0.999205i \(0.487311\pi\)
\(578\) 217.648 0.0156626
\(579\) 0 0
\(580\) 0 0
\(581\) 813.192 0.0580669
\(582\) 0 0
\(583\) 10109.7 0.718181
\(584\) −228.848 −0.0162154
\(585\) 0 0
\(586\) 452.041 0.0318663
\(587\) −10413.2 −0.732199 −0.366100 0.930576i \(-0.619307\pi\)
−0.366100 + 0.930576i \(0.619307\pi\)
\(588\) 0 0
\(589\) 819.605 0.0573365
\(590\) 0 0
\(591\) 0 0
\(592\) −9754.89 −0.677235
\(593\) −3235.16 −0.224034 −0.112017 0.993706i \(-0.535731\pi\)
−0.112017 + 0.993706i \(0.535731\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 17847.2 1.22659
\(597\) 0 0
\(598\) −3913.16 −0.267594
\(599\) −569.048 −0.0388158 −0.0194079 0.999812i \(-0.506178\pi\)
−0.0194079 + 0.999812i \(0.506178\pi\)
\(600\) 0 0
\(601\) 3760.89 0.255258 0.127629 0.991822i \(-0.459263\pi\)
0.127629 + 0.991822i \(0.459263\pi\)
\(602\) −585.335 −0.0396287
\(603\) 0 0
\(604\) 10419.1 0.701902
\(605\) 0 0
\(606\) 0 0
\(607\) 2224.05 0.148717 0.0743585 0.997232i \(-0.476309\pi\)
0.0743585 + 0.997232i \(0.476309\pi\)
\(608\) 185.806 0.0123938
\(609\) 0 0
\(610\) 0 0
\(611\) −14223.2 −0.941753
\(612\) 0 0
\(613\) −5914.50 −0.389697 −0.194849 0.980833i \(-0.562422\pi\)
−0.194849 + 0.980833i \(0.562422\pi\)
\(614\) 1474.05 0.0968856
\(615\) 0 0
\(616\) −1329.82 −0.0869802
\(617\) −18591.2 −1.21306 −0.606528 0.795062i \(-0.707438\pi\)
−0.606528 + 0.795062i \(0.707438\pi\)
\(618\) 0 0
\(619\) 5125.97 0.332844 0.166422 0.986055i \(-0.446779\pi\)
0.166422 + 0.986055i \(0.446779\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 2280.13 0.146985
\(623\) 6415.08 0.412544
\(624\) 0 0
\(625\) 0 0
\(626\) −518.957 −0.0331337
\(627\) 0 0
\(628\) 14227.7 0.904056
\(629\) −11890.8 −0.753765
\(630\) 0 0
\(631\) −10649.0 −0.671839 −0.335919 0.941891i \(-0.609047\pi\)
−0.335919 + 0.941891i \(0.609047\pi\)
\(632\) 4841.38 0.304715
\(633\) 0 0
\(634\) 715.471 0.0448186
\(635\) 0 0
\(636\) 0 0
\(637\) 3967.56 0.246782
\(638\) 1086.24 0.0674056
\(639\) 0 0
\(640\) 0 0
\(641\) −24025.7 −1.48044 −0.740218 0.672367i \(-0.765278\pi\)
−0.740218 + 0.672367i \(0.765278\pi\)
\(642\) 0 0
\(643\) −14929.3 −0.915638 −0.457819 0.889045i \(-0.651369\pi\)
−0.457819 + 0.889045i \(0.651369\pi\)
\(644\) 11384.5 0.696605
\(645\) 0 0
\(646\) 74.6144 0.00454437
\(647\) 14479.1 0.879801 0.439901 0.898046i \(-0.355014\pi\)
0.439901 + 0.898046i \(0.355014\pi\)
\(648\) 0 0
\(649\) 15772.5 0.953965
\(650\) 0 0
\(651\) 0 0
\(652\) −3901.50 −0.234347
\(653\) 898.168 0.0538255 0.0269127 0.999638i \(-0.491432\pi\)
0.0269127 + 0.999638i \(0.491432\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 9831.33 0.585135
\(657\) 0 0
\(658\) −290.273 −0.0171976
\(659\) 30198.0 1.78505 0.892526 0.450997i \(-0.148931\pi\)
0.892526 + 0.450997i \(0.148931\pi\)
\(660\) 0 0
