Properties

Label 1575.4.a.n
Level $1575$
Weight $4$
Character orbit 1575.a
Self dual yes
Analytic conductor $92.928$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,4,Mod(1,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.9280082590\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{5}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 2) q^{2} + (4 \beta + 1) q^{4} + 7 q^{7} + ( - \beta - 6) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta - 2) q^{2} + (4 \beta + 1) q^{4} + 7 q^{7} + ( - \beta - 6) q^{8} + ( - 2 \beta + 46) q^{11} + ( - 38 \beta - 4) q^{13} + ( - 7 \beta - 14) q^{14} + ( - 24 \beta + 9) q^{16} + ( - 44 \beta - 22) q^{17} + ( - 26 \beta - 54) q^{19} + ( - 42 \beta - 82) q^{22} + (20 \beta - 160) q^{23} + (80 \beta + 198) q^{26} + (28 \beta + 7) q^{28} + (12 \beta + 118) q^{29} + ( - 102 \beta - 30) q^{31} + (47 \beta + 150) q^{32} + (110 \beta + 264) q^{34} + (24 \beta - 102) q^{37} + (106 \beta + 238) q^{38} + ( - 80 \beta - 22) q^{41} + (128 \beta - 68) q^{43} + (182 \beta + 6) q^{44} + (120 \beta + 220) q^{46} + (168 \beta + 200) q^{47} + 49 q^{49} + ( - 54 \beta - 764) q^{52} + ( - 86 \beta + 8) q^{53} + ( - 7 \beta - 42) q^{56} + ( - 142 \beta - 296) q^{58} + ( - 36 \beta + 232) q^{59} + ( - 84 \beta - 342) q^{61} + (234 \beta + 570) q^{62} + ( - 52 \beta - 607) q^{64} + (164 \beta - 368) q^{67} + ( - 132 \beta - 902) q^{68} + ( - 138 \beta + 370) q^{71} + ( - 122 \beta - 212) q^{73} + (54 \beta + 84) q^{74} + ( - 242 \beta - 574) q^{76} + ( - 14 \beta + 322) q^{77} + (484 \beta - 204) q^{79} + (182 \beta + 444) q^{82} + (84 \beta + 304) q^{83} + ( - 188 \beta - 504) q^{86} + ( - 34 \beta - 266) q^{88} + ( - 112 \beta + 666) q^{89} + ( - 266 \beta - 28) q^{91} + ( - 620 \beta + 240) q^{92} + ( - 536 \beta - 1240) q^{94} + ( - 86 \beta + 1224) q^{97} + ( - 49 \beta - 98) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 2 q^{4} + 14 q^{7} - 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{2} + 2 q^{4} + 14 q^{7} - 12 q^{8} + 92 q^{11} - 8 q^{13} - 28 q^{14} + 18 q^{16} - 44 q^{17} - 108 q^{19} - 164 q^{22} - 320 q^{23} + 396 q^{26} + 14 q^{28} + 236 q^{29} - 60 q^{31} + 300 q^{32} + 528 q^{34} - 204 q^{37} + 476 q^{38} - 44 q^{41} - 136 q^{43} + 12 q^{44} + 440 q^{46} + 400 q^{47} + 98 q^{49} - 1528 q^{52} + 16 q^{53} - 84 q^{56} - 592 q^{58} + 464 q^{59} - 684 q^{61} + 1140 q^{62} - 1214 q^{64} - 736 q^{67} - 1804 q^{68} + 740 q^{71} - 424 q^{73} + 168 q^{74} - 1148 q^{76} + 644 q^{77} - 408 q^{79} + 888 q^{82} + 608 q^{83} - 1008 q^{86} - 532 q^{88} + 1332 q^{89} - 56 q^{91} + 480 q^{92} - 2480 q^{94} + 2448 q^{97} - 196 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
−4.23607 0 9.94427 0 0 7.00000 −8.23607 0 0
1.2 0.236068 0 −7.94427 0 0 7.00000 −3.76393 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1575.4.a.n 2
3.b odd 2 1 525.4.a.o 2
5.b even 2 1 315.4.a.l 2
15.d odd 2 1 105.4.a.d 2
15.e even 4 2 525.4.d.k 4
35.c odd 2 1 2205.4.a.be 2
60.h even 2 1 1680.4.a.bd 2
105.g even 2 1 735.4.a.m 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.4.a.d 2 15.d odd 2 1
315.4.a.l 2 5.b even 2 1
525.4.a.o 2 3.b odd 2 1
525.4.d.k 4 15.e even 4 2
735.4.a.m 2 105.g even 2 1
1575.4.a.n 2 1.a even 1 1 trivial
1680.4.a.bd 2 60.h even 2 1
2205.4.a.be 2 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1575))\):

\( T_{2}^{2} + 4T_{2} - 1 \) Copy content Toggle raw display
\( T_{11}^{2} - 92T_{11} + 2096 \) Copy content Toggle raw display
\( T_{13}^{2} + 8T_{13} - 7204 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4T - 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T - 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 92T + 2096 \) Copy content Toggle raw display
$13$ \( T^{2} + 8T - 7204 \) Copy content Toggle raw display
$17$ \( T^{2} + 44T - 9196 \) Copy content Toggle raw display
$19$ \( T^{2} + 108T - 464 \) Copy content Toggle raw display
$23$ \( T^{2} + 320T + 23600 \) Copy content Toggle raw display
$29$ \( T^{2} - 236T + 13204 \) Copy content Toggle raw display
$31$ \( T^{2} + 60T - 51120 \) Copy content Toggle raw display
$37$ \( T^{2} + 204T + 7524 \) Copy content Toggle raw display
$41$ \( T^{2} + 44T - 31516 \) Copy content Toggle raw display
$43$ \( T^{2} + 136T - 77296 \) Copy content Toggle raw display
$47$ \( T^{2} - 400T - 101120 \) Copy content Toggle raw display
$53$ \( T^{2} - 16T - 36916 \) Copy content Toggle raw display
$59$ \( T^{2} - 464T + 47344 \) Copy content Toggle raw display
$61$ \( T^{2} + 684T + 81684 \) Copy content Toggle raw display
$67$ \( T^{2} + 736T + 944 \) Copy content Toggle raw display
$71$ \( T^{2} - 740T + 41680 \) Copy content Toggle raw display
$73$ \( T^{2} + 424T - 29476 \) Copy content Toggle raw display
$79$ \( T^{2} + 408 T - 1129664 \) Copy content Toggle raw display
$83$ \( T^{2} - 608T + 57136 \) Copy content Toggle raw display
$89$ \( T^{2} - 1332 T + 380836 \) Copy content Toggle raw display
$97$ \( T^{2} - 2448 T + 1461196 \) Copy content Toggle raw display
show more
show less