# Properties

 Label 1575.4.a.bp Level $1575$ Weight $4$ Character orbit 1575.a Self dual yes Analytic conductor $92.928$ Analytic rank $0$ Dimension $5$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1575 = 3^{2} \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 1575.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$92.9280082590$$ Analytic rank: $$0$$ Dimension: $$5$$ Coefficient field: 5.5.78066700.1 Defining polynomial: $$x^{5} - x^{4} - 18 x^{3} + 7 x^{2} + 30 x - 10$$ Coefficient ring: $$\Z[a_1, \ldots, a_{11}]$$ Coefficient ring index: $$2^{5}\cdot 5$$ Twist minimal: no (minimal twist has level 105) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3,\beta_4$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\beta_{1} q^{2} + ( 5 - \beta_{1} - \beta_{3} ) q^{4} -7 q^{7} + ( 6 - 5 \beta_{1} - \beta_{2} ) q^{8} +O(q^{10})$$ $$q -\beta_{1} q^{2} + ( 5 - \beta_{1} - \beta_{3} ) q^{4} -7 q^{7} + ( 6 - 5 \beta_{1} - \beta_{2} ) q^{8} + ( -15 - 8 \beta_{1} - \beta_{4} ) q^{11} + ( 1 + 6 \beta_{1} + \beta_{2} - \beta_{4} ) q^{13} + 7 \beta_{1} q^{14} + ( 29 - 5 \beta_{1} - \beta_{2} - 5 \beta_{3} - 2 \beta_{4} ) q^{16} + ( 18 - 6 \beta_{1} + \beta_{2} - 8 \beta_{3} - 2 \beta_{4} ) q^{17} + ( 33 - 2 \beta_{1} + \beta_{2} - 6 \beta_{3} + \beta_{4} ) q^{19} + ( 102 + 10 \beta_{1} - 2 \beta_{2} - 10 \beta_{3} ) q^{22} + ( -27 - 12 \beta_{1} + 3 \beta_{2} - 2 \beta_{3} + \beta_{4} ) q^{23} + ( -84 + 10 \beta_{1} - \beta_{2} + 12 \beta_{3} + 2 \beta_{4} ) q^{26} + ( -35 + 7 \beta_{1} + 7 \beta_{3} ) q^{28} + ( -72 + 8 \beta_{1} + 2 \beta_{2} + 6 \beta_{3} ) q^{29} + ( 65 - 26 \beta_{1} - \beta_{2} + 8 \beta_{3} - \beta_{4} ) q^{31} + ( -18 - 25 \beta_{1} - 2 \beta_{2} - 12 \beta_{3} - 2 \beta_{4} ) q^{32} + ( 14 - 72 \beta_{1} - 11 \beta_{2} + 6 \beta_{3} + 2 \beta_{4} ) q^{34} + ( 74 - 24 \beta_{1} - 2 \beta_{2} - 10 \beta_{3} - 8 \beta_{4} ) q^{37} + ( -18 - 78 \beta_{1} - 3 \beta_{2} + 14 \beta_{3} + 2 \beta_{4} ) q^{38} + ( -171 - 32 \beta_{1} - 3 \beta_{2} - 20 \beta_{3} - 7 \beta_{4} ) q^{41} + ( 122 + 16 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} + 8 \beta_{4} ) q^{43} + ( -72 - 102 \beta_{1} - 12 \beta_{2} + 4 \beta_{3} + 4 \beta_{4} ) q^{44} + ( 132 + 4 \beta_{1} + 3 \beta_{2} + 16 \beta_{3} + 6 \beta_{4} ) q^{46} + ( 138 - 36 \beta_{1} - 6 \beta_{2} - 10 \beta_{3} + 8 \beta_{4} ) q^{47} + 49 q^{49} + ( -46 + 122 \beta_{1} + 7 \beta_{2} - 6 \beta_{3} + 6 \beta_{4} ) q^{52} + ( 15 - 14 \beta_{1} + 11 \beta_{2} + 14 \beta_{3} - \beta_{4} ) q^{53} + ( -42 + 35 \beta_{1} + 7 \beta_{2} ) q^{56} + ( -70 + 126 \beta_{1} + 8 \beta_{2} + 18 \beta_{3} + 4 \beta_{4} ) q^{58} + ( -144 + 28 \beta_{1} + 12 \beta_{2} - 28 \beta_{3} + 8 \beta_{4} ) q^{59} + ( 118 - 36 \beta_{1} + 16 \beta_{2} + 18 \beta_{3} - 10 \beta_{4} ) q^{61} + ( 396 - 34 \beta_{1} + 5 \beta_{2} - 44 \beta_{3} - 2 \beta_{4} ) q^{62} + ( 13 - 49 \beta_{1} - 10 \beta_{2} + 7 \beta_{3} + 12 \beta_{4} ) q^{64} + ( -52 - 64 \beta_{1} + 12 \beta_{2} + 2 \beta_{3} + 6 \beta_{4} ) q^{67} + ( 882 - 24 \beta_{1} - 9 \beta_{2} - 98 \beta_{3} - 6 \beta_{4} ) q^{68} + ( -291 + 16 \beta_{1} + 8 \beta_{2} - 2 \beta_{3} + 17 \beta_{4} ) q^{71} + ( 87 - 102 \beta_{1} - 13 \beta_{2} - 24 \beta_{3} + \beta_{4} ) q^{73} + ( 234 - 148 \beta_{1} - 28 \beta_{2} - 46 \beta_{3} - 4 \beta_{4} ) q^{74} + ( 864 + 42 \beta_{1} + 7 \beta_{2} - 64 \beta_{3} - 14 \beta_{4} ) q^{76} + ( 105 + 56 \beta_{1} + 7 \beta_{4} ) q^{77} + ( -182 - 96 \beta_{1} + 14 \beta_{2} + 36 \beta_{3} - 2 \beta_{4} ) q^{79} + ( 274 + 14 \beta_{1} - 37 \beta_{2} - 50 \beta_{3} - 6 \beta_{4} ) q^{82} + ( 312 + 48 \beta_{1} - 4 \beta_{2} - 20 \beta_{3} + 4 \beta_{4} ) q^{83} + ( -198 - 148 \beta_{1} + 12 \beta_{2} + 18 \beta_{3} - 4 \beta_{4} ) q^{86} + ( 594 - 118 \beta_{1} + 16 \beta_{2} - 114 \beta_{3} - 24 \beta_{4} ) q^{88} + ( -81 - 72 \beta_{1} + 15 \beta_{2} + 8 \beta_{3} - 25 \beta_{4} ) q^{89} + ( -7 - 42 \beta_{1} - 7 \beta_{2} + 7 \beta_{4} ) q^{91} + ( 276 + 68 \beta_{1} + 7 \beta_{2} + 40 \beta_{3} - 2 \beta_{4} ) q^{92} + ( 438 - 280 \beta_{1} - 58 \beta_{3} - 12 \beta_{4} ) q^{94} + ( -83 - 162 \beta_{1} + \beta_{2} + 20 \beta_{3} + 7 \beta_{4} ) q^{97} -49 \beta_{1} q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$5q + q^{2} + 27q^{4} - 35q^{7} + 33q^{8} + O(q^{10})$$ $$5q + q^{2} + 27q^{4} - 35q^{7} + 33q^{8} - 66q^{11} + 2q^{13} - 7q^{14} + 155q^{16} + 108q^{17} + 174q^{19} + 506q^{22} - 116q^{23} - 446q^{26} - 189q^{28} - 370q^{29} + 342q^{31} - 55q^{32} + 112q^{34} + 408q^{37} - 34q^{38} - 802q^{41} + 584q^{43} - 290q^{44} + 640q^{46} + 716q^{47} + 245q^{49} - 338q^{52} + 98q^{53} - 231q^{56} - 482q^{58} - 704q^{59} + 650q^{61} + 2070q^{62} + 75q^{64} - 180q^{67} + 4520q^{68} - 1470q^{71} + 534q^{73} + 1312q^{74} + 4370q^{76} + 462q^{77} - 820q^{79} + 1338q^{82} + 1520q^{83} - 832q^{86} + 3258q^{88} - 286q^{89} - 14q^{91} + 1288q^{92} + 2540q^{94} - 278q^{97} + 49q^{98} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{5} - x^{4} - 18 x^{3} + 7 x^{2} + 30 x - 10$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$($$$$-2 \nu^{4} + 3 \nu^{3} + 27 \nu^{2} - 20 \nu + 10$$$$)/15$$ $$\beta_{2}$$ $$=$$ $$($$$$4 \nu^{4} + 24 \nu^{3} - 84 \nu^{2} - 320 \nu + 70$$$$)/15$$ $$\beta_{3}$$ $$=$$ $$($$$$8 \nu^{4} - 12 \nu^{3} - 138 \nu^{2} + 140 \nu + 155$$$$)/15$$ $$\beta_{4}$$ $$=$$ $$($$$$-32 \nu^{4} + 18 \nu^{3} + 582 \nu^{2} + 100 \nu - 785$$$$)/15$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{4} + 4 \beta_{3} + \beta_{2} + 2 \beta_{1} + 5$$$$)/20$$ $$\nu^{2}$$ $$=$$ $$($$$$\beta_{4} - \beta_{3} + \beta_{2} - 18 \beta_{1} + 70$$$$)/10$$ $$\nu^{3}$$ $$=$$ $$($$$$7 \beta_{4} + 23 \beta_{3} + 12 \beta_{2} + 4 \beta_{1} + 70$$$$)/10$$ $$\nu^{4}$$ $$=$$ $$($$$$38 \beta_{4} + 2 \beta_{3} + 53 \beta_{2} - 644 \beta_{1} + 2150$$$$)/20$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.37042 1.35311 0.329739 4.40248 −3.71490
−4.88936 0 15.9059 0 0 −7.00000 −38.6546 0 0
1.2 −2.20666 0 −3.13065 0 0 −7.00000 24.5616 0 0
1.3 −0.428319 0 −7.81654 0 0 −7.00000 6.77452 0 0