\(661\) −19337.8 −1.13790 −0.568952 0.822371i \(-0.692651\pi\)
−0.568952 + 0.822371i \(0.692651\pi\)
\(662\) 1122.20 0.0658848
\(663\) 0 0
\(664\) −437.257 −0.0255555
\(665\) 0 0
\(666\) 0 0
\(667\) −18663.9 −1.08346
\(668\) 6562.44 0.380102
\(669\) 0 0
\(670\) 0 0
\(671\) −7781.30 −0.447681
\(672\) 0 0
\(673\) −10132.2 −0.580336 −0.290168 0.956976i \(-0.593711\pi\)
−0.290168 + 0.956976i \(0.593711\pi\)
\(674\) −2083.16 −0.119051
\(675\) 0 0
\(676\) −34631.0 −1.97035
\(677\) −33177.3 −1.88347 −0.941733 0.336361i \(-0.890804\pi\)
−0.941733 + 0.336361i \(0.890804\pi\)
\(678\) 0 0
\(679\) 9914.11 0.560337
\(680\) 0 0
\(681\) 0 0
\(682\) 2360.08 0.132511
\(683\) −11423.6 −0.639987 −0.319994 0.947420i \(-0.603681\pi\)
−0.319994 + 0.947420i \(0.603681\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 80.9713 0.00450656
\(687\) 0 0
\(688\) −22197.2 −1.23003
\(689\) 16218.6 0.896775
\(690\) 0 0
\(691\) −19737.4 −1.08661 −0.543304 0.839536i \(-0.682827\pi\)
−0.543304 + 0.839536i \(0.682827\pi\)
\(692\) −23181.4 −1.27345
\(693\) 0 0
\(694\) −805.929 −0.0440816
\(695\) 0 0
\(696\) 0 0
\(697\) 11984.0 0.651258
\(698\) −1340.00 −0.0726643
\(699\) 0 0
\(700\) 0 0
\(701\) −11307.8 −0.609258 −0.304629 0.952471i \(-0.598532\pi\)
−0.304629 + 0.952471i \(0.598532\pi\)
\(702\) 0 0
\(703\) −644.108 −0.0345562
\(704\) −24767.9 −1.32596
\(705\) 0 0
\(706\) 1469.71 0.0783475
\(707\) 9654.36 0.513564
\(708\) 0 0
\(709\) 30859.2 1.63461 0.817307 0.576202i \(-0.195466\pi\)
0.817307 + 0.576202i \(0.195466\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −3449.42 −0.181562
\(713\) −40551.0 −2.12994
\(714\) 0 0
\(715\) 0 0
\(716\) 7592.69 0.396302
\(717\) 0 0
\(718\) 1158.56 0.0602187
\(719\) −33152.4 −1.71958 −0.859789 0.510650i \(-0.829405\pi\)
−0.859789 + 0.510650i \(0.829405\pi\)
\(720\) 0 0
\(721\) 9159.03 0.473093
\(722\) −1615.15 −0.0832543
\(723\) 0 0
\(724\) −1637.16 −0.0840394
\(725\) 0 0
\(726\) 0 0
\(727\) 16743.0 0.854146 0.427073 0.904217i \(-0.359545\pi\)
0.427073 + 0.904217i \(0.359545\pi\)
\(728\) −2133.37 −0.108610
\(729\) 0 0
\(730\) 0 0
\(731\) −27057.5 −1.36903
\(732\) 0 0
\(733\) 8827.55 0.444820 0.222410 0.974953i \(-0.428608\pi\)
0.222410 + 0.974953i \(0.428608\pi\)
\(734\) 922.195 0.0463744
\(735\) 0 0
\(736\) −9192.97 −0.460404
\(737\) −37082.6 −1.85340
\(738\) 0 0
\(739\) 36154.0 1.79966 0.899829 0.436243i \(-0.143691\pi\)
0.899829 + 0.436243i \(0.143691\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 330.994 0.0163762
\(743\) −1820.69 −0.0898987 −0.0449494 0.998989i \(-0.514313\pi\)
−0.0449494 + 0.998989i \(0.514313\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 496.338 0.0243596
\(747\) 0 0
\(748\) −30628.5 −1.49718
\(749\) 8859.57 0.432205
\(750\) 0 0
\(751\) 27764.4 1.34905 0.674526 0.738251i \(-0.264348\pi\)
