Properties

Label 1575.4.a.bq.1.2
Level $1575$
Weight $4$
Character 1575.1
Self dual yes
Analytic conductor $92.928$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,4,Mod(1,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.9280082590\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 27x^{3} + 7x^{2} + 120x + 60 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.67516\) of defining polynomial
Character \(\chi\) \(=\) 1575.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.67516 q^{2} -5.19383 q^{4} -7.00000 q^{7} +22.1018 q^{8} +57.5880 q^{11} +45.5159 q^{13} +11.7261 q^{14} +4.52655 q^{16} +92.0051 q^{17} +125.177 q^{19} -96.4692 q^{22} +158.496 q^{23} -76.2466 q^{26} +36.3568 q^{28} +40.1708 q^{29} +49.5590 q^{31} -184.397 q^{32} -154.123 q^{34} -231.307 q^{37} -209.692 q^{38} -169.556 q^{41} +147.428 q^{43} -299.102 q^{44} -265.507 q^{46} -67.0327 q^{47} +49.0000 q^{49} -236.402 q^{52} +268.647 q^{53} -154.713 q^{56} -67.2926 q^{58} +240.843 q^{59} +90.4579 q^{61} -83.0194 q^{62} +272.683 q^{64} +406.498 q^{67} -477.859 q^{68} -330.782 q^{71} -546.255 q^{73} +387.477 q^{74} -650.149 q^{76} -403.116 q^{77} -25.3087 q^{79} +284.034 q^{82} +376.255 q^{83} -246.965 q^{86} +1272.80 q^{88} -1026.44 q^{89} -318.612 q^{91} -823.203 q^{92} +112.291 q^{94} +942.660 q^{97} -82.0829 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 4 q^{2} + 18 q^{4} - 35 q^{7} + 42 q^{8} - 42 q^{11} - 34 q^{13} - 28 q^{14} + 74 q^{16} + 238 q^{17} - 36 q^{19} - 358 q^{22} + 152 q^{23} + 310 q^{26} - 126 q^{28} + 44 q^{29} + 60 q^{31} + 710 q^{32}+ \cdots + 196 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.67516 −0.592259 −0.296130 0.955148i \(-0.595696\pi\)
−0.296130 + 0.955148i \(0.595696\pi\)
\(3\) 0 0
\(4\) −5.19383 −0.649229
\(5\) 0 0
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 22.1018 0.976771
\(9\) 0 0
\(10\) 0 0
\(11\) 57.5880 1.57849 0.789247 0.614076i \(-0.210471\pi\)
0.789247 + 0.614076i \(0.210471\pi\)
\(12\) 0 0
\(13\) 45.5159 0.971066 0.485533 0.874218i \(-0.338626\pi\)
0.485533 + 0.874218i \(0.338626\pi\)
\(14\) 11.7261 0.223853
\(15\) 0 0
\(16\) 4.52655 0.0707273
\(17\) 92.0051 1.31262 0.656309 0.754492i \(-0.272117\pi\)
0.656309 + 0.754492i \(0.272117\pi\)
\(18\) 0 0
\(19\) 125.177 1.51145 0.755726 0.654888i \(-0.227284\pi\)
0.755726 + 0.654888i \(0.227284\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −96.4692 −0.934878
\(23\) 158.496 1.43690 0.718451 0.695578i \(-0.244851\pi\)
0.718451 + 0.695578i \(0.244851\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −76.2466 −0.575123
\(27\) 0 0
\(28\) 36.3568 0.245386
\(29\) 40.1708 0.257225 0.128613 0.991695i \(-0.458948\pi\)
0.128613 + 0.991695i \(0.458948\pi\)
\(30\) 0 0
\(31\) 49.5590 0.287131 0.143566 0.989641i \(-0.454143\pi\)
0.143566 + 0.989641i \(0.454143\pi\)
\(32\) −184.397 −1.01866
\(33\) 0 0
\(34\) −154.123 −0.777410
\(35\) 0 0
\(36\) 0 0
\(37\) −231.307 −1.02775 −0.513874 0.857866i \(-0.671790\pi\)
−0.513874 + 0.857866i \(0.671790\pi\)
\(38\) −209.692 −0.895171
\(39\) 0 0
\(40\) 0 0
\(41\) −169.556 −0.645859 −0.322929 0.946423i \(-0.604668\pi\)
−0.322929 + 0.946423i \(0.604668\pi\)
\(42\) 0 0
\(43\) 147.428 0.522849 0.261425 0.965224i \(-0.415808\pi\)
0.261425 + 0.965224i \(0.415808\pi\)
\(44\) −299.102 −1.02480
\(45\) 0 0
\(46\) −265.507 −0.851018
\(47\) −67.0327 −0.208037 −0.104018 0.994575i \(-0.533170\pi\)
−0.104018 + 0.994575i \(0.533170\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) −236.402 −0.630444
\(53\) 268.647 0.696254 0.348127 0.937447i \(-0.386818\pi\)
0.348127 + 0.937447i \(0.386818\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −154.713 −0.369185
\(57\) 0 0
\(58\) −67.2926 −0.152344
\(59\) 240.843 0.531442 0.265721 0.964050i \(-0.414390\pi\)
0.265721 + 0.964050i \(0.414390\pi\)
\(60\) 0 0
\(61\) 90.4579 0.189868 0.0949340 0.995484i \(-0.469736\pi\)
0.0949340 + 0.995484i \(0.469736\pi\)
\(62\) −83.0194 −0.170056
\(63\) 0 0
\(64\) 272.683 0.532583
\(65\) 0 0
\(66\) 0 0
\(67\) 406.498 0.741218 0.370609 0.928789i \(-0.379149\pi\)
0.370609 + 0.928789i \(0.379149\pi\)
\(68\) −477.859 −0.852190
\(69\) 0 0
\(70\) 0 0
\(71\) −330.782 −0.552910 −0.276455 0.961027i \(-0.589160\pi\)
−0.276455 + 0.961027i \(0.589160\pi\)
\(72\) 0 0
\(73\) −546.255 −0.875812 −0.437906 0.899021i \(-0.644280\pi\)
−0.437906 + 0.899021i \(0.644280\pi\)
\(74\) 387.477 0.608693
\(75\) 0 0
\(76\) −650.149 −0.981279
\(77\) −403.116 −0.596615
