Properties

Label 1575.4.a.bn.1.4
Level $1575$
Weight $4$
Character 1575.1
Self dual yes
Analytic conductor $92.928$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,4,Mod(1,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.9280082590\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 27x^{3} + 7x^{2} + 120x + 60 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.67516\) of defining polynomial
Character \(\chi\) \(=\) 1575.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.67516 q^{2} -5.19383 q^{4} +7.00000 q^{7} -22.1018 q^{8} +57.5880 q^{11} -45.5159 q^{13} +11.7261 q^{14} +4.52655 q^{16} -92.0051 q^{17} +125.177 q^{19} +96.4692 q^{22} -158.496 q^{23} -76.2466 q^{26} -36.3568 q^{28} +40.1708 q^{29} +49.5590 q^{31} +184.397 q^{32} -154.123 q^{34} +231.307 q^{37} +209.692 q^{38} -169.556 q^{41} -147.428 q^{43} -299.102 q^{44} -265.507 q^{46} +67.0327 q^{47} +49.0000 q^{49} +236.402 q^{52} -268.647 q^{53} -154.713 q^{56} +67.2926 q^{58} +240.843 q^{59} +90.4579 q^{61} +83.0194 q^{62} +272.683 q^{64} -406.498 q^{67} +477.859 q^{68} -330.782 q^{71} +546.255 q^{73} +387.477 q^{74} -650.149 q^{76} +403.116 q^{77} -25.3087 q^{79} -284.034 q^{82} -376.255 q^{83} -246.965 q^{86} -1272.80 q^{88} -1026.44 q^{89} -318.612 q^{91} +823.203 q^{92} +112.291 q^{94} -942.660 q^{97} +82.0829 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 4 q^{2} + 18 q^{4} + 35 q^{7} - 42 q^{8} - 42 q^{11} + 34 q^{13} - 28 q^{14} + 74 q^{16} - 238 q^{17} - 36 q^{19} + 358 q^{22} - 152 q^{23} + 310 q^{26} + 126 q^{28} + 44 q^{29} + 60 q^{31} - 710 q^{32}+ \cdots - 196 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.67516 0.592259 0.296130 0.955148i \(-0.404304\pi\)
0.296130 + 0.955148i \(0.404304\pi\)
\(3\) 0 0
\(4\) −5.19383 −0.649229
\(5\) 0 0
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) −22.1018 −0.976771
\(9\) 0 0
\(10\) 0 0
\(11\) 57.5880 1.57849 0.789247 0.614076i \(-0.210471\pi\)
0.789247 + 0.614076i \(0.210471\pi\)
\(12\) 0 0
\(13\) −45.5159 −0.971066 −0.485533 0.874218i \(-0.661374\pi\)
−0.485533 + 0.874218i \(0.661374\pi\)
\(14\) 11.7261 0.223853
\(15\) 0 0
\(16\) 4.52655 0.0707273
\(17\) −92.0051 −1.31262 −0.656309 0.754492i \(-0.727883\pi\)
−0.656309 + 0.754492i \(0.727883\pi\)
\(18\) 0 0
\(19\) 125.177 1.51145 0.755726 0.654888i \(-0.227284\pi\)
0.755726 + 0.654888i \(0.227284\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 96.4692 0.934878
\(23\) −158.496 −1.43690 −0.718451 0.695578i \(-0.755149\pi\)
−0.718451 + 0.695578i \(0.755149\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −76.2466 −0.575123
\(27\) 0 0
\(28\) −36.3568 −0.245386
\(29\) 40.1708 0.257225 0.128613 0.991695i \(-0.458948\pi\)
0.128613 + 0.991695i \(0.458948\pi\)
\(30\) 0 0
\(31\) 49.5590 0.287131 0.143566 0.989641i \(-0.454143\pi\)
0.143566 + 0.989641i \(0.454143\pi\)
\(32\) 184.397 1.01866