0.674526 + 0.738251i \(0.264348\pi\)
\(752\) −11007.8 −0.533795
\(753\) 0 0
\(754\) 1742.62 0.0841678
\(755\) 0 0
\(756\) 0 0
\(757\) 13518.3 0.649050 0.324525 0.945877i \(-0.394795\pi\)
0.324525 + 0.945877i \(0.394795\pi\)
\(758\) −1561.06 −0.0748025
\(759\) 0 0
\(760\) 0 0
\(761\) −30695.2 −1.46216 −0.731078 0.682294i \(-0.760983\pi\)
−0.731078 + 0.682294i \(0.760983\pi\)
\(762\) 0 0
\(763\) 14485.2 0.687288
\(764\) −16036.5 −0.759400
\(765\) 0 0
\(766\) 0.560560 2.64410e−5 0
\(767\) 25303.2 1.19119
\(768\) 0 0
\(769\) 4536.39 0.212726 0.106363 0.994327i \(-0.466079\pi\)
0.106363 + 0.994327i \(0.466079\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 8196.03 0.382100
\(773\) 31238.9 1.45354 0.726768 0.686883i \(-0.241022\pi\)
0.726768 + 0.686883i \(0.241022\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −5330.86 −0.246607
\(777\) 0 0
\(778\) −1821.73 −0.0839490
\(779\) 649.155 0.0298567
\(780\) 0 0
\(781\) 34249.2 1.56919
\(782\) −3691.64 −0.168814
\(783\) 0 0
\(784\) 3070.62 0.139879
\(785\) 0 0
\(786\) 0 0
\(787\) −39597.2 −1.79350 −0.896752 0.442534i \(-0.854079\pi\)
−0.896752 + 0.442534i \(0.854079\pi\)
\(788\) 1636.16 0.0739669
\(789\) 0 0
\(790\) 0 0
\(791\) −13677.2 −0.614799
\(792\) 0 0
\(793\) −12483.3 −0.559008
\(794\) −1511.77 −0.0675700
\(795\) 0 0
\(796\) 14549.0 0.647832
\(797\) −16567.0 −0.736302 −0.368151 0.929766i \(-0.620009\pi\)
−0.368151 + 0.929766i \(0.620009\pi\)
\(798\) 0 0
\(799\) −13418.1 −0.594115
\(800\) 0 0
\(801\) 0 0
\(802\) 2589.63 0.114019
\(803\) 3068.72 0.134860
\(804\) 0 0
\(805\) 0 0
\(806\) 3786.19 0.165463
\(807\) 0 0
\(808\) −5191.20 −0.226022
\(809\) 12141.6 0.527657 0.263828 0.964570i \(-0.415015\pi\)
0.263828 + 0.964570i \(0.415015\pi\)
\(810\) 0 0
\(811\) 30295.6 1.31174 0.655870 0.754873i \(-0.272302\pi\)
0.655870 + 0.754873i \(0.272302\pi\)
\(812\) −5069.80 −0.219107
\(813\) 0 0
\(814\) −1854.73 −0.0798629
\(815\) 0 0
\(816\) 0 0
\(817\) −1465.67 −0.0627628
\(818\) −94.5106 −0.00403971
\(819\) 0 0
\(820\) 0 0
\(821\) 14914.8 0.634018 0.317009 0.948423i \(-0.397322\pi\)
0.317009 + 0.948423i \(0.397322\pi\)
\(822\) 0 0
\(823\) 31077.6 1.31628 0.658138 0.752897i \(-0.271344\pi\)
0.658138 + 0.752897i \(0.271344\pi\)
\(824\) −4924.85 −0.208210
\(825\) 0 0
\(826\) 516.396 0.0217527
\(827\) 15527.8 0.652908 0.326454 0.945213i \(-0.394146\pi\)
0.326454 + 0.945213i \(0.394146\pi\)
\(828\) 0 0
\(829\) −40221.5 −1.68510 −0.842551 0.538617i \(-0.818947\pi\)
−0.842551 + 0.538617i \(0.818947\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −39734.2 −1.65569
\(833\) 3742.96 0.155685
\(834\) 0 0
\(835\) 0 0
\(836\) −1659.10 −0.0686377
\(837\) 0 0
\(838\) 3733.51 0.153904
\(839\) 21153.7 0.870448 0.435224 0.900322i \(-0.356669\pi\)