\(78\) 0 0
\(79\) −25.3087 −0.0360436 −0.0180218 0.999838i \(-0.505737\pi\)
−0.0180218 + 0.999838i \(0.505737\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 284.034 0.382516
\(83\) 376.255 0.497582 0.248791 0.968557i \(-0.419967\pi\)
0.248791 + 0.968557i \(0.419967\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −246.965 −0.309662
\(87\) 0 0
\(88\) 1272.80 1.54183
\(89\) −1026.44 −1.22250 −0.611248 0.791439i \(-0.709332\pi\)
−0.611248 + 0.791439i \(0.709332\pi\)
\(90\) 0 0
\(91\) −318.612 −0.367028
\(92\) −823.203 −0.932878
\(93\) 0 0
\(94\) 112.291 0.123212
\(95\) 0 0
\(96\) 0 0
\(97\) 942.660 0.986728 0.493364 0.869823i \(-0.335767\pi\)
0.493364 + 0.869823i \(0.335767\pi\)
\(98\) −82.0829 −0.0846085
\(99\) 0 0
\(100\) 0 0
\(101\) 604.617 0.595659 0.297830 0.954619i \(-0.403737\pi\)
0.297830 + 0.954619i \(0.403737\pi\)
\(102\) 0 0
\(103\) 300.967 0.287914 0.143957 0.989584i \(-0.454017\pi\)
0.143957 + 0.989584i \(0.454017\pi\)
\(104\) 1005.98 0.948509
\(105\) 0 0
\(106\) −450.027 −0.412363
\(107\) 1511.66 1.36577 0.682886 0.730525i \(-0.260724\pi\)
0.682886 + 0.730525i \(0.260724\pi\)
\(108\) 0 0
\(109\) −1767.09 −1.55281 −0.776406 0.630233i \(-0.782959\pi\)
−0.776406 + 0.630233i \(0.782959\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −31.6858 −0.0267324
\(113\) 1045.27 0.870182 0.435091 0.900387i \(-0.356716\pi\)
0.435091 + 0.900387i \(0.356716\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −208.640 −0.166998
\(117\) 0 0
\(118\) −403.451 −0.314751
\(119\) −644.036 −0.496123
\(120\) 0 0
\(121\) 1985.38 1.49164
\(122\) −151.532 −0.112451
\(123\) 0 0
\(124\) −257.401 −0.186414
\(125\) 0 0
\(126\) 0 0
\(127\) −260.727 −0.182171 −0.0910857 0.995843i \(-0.529034\pi\)
−0.0910857 + 0.995843i \(0.529034\pi\)
\(128\) 1018.39 0.703233
\(129\) 0 0
\(130\) 0 0
\(131\) 723.522 0.482553 0.241276 0.970456i \(-0.422434\pi\)
0.241276 + 0.970456i \(0.422434\pi\)
\(132\) 0 0
\(133\) −876.240 −0.571275
\(134\) −680.950 −0.438993
\(135\) 0 0
\(136\) 2033.48 1.28213
\(137\) 773.693 0.482490 0.241245 0.970464i \(-0.422444\pi\)
0.241245 + 0.970464i \(0.422444\pi\)
\(138\) 0 0
\(139\) −2952.97 −1.80192 −0.900961 0.433899i \(-0.857137\pi\)
−0.900961 + 0.433899i \(0.857137\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 554.114 0.327466
\(143\) 2621.17 1.53282
\(144\) 0 0
\(145\) 0 0
\(146\) 915.066 0.518708
\(147\) 0 0
\(148\) 1201.37 0.667244
\(149\) −2514.00 −1.38225 −0.691124 0.722736i \(-0.742884\pi\)
−0.691124 + 0.722736i \(0.742884\pi\)
\(150\) 0 0
\(151\) 101.052 0.0544605 0.0272302 0.999629i \(-0.491331\pi\)
0.0272302 + 0.999629i \(0.491331\pi\)
\(152\) 2766.64 1.47634
\(153\) 0 0
\(154\) 675.285 0.353351
\(155\) 0 0
\(156\) 0 0
\(157\) −2338.35 −1.18867 −0.594333 0.804219i \(-0.702584\pi\)
−0.594333 + 0.804219i \(0.702584\pi\)
\(158\) 42.3961 0.0213472
\(159\) 0 0
\(160\) 0 0
\(161\) −1109.47 −0.543098
\(162\) 0 0
\(163\) 1325.20 0.636798 0.318399 0.947957i \(-0.396855\pi\)
0.318399 + 0.947957i \(0.396855\pi\)
\(164\) 880.646 0.419310
\(165\) 0 0
\(166\) −630.288 −0.294698
\(167\) 2086.20 0.966675 0.483338 0.875434i \(-0.339424\pi\)
0.483338 + 0.875434i \(0.339424\pi\)
\(168\) 0 0
\(169\) −125.299 −0.0570317
\(170\) 0 0
\(171\) 0 0
\(172\) −765.715 −0.339449
\(173\) 1918.19 0.842990 0.421495 0.906831i \(-0.361505\pi\)
0.421495 + 0.906831i \(0.361505\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 260.675 0.111643
\(177\) 0 0
\(178\) 1719.45 0.724035
\(179\) −629.046 −0.262665 −0.131333 0.991338i \(-0.541926\pi\)
−0.131333 + 0.991338i \(0.541926\pi\)
\(180\) 0 0
\(181\) −2800.85 −1.15020 −0.575099 0.818084i \(-0.695036\pi\)
−0.575099 + 0.818084i \(0.695036\pi\)
\(182\) 533.726 0.217376
\(183\) 0 0
\(184\) 3503.05 1.40352
\(185\) 0 0
\(186\) 0 0
\(187\) 5298.39 2.07196
\(188\) 348.157 0.135063
\(189\) 0 0
\(190\) 0 0
\(191\) −740.255 −0.280434 −0.140217 0.990121i \(-0.544780\pi\)
−0.140217 + 0.990121i \(0.544780\pi\)
\(192\) 0 0
\(193\) −4082.57 −1.52264 −0.761321 0.648375i \(-0.775449\pi\)
−0.761321 + 0.648375i \(0.775449\pi\)
\(194\) −1579.11 −0.584399
\(195\) 0 0
\(196\) −254.498 −0.0927470
\(197\) 3414.89 1.23503 0.617515 0.786559i \(-0.288140\pi\)
0.617515 + 0.786559i \(0.288140\pi\)
\(198\) 0 0
\(199\) −3392.44 −1.20846 −0.604231 0.796809i \(-0.706520\pi\)
−0.604231 + 0.796809i \(0.706520\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −1012.83 −0.352785
\(203\) −281.196 −0.0972220