1.4 3.33774 0 3.14050 0 0 −7.00000 −16.2197 0 0
1.5 5.18660 0 18.9008 0 0 −7.00000 56.5383 0 0
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 1.5 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$-1$$
$$5$$ $$-1$$
$$7$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1575.4.a.bp 5
3.b odd 2 1 525.4.a.w 5
5.b even 2 1 1575.4.a.bo 5
5.c odd 4 2 315.4.d.b 10
15.d odd 2 1 525.4.a.x 5
15.e even 4 2 105.4.d.b 10

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.4.d.b 10 15.e even 4 2
315.4.d.b 10 5.c odd 4 2
525.4.a.w 5 3.b odd 2 1
525.4.a.x 5 15.d odd 2 1
1575.4.a.bo 5 5.b even 2 1
1575.4.a.bp 5 1.a even 1 1 trivial

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{4}^{\mathrm{new}}(\Gamma_0(1575))$$:

 $$T_{2}^{5} - T_{2}^{4} - 33 T_{2}^{3} + 17 T_{2}^{2} + 200 T_{2} + 80$$ $$T_{11}^{5} + 66 T_{11}^{4} - 2100 T_{11}^{3} - 140456 T_{11}^{2} + 1472448 T_{11} + 55852416$$ $$T_{13}^{5} - 2 T_{13}^{4} - 4152 T_{13}^{3} - 15504 T_{13}^{2} + 4336080 T_{13} + 41380960$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$80 + 200 T + 17 T^{2} - 33 T^{3} - T^{4} + T^{5}$$
$3$ $$T^{5}$$
$5$ $$T^{5}$$
$7$ $$( 7 + T )^{5}$$
$11$ $$55852416 + 1472448 T - 140456 T^{2} - 2100 T^{3} + 66 T^{4} + T^{5}$$
$13$ $$41380960 + 4336080 T - 15504 T^{2} - 4152 T^{3} - 2 T^{4} + T^{5}$$
$17$ $$-232018688 + 37019968 T + 1541792 T^{2} - 16940 T^{3} - 108 T^{4} + T^{5}$$
$19$ $$-784374624 - 40426032 T + 1513744 T^{2} - 3640 T^{3} - 174 T^{4} + T^{5}$$
$23$ $$488160000 - 45825600 T - 2700320 T^{2} - 19676 T^{3} + 116 T^{4} + T^{5}$$
$29$ $$-1150048 - 14986160 T + 1029840 T^{2} + 38440 T^{3} + 370 T^{4} + T^{5}$$
$31$ $$52737095200 - 1618226480 T + 13826640 T^{2} - 6904 T^{3} - 342 T^{4} + T^{5}$$
$37$ $$-315202167808 + 3074210048 T + 30738752 T^{2} - 89600 T^{3} - 408 T^{4} + T^{5}$$
$41$ $$-531402107648 - 12602553024 T - 74825096 T^{2} + 47852 T^{3} + 802 T^{4} + T^{5}$$
$43$ $$132088069120 - 5499585280 T + 36399168 T^{2} + 15872 T^{3} - 584 T^{4} + T^{5}$$
$47$ $$65728742400 - 13646008320 T + 87933440 T^{2} - 11696 T^{3} - 716 T^{4} + T^{5}$$
$53$ $$462468251232 + 8691280848 T - 12761488 T^{2} - 241080 T^{3} - 98 T^{4} + T^{5}$$
$59$ $$33724261457920 + 47252515840 T - 380481408 T^{2} - 599408 T^{3} + 704 T^{4} + T^{5}$$
$61$ $$1105143174112 + 47217562320 T + 214899120 T^{2} - 445560 T^{3} - 650 T^{4} + T^{5}$$
$67$ $$-1579424171008 - 34615928320 T - 233215360 T^{2} - 479120 T^{3} + 180 T^{4} + T^{5}$$
$71$ $$-237519904000 - 40906747200 T - 376607000 T^{2} + 92060 T^{3} + 1470 T^{4} + T^{5}$$
$73$ $$1941655936032 + 8346269136 T - 99791920 T^{2} - 603064 T^{3} - 534 T^{4} + T^{5}$$
$79$ $$43229481181184 + 35855795200 T - 590031680 T^{2} - 728400 T^{3} + 820 T^{4} + T^{5}$$
$83$ $$128527499264 - 9802956800 T - 59036160 T^{2} + 667840 T^{3} - 1520 T^{4} + T^{5}$$
$89$ $$-1125486676224 + 41779572288 T - 206349496 T^{2} - 1347380 T^{3} + 286 T^{4} + T^{5}$$
$97$ $$19868737339616 + 145383131216 T - 6097680 T^{2} - 1133656 T^{3} + 278 T^{4} + T^{5}$$