0.435224 + 0.900322i \(0.356669\pi\)
\(840\) 0 0
\(841\) −16077.5 −0.659213
\(842\) 457.152 0.0187108
\(843\) 0 0
\(844\) −8184.10 −0.333778
\(845\) 0 0
\(846\) 0 0
\(847\) 8515.06 0.345432
\(848\) 12552.0 0.508301
\(849\) 0 0
\(850\) 0 0
\(851\) 31868.1 1.28369
\(852\) 0 0
\(853\) −636.075 −0.0255320 −0.0127660 0.999919i \(-0.504064\pi\)
−0.0127660 + 0.999919i \(0.504064\pi\)
\(854\) −254.763 −0.0102082
\(855\) 0 0
\(856\) −4763.83 −0.190215
\(857\) −3941.46 −0.157104 −0.0785518 0.996910i \(-0.525030\pi\)
−0.0785518 + 0.996910i \(0.525030\pi\)
\(858\) 0 0
\(859\) −21781.6 −0.865165 −0.432583 0.901594i \(-0.642398\pi\)
−0.432583 + 0.901594i \(0.642398\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −479.432 −0.0189438
\(863\) −44697.9 −1.76308 −0.881538 0.472112i \(-0.843492\pi\)
−0.881538 + 0.472112i \(0.843492\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 2545.79 0.0998953
\(867\) 0 0
\(868\) −11015.2 −0.430736
\(869\) −64920.1 −2.53425
\(870\) 0 0
\(871\) −59490.3 −2.31430
\(872\) −7788.78 −0.302478
\(873\) 0 0
\(874\) −199.971 −0.00773926
\(875\) 0 0
\(876\) 0 0
\(877\) 20171.7 0.776682 0.388341 0.921516i \(-0.373048\pi\)
0.388341 + 0.921516i \(0.373048\pi\)
\(878\) −1488.22 −0.0572038
\(879\) 0 0
\(880\) 0 0
\(881\) −11577.6 −0.442744 −0.221372 0.975189i \(-0.571054\pi\)
−0.221372 + 0.975189i \(0.571054\pi\)
\(882\) 0 0
\(883\) 35388.3 1.34871 0.674355 0.738407i \(-0.264422\pi\)
0.674355 + 0.738407i \(0.264422\pi\)
\(884\) −49136.1 −1.86949
\(885\) 0 0
\(886\) 3657.83 0.138699
\(887\) −41705.0 −1.57871 −0.789356 0.613936i \(-0.789585\pi\)
−0.789356 + 0.613936i \(0.789585\pi\)
\(888\) 0 0
\(889\) −1569.75 −0.0592215
\(890\) 0 0
\(891\) 0 0
\(892\) 42650.2 1.60093
\(893\) −726.838 −0.0272371
\(894\) 0 0
\(895\) 0 0
\(896\) −3325.58 −0.123995
\(897\) 0 0
\(898\) 57.1328 0.00212310
\(899\) 18058.3 0.669942
\(900\) 0 0
\(901\) 15300.5 0.565740
\(902\) 1869.27 0.0690020
\(903\) 0 0
\(904\) 7354.31 0.270576
\(905\) 0 0
\(906\) 0 0
\(907\) 28645.1 1.04867 0.524336 0.851511i \(-0.324313\pi\)
0.524336 + 0.851511i \(0.324313\pi\)
\(908\) 7405.02 0.270643
\(909\) 0 0
\(910\) 0 0
\(911\) −13337.8 −0.485074 −0.242537 0.970142i \(-0.577980\pi\)
−0.242537 + 0.970142i \(0.577980\pi\)
\(912\) 0 0
\(913\) 5863.36 0.212540
\(914\) 2755.00 0.0997016
\(915\) 0 0
\(916\) −25128.1 −0.906394
\(917\) 3436.29 0.123747
\(918\) 0 0
\(919\) −28911.0 −1.03774 −0.518871 0.854853i \(-0.673647\pi\)
−0.518871 + 0.854853i \(0.673647\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −2863.06 −0.102267
\(923\) 54944.8 1.95940
\(924\) 0 0
\(925\) 0 0
\(926\) −1218.50 −0.0432422
\(927\) 0 0
\(928\) 4093.84 0.144814
\(929\) −7093.88 −0.250530 −0.125265 0.992123i \(-0.539978\pi\)
−0.125265 + 0.992123i \(0.539978\pi\)