\(204\) 0 0
\(205\) 0 0
\(206\) −504.169 −0.170520
\(207\) 0 0
\(208\) 206.030 0.0686809
\(209\) 7208.70 2.38582
\(210\) 0 0
\(211\) 3398.04 1.10867 0.554337 0.832292i \(-0.312972\pi\)
0.554337 + 0.832292i \(0.312972\pi\)
\(212\) −1395.31 −0.452029
\(213\) 0 0
\(214\) −2532.28 −0.808892
\(215\) 0 0
\(216\) 0 0
\(217\) −346.913 −0.108525
\(218\) 2960.16 0.919667
\(219\) 0 0
\(220\) 0 0
\(221\) 4187.70 1.27464
\(222\) 0 0
\(223\) −182.611 −0.0548365 −0.0274183 0.999624i \(-0.508729\pi\)
−0.0274183 + 0.999624i \(0.508729\pi\)
\(224\) 1290.78 0.385017
\(225\) 0 0
\(226\) −1750.99 −0.515373
\(227\) −3152.33 −0.921707 −0.460854 0.887476i \(-0.652457\pi\)
−0.460854 + 0.887476i \(0.652457\pi\)
\(228\) 0 0
\(229\) 6012.35 1.73497 0.867483 0.497466i \(-0.165736\pi\)
0.867483 + 0.497466i \(0.165736\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 887.848 0.251250
\(233\) −940.660 −0.264484 −0.132242 0.991217i \(-0.542218\pi\)
−0.132242 + 0.991217i \(0.542218\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −1250.90 −0.345027
\(237\) 0 0
\(238\) 1078.86 0.293833
\(239\) −5158.82 −1.39622 −0.698109 0.715991i \(-0.745975\pi\)
−0.698109 + 0.715991i \(0.745975\pi\)
\(240\) 0 0
\(241\) −463.836 −0.123976 −0.0619882 0.998077i \(-0.519744\pi\)
−0.0619882 + 0.998077i \(0.519744\pi\)
\(242\) −3325.83 −0.883440
\(243\) 0 0
\(244\) −469.823 −0.123268
\(245\) 0 0
\(246\) 0 0
\(247\) 5697.55 1.46772
\(248\) 1095.34 0.280461
\(249\) 0 0
\(250\) 0 0
\(251\) −2290.25 −0.575934 −0.287967 0.957640i \(-0.592979\pi\)
−0.287967 + 0.957640i \(0.592979\pi\)
\(252\) 0 0
\(253\) 9127.48 2.26814
\(254\) 436.760 0.107893
\(255\) 0 0
\(256\) −3887.43 −0.949079
\(257\) −802.202 −0.194708 −0.0973541 0.995250i \(-0.531038\pi\)
−0.0973541 + 0.995250i \(0.531038\pi\)
\(258\) 0 0
\(259\) 1619.15 0.388452
\(260\) 0 0
\(261\) 0 0
\(262\) −1212.02 −0.285796
\(263\) −286.978 −0.0672845 −0.0336423 0.999434i \(-0.510711\pi\)
−0.0336423 + 0.999434i \(0.510711\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1467.84 0.338343
\(267\) 0 0
\(268\) −2111.28 −0.481221
\(269\) −3561.22 −0.807180 −0.403590 0.914940i \(-0.632238\pi\)
−0.403590 + 0.914940i \(0.632238\pi\)
\(270\) 0 0
\(271\) 1928.81 0.432349 0.216175 0.976355i \(-0.430642\pi\)
0.216175 + 0.976355i \(0.430642\pi\)
\(272\) 416.466 0.0928380
\(273\) 0 0
\(274\) −1296.06 −0.285759
\(275\) 0 0
\(276\) 0 0
\(277\) −6588.69 −1.42916 −0.714578 0.699556i \(-0.753381\pi\)
−0.714578 + 0.699556i \(0.753381\pi\)
\(278\) 4946.70 1.06721
\(279\) 0 0
\(280\) 0 0
\(281\) −815.552 −0.173138 −0.0865689 0.996246i \(-0.527590\pi\)
−0.0865689 + 0.996246i \(0.527590\pi\)
\(282\) 0 0
\(283\) 6513.49 1.36815 0.684076 0.729411i \(-0.260206\pi\)
0.684076 + 0.729411i \(0.260206\pi\)
\(284\) 1718.03 0.358965
\(285\) 0 0
\(286\) −4390.89 −0.907828
\(287\) 1186.89 0.244112
\(288\) 0 0
\(289\) 3551.94 0.722967
\(290\) 0 0
\(291\) 0 0
\(292\) 2837.16 0.568603
\(293\) 435.520 0.0868373 0.0434186 0.999057i \(-0.486175\pi\)
0.0434186 + 0.999057i \(0.486175\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −5112.31 −1.00387
\(297\) 0 0
\(298\) 4211.36 0.818650
\(299\) 7214.10 1.39533
\(300\) 0 0
\(301\) −1031.99 −0.197618
\(302\) −169.279 −0.0322547
\(303\) 0 0
\(304\) 566.620 0.106901
\(305\) 0 0
\(306\) 0 0
\(307\) 4915.99 0.913910 0.456955 0.889490i \(-0.348940\pi\)
0.456955 + 0.889490i \(0.348940\pi\)
\(308\) 2093.72 0.387340
\(309\) 0 0
\(310\) 0 0
\(311\) 1831.11 0.333868 0.166934 0.985968i \(-0.446613\pi\)
0.166934 + 0.985968i \(0.446613\pi\)
\(312\) 0 0
\(313\) 2442.96 0.441163 0.220582 0.975369i \(-0.429204\pi\)
0.220582 + 0.975369i \(0.429204\pi\)
\(314\) 3917.11 0.703998
\(315\) 0 0
\(316\) 131.449 0.0234006
\(317\) 1666.19 0.295214 0.147607 0.989046i \(-0.452843\pi\)
0.147607 + 0.989046i \(0.452843\pi\)
\(318\) 0 0
\(319\) 2313.36 0.406029
\(320\) 0 0
\(321\) 0 0
\(322\) 1858.55 0.321655
\(323\) 11516.9 1.98396
\(324\) 0 0
\(325\) 0 0
\(326\) −2219.93 −0.377149
\(327\) 0 0
\(328\) −3747.50 −0.630856
\(329\) 469.229 0.0786305
\(330\) 0 0
\(331\) −5466.38 −0.907732 −0.453866 0.891070i \(-0.649956\pi\)
−0.453866 + 0.891070i \(0.649956\pi\)
\(332\) −1954.20 −0.323045
\(333\) 0 0
\(334\) −3494.72 −0.572522
\(335\) 0 0
\(336\) 0 0
\(337\) −10650.5 −1.72157 −0.860784 0.508970i \(-0.830027\pi\)
−0.860784 + 0.508970i \(0.830027\pi\)
\(338\) 209.896 0.0337776
\(339\) 0 0
\(340\) 0 0
\(341\) 2854.01 0.453235
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 3258.42 0.510704