\(33\) 0 0
\(34\) −154.123 −0.777410
\(35\) 0 0
\(36\) 0 0
\(37\) 231.307 1.02775 0.513874 0.857866i \(-0.328210\pi\)
0.513874 + 0.857866i \(0.328210\pi\)
\(38\) 209.692 0.895171
\(39\) 0 0
\(40\) 0 0
\(41\) −169.556 −0.645859 −0.322929 0.946423i \(-0.604668\pi\)
−0.322929 + 0.946423i \(0.604668\pi\)
\(42\) 0 0
\(43\) −147.428 −0.522849 −0.261425 0.965224i \(-0.584192\pi\)
−0.261425 + 0.965224i \(0.584192\pi\)
\(44\) −299.102 −1.02480
\(45\) 0 0
\(46\) −265.507 −0.851018
\(47\) 67.0327 0.208037 0.104018 0.994575i \(-0.466830\pi\)
0.104018 + 0.994575i \(0.466830\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 236.402 0.630444
\(53\) −268.647 −0.696254 −0.348127 0.937447i \(-0.613182\pi\)
−0.348127 + 0.937447i \(0.613182\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −154.713 −0.369185
\(57\) 0 0
\(58\) 67.2926 0.152344
\(59\) 240.843 0.531442 0.265721 0.964050i \(-0.414390\pi\)
0.265721 + 0.964050i \(0.414390\pi\)
\(60\) 0 0
\(61\) 90.4579 0.189868 0.0949340 0.995484i \(-0.469736\pi\)
0.0949340 + 0.995484i \(0.469736\pi\)
\(62\) 83.0194 0.170056
\(63\) 0 0
\(64\) 272.683 0.532583
\(65\) 0 0
\(66\) 0 0
\(67\) −406.498 −0.741218 −0.370609 0.928789i \(-0.620851\pi\)
−0.370609 + 0.928789i \(0.620851\pi\)
\(68\) 477.859 0.852190
\(69\) 0 0
\(70\) 0 0
\(71\) −330.782 −0.552910 −0.276455 0.961027i \(-0.589160\pi\)
−0.276455 + 0.961027i \(0.589160\pi\)
\(72\) 0 0
\(73\) 546.255 0.875812 0.437906 0.899021i \(-0.355720\pi\)
0.437906 + 0.899021i \(0.355720\pi\)
\(74\) 387.477 0.608693
\(75\) 0 0
\(76\) −650.149 −0.981279
\(77\) 403.116 0.596615
\(78\) 0 0
\(79\) −25.3087 −0.0360436 −0.0180218 0.999838i \(-0.505737\pi\)
−0.0180218 + 0.999838i \(0.505737\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −284.034 −0.382516
\(83\) −376.255 −0.497582 −0.248791 0.968557i \(-0.580033\pi\)
−0.248791 + 0.968557i \(0.580033\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −246.965 −0.309662
\(87\) 0 0
\(88\) −1272.80 −1.54183
\(89\) −1026.44 −1.22250 −0.611248 0.791439i \(-0.709332\pi\)
−0.611248 + 0.791439i \(0.709332\pi\)
\(90\) 0 0
\(91\) −318.612 −0.367028
\(92\) 823.203 0.932878
\(93\) 0 0
\(94\) 112.291 0.123212
\(95\) 0 0
\(96\) 0 0
\(97\) −942.660 −0.986728 −0.493364 0.869823i \(-0.664233\pi\)
−0.493364 + 0.869823i \(0.664233\pi\)
\(98\) 82.0829 0.0846085
\(99\) 0 0
\(100\) 0 0
\(101\) 604.617 0.595659 0.297830 0.954619i \(-0.403737\pi\)
0.297830 + 0.954619i \(0.403737\pi\)
\(102\) 0 0
\(103\) −300.967 −0.287914 −0.143957 0.989584i \(-0.545983\pi\)
−0.143957 + 0.989584i \(0.545983\pi\)
\(104\) 1005.98 0.948509
\(105\) 0 0
\(106\) −450.027 −0.412363
\(107\) −1511.66 −1.36577 −0.682886 0.730525i \(-0.739276\pi\)
−0.682886 + 0.730525i \(0.739276\pi\)
\(108\) 0 0
\(109\) −1767.09 −1.55281 −0.776406 0.630233i \(-0.782959\pi\)
−0.776406 + 0.630233i \(0.782959\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 31.6858 0.0267324