\(930\) 0 0
\(931\) 202.751 0.00713736
\(932\) −3468.17 −0.121892
\(933\) 0 0
\(934\) 2757.33 0.0965981
\(935\) 0 0
\(936\) 0 0
\(937\) 19271.1 0.671888 0.335944 0.941882i \(-0.390945\pi\)
0.335944 + 0.941882i \(0.390945\pi\)
\(938\) −1214.10 −0.0422620
\(939\) 0 0
\(940\) 0 0
\(941\) 18115.2 0.627563 0.313782 0.949495i \(-0.398404\pi\)
0.313782 + 0.949495i \(0.398404\pi\)
\(942\) 0 0
\(943\) −32117.8 −1.10912
\(944\) 19582.9 0.675180
\(945\) 0 0
\(946\) −4220.44 −0.145051
\(947\) −2475.55 −0.0849468 −0.0424734 0.999098i \(-0.513524\pi\)
−0.0424734 + 0.999098i \(0.513524\pi\)
\(948\) 0 0
\(949\) 4923.04 0.168397
\(950\) 0 0
\(951\) 0 0
\(952\) −2012.61 −0.0685179
\(953\) 12866.6 0.437344 0.218672 0.975798i \(-0.429827\pi\)
0.218672 + 0.975798i \(0.429827\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −15736.2 −0.532368
\(957\) 0 0
\(958\) 4357.50 0.146957
\(959\) 12817.9 0.431606
\(960\) 0 0
\(961\) 9444.26 0.317017
\(962\) −2975.48 −0.0997228
\(963\) 0 0
\(964\) −42132.9 −1.40768
\(965\) 0 0
\(966\) 0 0
\(967\) 2142.86 0.0712614 0.0356307 0.999365i \(-0.488656\pi\)
0.0356307 + 0.999365i \(0.488656\pi\)
\(968\) −4578.58 −0.152026
\(969\) 0 0
\(970\) 0 0
\(971\) −2879.06 −0.0951529 −0.0475765 0.998868i \(-0.515150\pi\)
−0.0475765 + 0.998868i \(0.515150\pi\)
\(972\) 0 0
\(973\) −21355.9 −0.703636
\(974\) −2037.29 −0.0670217
\(975\) 0 0
\(976\) −9661.18 −0.316851
\(977\) 48741.1 1.59607 0.798037 0.602608i \(-0.205872\pi\)
0.798037 + 0.602608i \(0.205872\pi\)
\(978\) 0 0
\(979\) 46254.7 1.51002
\(980\) 0 0
\(981\) 0 0
\(982\) −4202.40 −0.136562
\(983\) −45756.8 −1.48466 −0.742328 0.670037i \(-0.766278\pi\)
−0.742328 + 0.670037i \(0.766278\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 1643.97 0.0530982
\(987\) 0 0
\(988\) −2661.63 −0.0857062
\(989\) 72515.7 2.33151
\(990\) 0 0
\(991\) −51552.1 −1.65248 −0.826240 0.563319i \(-0.809524\pi\)
−0.826240 + 0.563319i \(0.809524\pi\)
\(992\) 8894.70 0.284684
\(993\) 0 0
\(994\) 1121.33 0.0357812
\(995\) 0 0
\(996\) 0 0
\(997\) −25565.3 −0.812097 −0.406048 0.913852i \(-0.633094\pi\)
−0.406048 + 0.913852i \(0.633094\pi\)
\(998\) 47.2531 0.00149877
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.4.a.n.1.2 2
3.2 odd 2 525.4.a.o.1.1 2
5.4 even 2 315.4.a.l.1.1 2
15.2 even 4 525.4.d.k.274.2 4
15.8 even 4 525.4.d.k.274.3 4
15.14 odd 2 105.4.a.d.1.2 2
35.34 odd 2 2205.4.a.be.1.1 2
60.59 even 2 1680.4.a.bd.1.2 2
105.104 even 2 735.4.a.m.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.a.d.1.2 2 15.14 odd 2
315.4.a.l.1.1 2 5.4 even 2
525.4.a.o.1.1 2 3.2 odd 2
525.4.d.k.274.2 4 15.2 even 4
525.4.d.k.274.3 4 15.8 even 4
735.4.a.m.1.2 2 105.104 even 2
1575.4.a.n.1.2 2 1.1 even 1 trivial
1680.4.a.bd.1.2 2 60.59 even 2
2205.4.a.be.1.1 2 35.34 odd 2