\(345\) 0 0
\(346\) −3213.28 −0.499269
\(347\) 4019.13 0.621782 0.310891 0.950446i \(-0.399373\pi\)
0.310891 + 0.950446i \(0.399373\pi\)
\(348\) 0 0
\(349\) 10544.9 1.61735 0.808674 0.588256i \(-0.200185\pi\)
0.808674 + 0.588256i \(0.200185\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −10619.1 −1.60795
\(353\) 2959.98 0.446300 0.223150 0.974784i \(-0.428366\pi\)
0.223150 + 0.974784i \(0.428366\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 5331.14 0.793680
\(357\) 0 0
\(358\) 1053.75 0.155566
\(359\) −2170.17 −0.319045 −0.159523 0.987194i \(-0.550995\pi\)
−0.159523 + 0.987194i \(0.550995\pi\)
\(360\) 0 0
\(361\) 8810.30 1.28449
\(362\) 4691.88 0.681215
\(363\) 0 0
\(364\) 1654.82 0.238285
\(365\) 0 0
\(366\) 0 0
\(367\) 1252.20 0.178105 0.0890523 0.996027i \(-0.471616\pi\)
0.0890523 + 0.996027i \(0.471616\pi\)
\(368\) 717.441 0.101628
\(369\) 0 0
\(370\) 0 0
\(371\) −1880.53 −0.263159
\(372\) 0 0
\(373\) −4646.02 −0.644938 −0.322469 0.946580i \(-0.604513\pi\)
−0.322469 + 0.946580i \(0.604513\pi\)
\(374\) −8875.66 −1.22714
\(375\) 0 0
\(376\) −1481.54 −0.203204
\(377\) 1828.41 0.249783
\(378\) 0 0
\(379\) 1434.84 0.194466 0.0972331 0.995262i \(-0.469001\pi\)
0.0972331 + 0.995262i \(0.469001\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1240.05 0.166090
\(383\) −13216.7 −1.76330 −0.881649 0.471905i \(-0.843566\pi\)
−0.881649 + 0.471905i \(0.843566\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 6838.97 0.901799
\(387\) 0 0
\(388\) −4896.02 −0.640612
\(389\) 7755.01 1.01078 0.505391 0.862890i \(-0.331348\pi\)
0.505391 + 0.862890i \(0.331348\pi\)
\(390\) 0 0
\(391\) 14582.5 1.88610
\(392\) 1082.99 0.139539
\(393\) 0 0
\(394\) −5720.49 −0.731457
\(395\) 0 0
\(396\) 0 0
\(397\) 3560.83 0.450158 0.225079 0.974341i \(-0.427736\pi\)
0.225079 + 0.974341i \(0.427736\pi\)
\(398\) 5682.89 0.715723
\(399\) 0 0
\(400\) 0 0
\(401\) 5430.61 0.676288 0.338144 0.941094i \(-0.390201\pi\)
0.338144 + 0.941094i \(0.390201\pi\)
\(402\) 0 0
\(403\) 2255.73 0.278823
\(404\) −3140.28 −0.386719
\(405\) 0 0
\(406\) 471.048 0.0575806
\(407\) −13320.5 −1.62229
\(408\) 0 0
\(409\) −9698.79 −1.17255 −0.586277 0.810111i \(-0.699407\pi\)
−0.586277 + 0.810111i \(0.699407\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −1563.17 −0.186922
\(413\) −1685.90 −0.200866
\(414\) 0 0
\(415\) 0 0
\(416\) −8393.01 −0.989186
\(417\) 0 0
\(418\) −12075.7 −1.41302
\(419\) −13830.9 −1.61261 −0.806307 0.591498i \(-0.798537\pi\)
−0.806307 + 0.591498i \(0.798537\pi\)
\(420\) 0 0
\(421\) 16703.0 1.93362 0.966810 0.255498i \(-0.0822393\pi\)
0.966810 + 0.255498i \(0.0822393\pi\)
\(422\) −5692.26 −0.656623
\(423\) 0 0
\(424\) 5937.58 0.680081
\(425\) 0 0
\(426\) 0 0
\(427\) −633.205 −0.0717634
\(428\) −7851.31 −0.886699
\(429\) 0 0
\(430\) 0 0
\(431\) −8174.07 −0.913530 −0.456765 0.889588i \(-0.650992\pi\)
−0.456765 + 0.889588i \(0.650992\pi\)
\(432\) 0 0
\(433\) −14222.8 −1.57853 −0.789267 0.614051i \(-0.789539\pi\)
−0.789267 + 0.614051i \(0.789539\pi\)
\(434\) 581.136 0.0642752
\(435\) 0 0
\(436\) 9177.96 1.00813
\(437\) 19840.1 2.17181
\(438\) 0 0
\(439\) 5537.38 0.602016 0.301008 0.953622i \(-0.402677\pi\)
0.301008 + 0.953622i \(0.402677\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −7015.07 −0.754916
\(443\) 3974.09 0.426218 0.213109 0.977028i \(-0.431641\pi\)
0.213109 + 0.977028i \(0.431641\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 305.903 0.0324774
\(447\) 0 0
\(448\) −1908.78 −0.201298
\(449\) 15243.1 1.60216 0.801078 0.598559i \(-0.204260\pi\)
0.801078 + 0.598559i \(0.204260\pi\)
\(450\) 0 0
\(451\) −9764.40 −1.01948
\(452\) −5428.95 −0.564947
\(453\) 0 0
\(454\) 5280.67 0.545890
\(455\) 0 0
\(456\) 0 0
\(457\) 10768.9 1.10229 0.551145 0.834410i \(-0.314191\pi\)
0.551145 + 0.834410i \(0.314191\pi\)
\(458\) −10071.7 −1.02755
\(459\) 0 0
\(460\) 0 0
\(461\) 332.605 0.0336029 0.0168015 0.999859i \(-0.494652\pi\)
0.0168015 + 0.999859i \(0.494652\pi\)
\(462\) 0 0
\(463\) 8205.35 0.823618 0.411809 0.911270i \(-0.364897\pi\)
0.411809 + 0.911270i \(0.364897\pi\)
\(464\) 181.835 0.0181929
\(465\) 0 0
\(466\) 1575.76 0.156643
\(467\) −167.628 −0.0166100 −0.00830501 0.999966i \(-0.502644\pi\)
−0.00830501 + 0.999966i \(0.502644\pi\)
\(468\) 0 0
\(469\) −2845.49 −0.280154
\(470\) 0 0
\(471\) 0 0
\(472\) 5323.06 0.519097
\(473\) 8490.07 0.825315
\(474\) 0 0
\(475\) 0 0
\(476\) 3345.01 0.322098
\(477\) 0 0