\(113\) −1045.27 −0.870182 −0.435091 0.900387i \(-0.643284\pi\)
−0.435091 + 0.900387i \(0.643284\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −208.640 −0.166998
\(117\) 0 0
\(118\) 403.451 0.314751
\(119\) −644.036 −0.496123
\(120\) 0 0
\(121\) 1985.38 1.49164
\(122\) 151.532 0.112451
\(123\) 0 0
\(124\) −257.401 −0.186414
\(125\) 0 0
\(126\) 0 0
\(127\) 260.727 0.182171 0.0910857 0.995843i \(-0.470966\pi\)
0.0910857 + 0.995843i \(0.470966\pi\)
\(128\) −1018.39 −0.703233
\(129\) 0 0
\(130\) 0 0
\(131\) 723.522 0.482553 0.241276 0.970456i \(-0.422434\pi\)
0.241276 + 0.970456i \(0.422434\pi\)
\(132\) 0 0
\(133\) 876.240 0.571275
\(134\) −680.950 −0.438993
\(135\) 0 0
\(136\) 2033.48 1.28213
\(137\) −773.693 −0.482490 −0.241245 0.970464i \(-0.577556\pi\)
−0.241245 + 0.970464i \(0.577556\pi\)
\(138\) 0 0
\(139\) −2952.97 −1.80192 −0.900961 0.433899i \(-0.857137\pi\)
−0.900961 + 0.433899i \(0.857137\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −554.114 −0.327466
\(143\) −2621.17 −1.53282
\(144\) 0 0
\(145\) 0 0
\(146\) 915.066 0.518708
\(147\) 0 0
\(148\) −1201.37 −0.667244
\(149\) −2514.00 −1.38225 −0.691124 0.722736i \(-0.742884\pi\)
−0.691124 + 0.722736i \(0.742884\pi\)
\(150\) 0 0
\(151\) 101.052 0.0544605 0.0272302 0.999629i \(-0.491331\pi\)
0.0272302 + 0.999629i \(0.491331\pi\)
\(152\) −2766.64 −1.47634
\(153\) 0 0
\(154\) 675.285 0.353351
\(155\) 0 0
\(156\) 0 0
\(157\) 2338.35 1.18867 0.594333 0.804219i \(-0.297416\pi\)
0.594333 + 0.804219i \(0.297416\pi\)
\(158\) −42.3961 −0.0213472
\(159\) 0 0
\(160\) 0 0
\(161\) −1109.47 −0.543098
\(162\) 0 0
\(163\) −1325.20 −0.636798 −0.318399 0.947957i \(-0.603145\pi\)
−0.318399 + 0.947957i \(0.603145\pi\)
\(164\) 880.646 0.419310
\(165\) 0 0
\(166\) −630.288 −0.294698
\(167\) −2086.20 −0.966675 −0.483338 0.875434i \(-0.660576\pi\)
−0.483338 + 0.875434i \(0.660576\pi\)
\(168\) 0 0
\(169\) −125.299 −0.0570317
\(170\) 0 0
\(171\) 0 0
\(172\) 765.715 0.339449
\(173\) −1918.19 −0.842990 −0.421495 0.906831i \(-0.638495\pi\)
−0.421495 + 0.906831i \(0.638495\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 260.675 0.111643
\(177\) 0 0
\(178\) −1719.45 −0.724035
\(179\) −629.046 −0.262665 −0.131333 0.991338i \(-0.541926\pi\)
−0.131333 + 0.991338i \(0.541926\pi\)
\(180\) 0 0
\(181\) −2800.85 −1.15020 −0.575099 0.818084i \(-0.695036\pi\)
−0.575099 + 0.818084i \(0.695036\pi\)
\(182\) −533.726 −0.217376
\(183\) 0 0
\(184\) 3503.05 1.40352
\(185\) 0 0
\(186\) 0 0
\(187\) −5298.39 −2.07196
\(188\) −348.157 −0.135063
\(189\) 0 0
\(190\) 0 0
\(191\) −740.255 −0.280434 −0.140217 0.990121i \(-0.544780\pi\)
−0.140217 + 0.990121i \(0.544780\pi\)
\(192\) 0 0
\(193\) 4082.57 1.52264 0.761321 0.648375i \(-0.224551\pi\)
0.761321 + 0.648375i \(0.224551\pi\)
\(194\) −1579.11 −0.584399
\(195\) 0 0
