Properties

Label 1575.4.a.m
Level $1575$
Weight $4$
Character orbit 1575.a
Self dual yes
Analytic conductor $92.928$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1575,4,Mod(1,1575)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1575.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1575, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1575.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-7,0,17,0,0,14,-63,0,0,26] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.9280082590\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 3) q^{2} + (7 \beta + 5) q^{4} + 7 q^{7} + ( - 25 \beta - 19) q^{8} + (10 \beta + 8) q^{11} + (22 \beta - 18) q^{13} + ( - 7 \beta - 21) q^{14} + (63 \beta + 117) q^{16} + (28 \beta - 6) q^{17}+ \cdots + ( - 49 \beta - 147) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 7 q^{2} + 17 q^{4} + 14 q^{7} - 63 q^{8} + 26 q^{11} - 14 q^{13} - 49 q^{14} + 297 q^{16} + 16 q^{17} + 174 q^{19} - 176 q^{22} + 184 q^{23} - 138 q^{26} + 119 q^{28} + 32 q^{29} + 330 q^{31} - 1071 q^{32}+ \cdots - 343 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
−5.56155 0 22.9309 0 0 7.00000 −83.0388 0 0
1.2 −1.43845 0 −5.93087 0 0 7.00000 20.0388 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1575.4.a.m 2
3.b odd 2 1 525.4.a.p 2
5.b even 2 1 315.4.a.m 2
15.d odd 2 1 105.4.a.c 2
15.e even 4 2 525.4.d.i 4
35.c odd 2 1 2205.4.a.bh 2
60.h even 2 1 1680.4.a.bk 2
105.g even 2 1 735.4.a.k 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.4.a.c 2 15.d odd 2 1
315.4.a.m 2 5.b even 2 1
525.4.a.p 2 3.b odd 2 1
525.4.d.i 4 15.e even 4 2
735.4.a.k 2 105.g even 2 1
1575.4.a.m 2 1.a even 1 1 trivial
1680.4.a.bk 2 60.h even 2 1
2205.4.a.bh 2 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1575))\):

\( T_{2}^{2} + 7T_{2} + 8 \) Copy content Toggle raw display
\( T_{11}^{2} - 26T_{11} - 256 \) Copy content Toggle raw display
\( T_{13}^{2} + 14T_{13} - 2008 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 7T + 8 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T - 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 26T - 256 \) Copy content Toggle raw display
$13$ \( T^{2} + 14T - 2008 \) Copy content Toggle raw display
$17$ \( T^{2} - 16T - 3268 \) Copy content Toggle raw display
$19$ \( T^{2} - 174T + 4696 \) Copy content Toggle raw display
$23$ \( T^{2} - 184T - 4864 \) Copy content Toggle raw display
$29$ \( T^{2} - 32T - 29732 \) Copy content Toggle raw display
$31$ \( T^{2} - 330T + 25848 \) Copy content Toggle raw display
$37$ \( T^{2} - 132T + 1908 \) Copy content Toggle raw display
$41$ \( T^{2} + 200T - 73300 \) Copy content Toggle raw display
$43$ \( T^{2} + 364T + 13472 \) Copy content Toggle raw display
$47$ \( T^{2} - 292T - 28256 \) Copy content Toggle raw display
$53$ \( T^{2} - 34T - 194344 \) Copy content Toggle raw display
$59$ \( T^{2} + 364T + 27616 \) Copy content Toggle raw display
$61$ \( T^{2} - 792T - 113076 \) Copy content Toggle raw display
$67$ \( T^{2} - 788T + 151904 \) Copy content Toggle raw display
$71$ \( T^{2} + 454T - 411296 \) Copy content Toggle raw display
$73$ \( T^{2} + 778T + 16664 \) Copy content Toggle raw display
$79$ \( T^{2} - 408T + 8704 \) Copy content Toggle raw display
$83$ \( T^{2} - 1136T + 26416 \) Copy content Toggle raw display
$89$ \( T^{2} + 36T - 2252108 \) Copy content Toggle raw display
$97$ \( T^{2} - 498T - 28592 \) Copy content Toggle raw display
show more
show less