\(478\) 8641.86 0.826924
\(479\) −6628.58 −0.632292 −0.316146 0.948711i \(-0.602389\pi\)
−0.316146 + 0.948711i \(0.602389\pi\)
\(480\) 0 0
\(481\) −10528.2 −0.998010
\(482\) 777.001 0.0734262
\(483\) 0 0
\(484\) −10311.7 −0.968419
\(485\) 0 0
\(486\) 0 0
\(487\) 20641.6 1.92065 0.960327 0.278875i \(-0.0899614\pi\)
0.960327 + 0.278875i \(0.0899614\pi\)
\(488\) 1999.28 0.185458
\(489\) 0 0
\(490\) 0 0
\(491\) 16710.8 1.53594 0.767972 0.640484i \(-0.221266\pi\)
0.767972 + 0.640484i \(0.221266\pi\)
\(492\) 0 0
\(493\) 3695.92 0.337639
\(494\) −9544.32 −0.869270
\(495\) 0 0
\(496\) 224.331 0.0203080
\(497\) 2315.47 0.208980
\(498\) 0 0
\(499\) −13728.7 −1.23162 −0.615812 0.787893i \(-0.711172\pi\)
−0.615812 + 0.787893i \(0.711172\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 3836.54 0.341102
\(503\) −19523.7 −1.73065 −0.865326 0.501209i \(-0.832889\pi\)
−0.865326 + 0.501209i \(0.832889\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −15290.0 −1.34333
\(507\) 0 0
\(508\) 1354.17 0.118271
\(509\) 8688.17 0.756574 0.378287 0.925688i \(-0.376513\pi\)
0.378287 + 0.925688i \(0.376513\pi\)
\(510\) 0 0
\(511\) 3823.78 0.331026
\(512\) −1635.04 −0.141131
\(513\) 0 0
\(514\) 1343.82 0.115318
\(515\) 0 0
\(516\) 0 0
\(517\) −3860.28 −0.328385
\(518\) −2712.34 −0.230064
\(519\) 0 0
\(520\) 0 0
\(521\) −6771.36 −0.569402 −0.284701 0.958616i \(-0.591894\pi\)
−0.284701 + 0.958616i \(0.591894\pi\)
\(522\) 0 0
\(523\) 1365.89 0.114200 0.0570998 0.998368i \(-0.481815\pi\)
0.0570998 + 0.998368i \(0.481815\pi\)
\(524\) −3757.85 −0.313287
\(525\) 0 0
\(526\) 480.735 0.0398499
\(527\) 4559.68 0.376894
\(528\) 0 0
\(529\) 12954.0 1.06469
\(530\) 0 0
\(531\) 0 0
\(532\) 4551.04 0.370888
\(533\) −7717.51 −0.627171
\(534\) 0 0
\(535\) 0 0
\(536\) 8984.34 0.724001
\(537\) 0 0
\(538\) 5965.62 0.478060
\(539\) 2821.81 0.225499
\(540\) 0 0
\(541\) −23250.1 −1.84769 −0.923844 0.382770i \(-0.874970\pi\)
−0.923844 + 0.382770i \(0.874970\pi\)
\(542\) −3231.06 −0.256063
\(543\) 0 0
\(544\) −16965.5 −1.33711
\(545\) 0 0
\(546\) 0 0
\(547\) 11552.7 0.903033 0.451516 0.892263i \(-0.350883\pi\)
0.451516 + 0.892263i \(0.350883\pi\)
\(548\) −4018.43 −0.313246
\(549\) 0 0
\(550\) 0 0
\(551\) 5028.47 0.388784
\(552\) 0 0
\(553\) 177.161 0.0136232
\(554\) 11037.1 0.846430
\(555\) 0 0
\(556\) 15337.2 1.16986
\(557\) −16406.2 −1.24803 −0.624014 0.781413i \(-0.714499\pi\)
−0.624014 + 0.781413i \(0.714499\pi\)
\(558\) 0 0
\(559\) 6710.31 0.507721
\(560\) 0 0
\(561\) 0 0
\(562\) 1366.18 0.102542
\(563\) 13631.9 1.02045 0.510227 0.860040i \(-0.329561\pi\)
0.510227 + 0.860040i \(0.329561\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −10911.2 −0.810300
\(567\) 0 0
\(568\) −7310.88 −0.540067
\(569\) 3086.83 0.227428 0.113714 0.993514i \(-0.463725\pi\)
0.113714 + 0.993514i \(0.463725\pi\)
\(570\) 0 0
\(571\) −3258.06 −0.238784 −0.119392 0.992847i \(-0.538095\pi\)
−0.119392 + 0.992847i \(0.538095\pi\)
\(572\) −13613.9 −0.995152
\(573\) 0 0
\(574\) −1988.24 −0.144577
\(575\) 0 0
\(576\) 0 0
\(577\) −23758.4 −1.71417 −0.857083 0.515178i \(-0.827726\pi\)
−0.857083 + 0.515178i \(0.827726\pi\)
\(578\) −5950.07 −0.428184
\(579\) 0 0
\(580\) 0 0
\(581\) −2633.78 −0.188068
\(582\) 0 0
\(583\) 15470.8 1.09903
\(584\) −12073.2 −0.855468
\(585\) 0 0
\(586\) −729.566 −0.0514302
\(587\) 596.893 0.0419701 0.0209850 0.999780i \(-0.493320\pi\)
0.0209850 + 0.999780i \(0.493320\pi\)
\(588\) 0 0
\(589\) 6203.66 0.433985
\(590\) 0 0
\(591\) 0 0
\(592\) −1047.02 −0.0726898
\(593\) 19496.3 1.35012 0.675058 0.737765i \(-0.264119\pi\)
0.675058 + 0.737765i \(0.264119\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 13057.3 0.897396
\(597\) 0 0
\(598\) −12084.8 −0.826395
\(599\) −3797.02 −0.259001 −0.129501 0.991579i \(-0.541337\pi\)
−0.129501 + 0.991579i \(0.541337\pi\)
\(600\) 0 0
\(601\) 5789.33 0.392931 0.196466 0.980511i \(-0.437054\pi\)
0.196466 + 0.980511i \(0.437054\pi\)
\(602\) 1728.76 0.117041
\(603\) 0 0
\(604\) −524.850 −0.0353573
\(605\) 0 0
\(606\) 0 0
\(607\) −18536.4 −1.23949 −0.619745 0.784803i \(-0.712764\pi\)
−0.619745 + 0.784803i \(0.712764\pi\)
\(608\) −23082.3 −1.53966
\(609\) 0 0
\(610\) 0 0
\(611\) −3051.06 −0.202017
\(612\) 0 0
\(613\) −2163.47 −0.142548 −0.0712738 0.997457i \(-0.522706\pi\)
−0.0712738 + 0.997457i \(0.522706\pi\)
\(614\) −8235.08 −0.541272
\(615\) 0 0
\(616\) −8909.59 −0.582756
\(617\) 22964.9 1.49843 0.749215 0.662327i \(-0.230431\pi\)
0.749215 + 0.662327i \(0.230431\pi\)
\(618\) 0 0
\(619\) −1386.67 −0.0900401 −0.0450200 0.998986i \(-0.514335\pi\)
−0.0450200 + 0.998986i \(0.514335\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −3067.41 −0.197736
\(623\) 7185.06 0.462060
\(624\) 0 0
\(625\) 0 0
\(626\) −4092.35 −0.261283
\(627\) 0 0
\(628\) 12145.0 0.771716
\(629\) −21281.4 −1.34904
\(630\) 0 0
\(631\) 5969.39 0.376605 0.188303 0.982111i \(-0.439701\pi\)
0.188303 + 0.982111i \(0.439701\pi\)
\(632\) −559.367 −0.0352064
\(633\) 0 0
\(634\) −2791.14 −0.174843
\(635\) 0 0
\(636\) 0 0
\(637\) 2230.28 0.138724
\(638\) −3875.25 −0.240474
\(639\) 0 0
\(640\) 0 0
\(641\) −30367.1 −1.87118 −0.935592 0.353084i \(-0.885133\pi\)
−0.935592 + 0.353084i \(0.885133\pi\)
\(642\) 0 0
\(643\) −28592.2 −1.75360 −0.876802 0.480851i \(-0.840328\pi\)
−0.876802 + 0.480851i \(0.840328\pi\)
\(644\) 5762.42 0.352595
\(645\) 0 0
\(646\) −19292.7 −1.17502
\(647\) −14507.9 −0.881555 −0.440778 0.897616i \(-0.645297\pi\)
−0.440778 + 0.897616i \(0.645297\pi\)
\(648\) 0 0
\(649\) 13869.7 0.838877
\(650\) 0 0
\(651\) 0 0
\(652\) −6882.89 −0.413428
\(653\) 6999.85 0.419488 0.209744 0.977756i \(-0.432737\pi\)
0.209744 + 0.977756i \(0.432737\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −767.504 −0.0456799
\(657\) 0 0
\(658\) −786.035 −0.0465696
\(659\) −7308.92 −0.432041 −0.216020 0.976389i \(-0.569308\pi\)
−0.216020 + 0.976389i \(0.569308\pi\)
\(660\) 0 0
\(661\) −30097.2 −1.77102 −0.885512 0.464617i \(-0.846192\pi\)
−0.885512 + 0.464617i \(0.846192\pi\)
\(662\) 9157.07 0.537613
\(663\) 0 0
\(664\) 8315.91 0.486024
\(665\) 0 0
\(666\) 0 0
\(667\) 6366.92 0.369608
\(668\) −10835.4 −0.627594
\(669\) 0 0
\(670\) 0 0
\(671\) 5209.29 0.299706
\(672\) 0 0
\(673\) 5400.26 0.309309 0.154654 0.987969i \(-0.450574\pi\)
0.154654 + 0.987969i \(0.450574\pi\)
\(674\) 17841.3 1.01962
\(675\) 0 0
\(676\) 650.781 0.0370267
\(677\) 6431.09 0.365091 0.182546 0.983197i \(-0.441566\pi\)
0.182546 + 0.983197i \(0.441566\pi\)
\(678\) 0 0
\(679\) −6598.62 −0.372948
\(680\) 0 0
\(681\) 0 0
\(682\) −4780.92 −0.268433
\(683\) −20865.8 −1.16897 −0.584486 0.811404i \(-0.698704\pi\)
−0.584486 + 0.811404i \(0.698704\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 574.581 0.0319790
\(687\) 0 0
\(688\) 667.339 0.0369797
\(689\) 12227.7 0.676109
\(690\) 0 0
\(691\) 18450.3 1.01575 0.507873 0.861432i \(-0.330432\pi\)
0.507873 + 0.861432i \(0.330432\pi\)
\(692\) −9962.76 −0.547294
\(693\) 0 0
\(694\) −6732.70 −0.368256
\(695\) 0 0
\(696\) 0 0
\(697\) −15600.0 −0.847766
\(698\) −17664.4 −0.957890
\(699\) 0 0
\(700\) 0 0
\(701\) −12639.3 −0.680996 −0.340498 0.940245i \(-0.610596\pi\)
−0.340498 + 0.940245i \(0.610596\pi\)
\(702\) 0 0
\(703\) −28954.4 −1.55339
\(704\) 15703.3 0.840680
\(705\) 0 0
\(706\) −4958.45 −0.264325
\(707\) −4232.32 −0.225138
\(708\) 0 0
\(709\) −23126.8 −1.22503 −0.612514 0.790460i \(-0.709842\pi\)
−0.612514 + 0.790460i \(0.709842\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −22686.1 −1.19410
\(713\) 7854.92 0.412579
\(714\) 0 0
\(715\) 0 0
\(716\) 3267.16 0.170530
\(717\) 0 0
\(718\) 3635.39 0.188957
\(719\) 24093.1 1.24968 0.624841 0.780752i \(-0.285164\pi\)
0.624841 + 0.780752i \(0.285164\pi\)
\(720\) 0 0
\(721\) −2106.77 −0.108821
\(722\) −14758.7 −0.760750
\(723\) 0 0
\(724\) 14547.2 0.746741
\(725\) 0 0
\(726\) 0 0
\(727\) −35983.4 −1.83570 −0.917849 0.396931i \(-0.870075\pi\)
−0.917849 + 0.396931i \(0.870075\pi\)
\(728\) −7041.89 −0.358503
\(729\) 0 0
\(730\) 0 0
\(731\) 13564.1 0.686302
\(732\) 0 0
\(733\) 1451.50 0.0731413 0.0365706 0.999331i \(-0.488357\pi\)
0.0365706 + 0.999331i \(0.488357\pi\)
\(734\) −2097.64 −0.105484
\(735\) 0 0
\(736\) −29226.3 −1.46371
\(737\) 23409.4 1.17001
\(738\) 0 0
\(739\) −5891.67 −0.293273 −0.146636 0.989190i \(-0.546845\pi\)
−0.146636 + 0.989190i \(0.546845\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 3150.19 0.155859
\(743\) 7438.65 0.367292 0.183646 0.982992i \(-0.441210\pi\)
0.183646 + 0.982992i \(0.441210\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 7782.84 0.381970
\(747\) 0 0
\(748\) −27518.9 −1.34518
\(749\) −10581.6 −0.516214
\(750\) 0 0
\(751\) 20272.4 0.985018 0.492509 0.870307i \(-0.336080\pi\)
0.492509 + 0.870307i \(0.336080\pi\)
\(752\) −303.427 −0.0147139
\(753\) 0 0
\(754\) −3062.89 −0.147936
\(755\) 0 0
\(756\) 0 0
\(757\) 10193.8 0.489432 0.244716 0.969595i \(-0.421305\pi\)
0.244716 + 0.969595i \(0.421305\pi\)
\(758\) −2403.59 −0.115174
\(759\) 0 0
\(760\) 0 0
\(761\) 41117.6 1.95862 0.979311 0.202362i \(-0.0648618\pi\)
0.979311 + 0.202362i \(0.0648618\pi\)
\(762\) 0 0
\(763\) 12369.6 0.586908
\(764\) 3844.76 0.182066
\(765\) 0 0
\(766\) 22140.2 1.04433
\(767\) 10962.2 0.516065
\(768\) 0 0
\(769\) 11486.6 0.538642 0.269321 0.963050i \(-0.413201\pi\)
0.269321 + 0.963050i \(0.413201\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 21204.2 0.988544
\(773\) −21799.2 −1.01431 −0.507156 0.861854i \(-0.669303\pi\)
−0.507156 + 0.861854i \(0.669303\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 20834.5 0.963807
\(777\) 0 0
\(778\) −12990.9 −0.598645
\(779\) −21224.5 −0.976185
\(780\) 0 0
\(781\) −19049.1 −0.872765
\(782\) −24428.0 −1.11706
\(783\) 0 0
\(784\) 221.801 0.0101039
\(785\) 0 0
\(786\) 0 0
\(787\) 24080.3 1.09068 0.545342 0.838214i \(-0.316400\pi\)
0.545342 + 0.838214i \(0.316400\pi\)
\(788\) −17736.4 −0.801817
\(789\) 0 0
\(790\) 0 0
\(791\) −7316.87 −0.328898
\(792\) 0 0
\(793\) 4117.28 0.184374
\(794\) −5964.96 −0.266610
\(795\) 0 0
\(796\) 17619.8 0.784569
\(797\) −17194.3 −0.764184 −0.382092 0.924124i \(-0.624796\pi\)
−0.382092 + 0.924124i \(0.624796\pi\)
\(798\) 0 0
\(799\) −6167.35 −0.273073
\(800\) 0 0
\(801\) 0 0
\(802\) −9097.15 −0.400538
\(803\) −31457.7 −1.38246
\(804\) 0 0
\(805\) 0 0
\(806\) −3778.71 −0.165136
\(807\) 0 0
\(808\) 13363.1 0.581823
\(809\) −33349.1 −1.44931 −0.724656 0.689111i \(-0.758001\pi\)
−0.724656 + 0.689111i \(0.758001\pi\)
\(810\) 0 0
\(811\) 4577.87 0.198213 0.0991066 0.995077i \(-0.468402\pi\)
0.0991066 + 0.995077i \(0.468402\pi\)
\(812\) 1460.48 0.0631194
\(813\) 0 0
\(814\) 22314.0 0.960819
\(815\) 0 0
\(816\) 0 0
\(817\) 18454.6 0.790262
\(818\) 16247.0 0.694455
\(819\) 0 0
\(820\) 0 0
\(821\) 5832.52 0.247937 0.123969 0.992286i \(-0.460438\pi\)
0.123969 + 0.992286i \(0.460438\pi\)
\(822\) 0 0
\(823\) −37974.3 −1.60838 −0.804192 0.594369i \(-0.797402\pi\)
−0.804192 + 0.594369i \(0.797402\pi\)
\(824\) 6651.92 0.281226
\(825\) 0 0
\(826\) 2824.15 0.118965
\(827\) 15796.2 0.664193 0.332096 0.943245i \(-0.392244\pi\)
0.332096 + 0.943245i \(0.392244\pi\)
\(828\) 0 0
\(829\) −12714.1 −0.532666 −0.266333 0.963881i \(-0.585812\pi\)
−0.266333 + 0.963881i \(0.585812\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 12411.4 0.517173
\(833\) 4508.25 0.187517
\(834\) 0 0
\(835\) 0 0
\(836\) −37440.8 −1.54894
\(837\) 0 0
\(838\) 23169.0 0.955085
\(839\) 42924.2 1.76628 0.883140 0.469109i \(-0.155425\pi\)
0.883140 + 0.469109i \(0.155425\pi\)
\(840\) 0 0
\(841\) −22775.3 −0.933835
\(842\) −27980.2 −1.14520
\(843\) 0 0
\(844\) −17648.8 −0.719784
\(845\) 0 0
\(846\) 0 0
\(847\) −13897.6 −0.563788
\(848\) 1216.04 0.0492442
\(849\) 0 0
\(850\) 0 0
\(851\) −36661.3 −1.47677
\(852\) 0 0
\(853\) 36172.5 1.45196 0.725980 0.687716i \(-0.241387\pi\)
0.725980 + 0.687716i \(0.241387\pi\)
\(854\) 1060.72 0.0425025
\(855\) 0 0
\(856\) 33410.4 1.33405
\(857\) −32039.9 −1.27709 −0.638544 0.769586i \(-0.720463\pi\)
−0.638544 + 0.769586i \(0.720463\pi\)
\(858\) 0 0
\(859\) −6798.07 −0.270020 −0.135010 0.990844i \(-0.543107\pi\)
−0.135010 + 0.990844i \(0.543107\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 13692.9 0.541046
\(863\) −30179.3 −1.19040 −0.595200 0.803577i \(-0.702927\pi\)
−0.595200 + 0.803577i \(0.702927\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 23825.5 0.934901
\(867\) 0 0
\(868\) 1801.81 0.0704578
\(869\) −1457.47 −0.0568946
\(870\) 0 0
\(871\) 18502.1 0.719772
\(872\) −39055.9 −1.51674
\(873\) 0 0
\(874\) −33235.4 −1.28627
\(875\) 0 0
\(876\) 0 0
\(877\) 1700.51 0.0654758 0.0327379 0.999464i \(-0.489577\pi\)
0.0327379 + 0.999464i \(0.489577\pi\)
\(878\) −9276.02 −0.356549
\(879\) 0 0
\(880\) 0 0
\(881\) −1678.46 −0.0641869 −0.0320935 0.999485i \(-0.510217\pi\)
−0.0320935 + 0.999485i \(0.510217\pi\)
\(882\) 0 0
\(883\) −10285.8 −0.392009 −0.196005 0.980603i \(-0.562797\pi\)
−0.196005 + 0.980603i \(0.562797\pi\)
\(884\) −21750.2 −0.827532
\(885\) 0 0
\(886\) −6657.24 −0.252432
\(887\) −12167.5 −0.460593 −0.230296 0.973121i \(-0.573970\pi\)
−0.230296 + 0.973121i \(0.573970\pi\)
\(888\) 0 0
\(889\) 1825.09 0.0688543
\(890\) 0 0
\(891\) 0 0
\(892\) 948.452 0.0356015
\(893\) −8390.96 −0.314438
\(894\) 0 0
\(895\) 0 0
\(896\) −7128.73 −0.265797
\(897\) 0 0
\(898\) −25534.7 −0.948892
\(899\) 1990.83 0.0738574
\(900\) 0 0
\(901\) 24716.9 0.913916
\(902\) 16356.9 0.603799
\(903\) 0 0
\(904\) 23102.3 0.849968
\(905\) 0 0
\(906\) 0 0
\(907\) 50766.0 1.85850 0.929250 0.369452i \(-0.120455\pi\)
0.929250 + 0.369452i \(0.120455\pi\)
\(908\) 16372.7 0.598399
\(909\) 0 0
\(910\) 0 0
\(911\) −18451.1 −0.671033 −0.335517 0.942034i \(-0.608911\pi\)
−0.335517 + 0.942034i \(0.608911\pi\)
\(912\) 0 0
\(913\) 21667.8 0.785431
\(914\) −18039.6 −0.652841
\(915\) 0 0
\(916\) −31227.1 −1.12639
\(917\) −5064.65 −0.182388
\(918\) 0 0
\(919\) 393.861 0.0141374 0.00706870 0.999975i \(-0.497750\pi\)
0.00706870 + 0.999975i \(0.497750\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −557.167 −0.0199016
\(923\) −15055.9 −0.536912
\(924\) 0 0
\(925\) 0 0
\(926\) −13745.3 −0.487795
\(927\) 0 0
\(928\) −7407.39 −0.262025
\(929\) −27452.3 −0.969517 −0.484759 0.874648i \(-0.661093\pi\)
−0.484759 + 0.874648i \(0.661093\pi\)
\(930\) 0 0
\(931\) 6133.68 0.215922
\(932\) 4885.63 0.171710
\(933\) 0 0
\(934\) 280.803 0.00983744
\(935\) 0 0
\(936\) 0 0
\(937\) −21608.3 −0.753375 −0.376688 0.926340i \(-0.622937\pi\)
−0.376688 + 0.926340i \(0.622937\pi\)
\(938\) 4766.65 0.165924
\(939\) 0 0
\(940\) 0 0
\(941\) 16708.5 0.578832 0.289416 0.957203i \(-0.406539\pi\)
0.289416 + 0.957203i \(0.406539\pi\)
\(942\) 0 0
\(943\) −26874.0 −0.928036
\(944\) 1090.19 0.0375874
\(945\) 0 0
\(946\) −14222.2 −0.488800
\(947\) 13972.8 0.479466 0.239733 0.970839i \(-0.422940\pi\)
0.239733 + 0.970839i \(0.422940\pi\)
\(948\) 0 0
\(949\) −24863.3 −0.850471
\(950\) 0 0
\(951\) 0 0
\(952\) −14234.4 −0.484599
\(953\) −11155.9 −0.379197 −0.189598 0.981862i \(-0.560719\pi\)
−0.189598 + 0.981862i \(0.560719\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 26794.0 0.906466
\(957\) 0 0
\(958\) 11104.0 0.374481
\(959\) −5415.85 −0.182364
\(960\) 0 0
\(961\) −27334.9 −0.917556
\(962\) 17636.4 0.591081
\(963\) 0 0
\(964\) 2409.09 0.0804891
\(965\) 0 0
\(966\) 0 0
\(967\) 1212.55 0.0403238 0.0201619 0.999797i \(-0.493582\pi\)
0.0201619 + 0.999797i \(0.493582\pi\)
\(968\) 43880.4 1.45699
\(969\) 0 0
\(970\) 0 0
\(971\) 48832.2 1.61390 0.806952 0.590617i \(-0.201115\pi\)
0.806952 + 0.590617i \(0.201115\pi\)
\(972\) 0 0
\(973\) 20670.8 0.681063
\(974\) −34578.0 −1.13753
\(975\) 0 0
\(976\) 409.462 0.0134289
\(977\) 5939.19 0.194485 0.0972424 0.995261i \(-0.468998\pi\)
0.0972424 + 0.995261i \(0.468998\pi\)
\(978\) 0 0
\(979\) −59110.5 −1.92970
\(980\) 0 0
\(981\) 0 0
\(982\) −27993.3 −0.909677
\(983\) −21863.5 −0.709398 −0.354699 0.934980i \(-0.615417\pi\)
−0.354699 + 0.934980i \(0.615417\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −6191.26 −0.199970
\(987\) 0 0
\(988\) −29592.1 −0.952886
\(989\) 23366.7 0.751283
\(990\) 0 0
\(991\) −44618.5 −1.43023 −0.715113 0.699009i \(-0.753625\pi\)
−0.715113 + 0.699009i \(0.753625\pi\)
\(992\) −9138.55 −0.292489
\(993\) 0 0
\(994\) −3878.80 −0.123771
\(995\) 0 0
\(996\) 0 0
\(997\) 37923.9 1.20468 0.602338 0.798241i \(-0.294236\pi\)
0.602338 + 0.798241i \(0.294236\pi\)
\(998\) 22997.8 0.729441
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.4.a.bq.1.2 5
3.2 odd 2 175.4.a.i.1.4 5
5.2 odd 4 315.4.d.c.64.4 10
5.3 odd 4 315.4.d.c.64.7 10
5.4 even 2 1575.4.a.bn.1.4 5
15.2 even 4 35.4.b.a.29.7 yes 10
15.8 even 4 35.4.b.a.29.4 10
15.14 odd 2 175.4.a.j.1.2 5
21.20 even 2 1225.4.a.be.1.4 5
60.23 odd 4 560.4.g.f.449.4 10
60.47 odd 4 560.4.g.f.449.7 10
105.2 even 12 245.4.j.e.214.7 20
105.17 odd 12 245.4.j.f.79.4 20
105.23 even 12 245.4.j.e.214.4 20
105.32 even 12 245.4.j.e.79.4 20
105.38 odd 12 245.4.j.f.79.7 20
105.47 odd 12 245.4.j.f.214.7 20
105.53 even 12 245.4.j.e.79.7 20
105.62 odd 4 245.4.b.d.99.7 10
105.68 odd 12 245.4.j.f.214.4 20
105.83 odd 4 245.4.b.d.99.4 10
105.104 even 2 1225.4.a.bh.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.b.a.29.4 10 15.8 even 4
35.4.b.a.29.7 yes 10 15.2 even 4
175.4.a.i.1.4 5 3.2 odd 2
175.4.a.j.1.2 5 15.14 odd 2
245.4.b.d.99.4 10 105.83 odd 4
245.4.b.d.99.7 10 105.62 odd 4
245.4.j.e.79.4 20 105.32 even 12
245.4.j.e.79.7 20 105.53 even 12
245.4.j.e.214.4 20 105.23 even 12
245.4.j.e.214.7 20 105.2 even 12
245.4.j.f.79.4 20 105.17 odd 12
245.4.j.f.79.7 20 105.38 odd 12
245.4.j.f.214.4 20 105.68 odd 12
245.4.j.f.214.7 20 105.47 odd 12
315.4.d.c.64.4 10 5.2 odd 4
315.4.d.c.64.7 10 5.3 odd 4
560.4.g.f.449.4 10 60.23 odd 4
560.4.g.f.449.7 10 60.47 odd 4
1225.4.a.be.1.4 5 21.20 even 2
1225.4.a.bh.1.2 5 105.104 even 2
1575.4.a.bn.1.4 5 5.4 even 2
1575.4.a.bq.1.2 5 1.1 even 1 trivial