\(196\) −254.498 −0.0927470
\(197\) −3414.89 −1.23503 −0.617515 0.786559i \(-0.711860\pi\)
−0.617515 + 0.786559i \(0.711860\pi\)
\(198\) 0 0
\(199\) −3392.44 −1.20846 −0.604231 0.796809i \(-0.706520\pi\)
−0.604231 + 0.796809i \(0.706520\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 1012.83 0.352785
\(203\) 281.196 0.0972220
\(204\) 0 0
\(205\) 0 0
\(206\) −504.169 −0.170520
\(207\) 0 0
\(208\) −206.030 −0.0686809
\(209\) 7208.70 2.38582
\(210\) 0 0
\(211\) 3398.04 1.10867 0.554337 0.832292i \(-0.312972\pi\)
0.554337 + 0.832292i \(0.312972\pi\)
\(212\) 1395.31 0.452029
\(213\) 0 0
\(214\) −2532.28 −0.808892
\(215\) 0 0
\(216\) 0 0
\(217\) 346.913 0.108525
\(218\) −2960.16 −0.919667
\(219\) 0 0
\(220\) 0 0
\(221\) 4187.70 1.27464
\(222\) 0 0
\(223\) 182.611 0.0548365 0.0274183 0.999624i \(-0.491271\pi\)
0.0274183 + 0.999624i \(0.491271\pi\)
\(224\) 1290.78 0.385017
\(225\) 0 0
\(226\) −1750.99 −0.515373
\(227\) 3152.33 0.921707 0.460854 0.887476i \(-0.347543\pi\)
0.460854 + 0.887476i \(0.347543\pi\)
\(228\) 0 0
\(229\) 6012.35 1.73497 0.867483 0.497466i \(-0.165736\pi\)
0.867483 + 0.497466i \(0.165736\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −887.848 −0.251250
\(233\) 940.660 0.264484 0.132242 0.991217i \(-0.457782\pi\)
0.132242 + 0.991217i \(0.457782\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −1250.90 −0.345027
\(237\) 0 0
\(238\) −1078.86 −0.293833
\(239\) −5158.82 −1.39622 −0.698109 0.715991i \(-0.745975\pi\)
−0.698109 + 0.715991i \(0.745975\pi\)
\(240\) 0 0
\(241\) −463.836 −0.123976 −0.0619882 0.998077i \(-0.519744\pi\)
−0.0619882 + 0.998077i \(0.519744\pi\)
\(242\) 3325.83 0.883440
\(243\) 0 0
\(244\) −469.823 −0.123268
\(245\) 0 0
\(246\) 0 0
\(247\) −5697.55 −1.46772
\(248\) −1095.34 −0.280461
\(249\) 0 0
\(250\) 0 0
\(251\) −2290.25 −0.575934 −0.287967 0.957640i \(-0.592979\pi\)
−0.287967 + 0.957640i \(0.592979\pi\)
\(252\) 0 0
\(253\) −9127.48 −2.26814
\(254\) 436.760 0.107893
\(255\) 0 0
\(256\) −3887.43 −0.949079
\(257\) 802.202 0.194708 0.0973541 0.995250i \(-0.468962\pi\)
0.0973541 + 0.995250i \(0.468962\pi\)
\(258\) 0 0
\(259\) 1619.15 0.388452
\(260\) 0 0
\(261\) 0 0
\(262\) 1212.02 0.285796
\(263\) 286.978 0.0672845 0.0336423 0.999434i \(-0.489289\pi\)
0.0336423 + 0.999434i \(0.489289\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1467.84 0.338343
\(267\) 0 0
\(268\) 2111.28 0.481221
\(269\) −3561.22 −0.807180 −0.403590 0.914940i \(-0.632238\pi\)
−0.403590 + 0.914940i \(0.632238\pi\)
\(270\) 0 0
\(271\) 1928.81 0.432349 0.216175 0.976355i \(-0.430642\pi\)
0.216175 + 0.976355i \(0.430642\pi\)
\(272\) −416.466 −0.0928380
\(273\) 0 0
\(274\) −1296.06 −0.285759
\(275\) 0 0
\(276\) 0 0
\(277\) 6588.69 1.42916 0.714578 0.699556i \(-0.246619\pi\)
0.714578 + 0.699556i \(0.246619\pi\)
\(278\) −4946.70 −1.06721
\(279\) 0 0
\(280\) 0 0
\(281\) −815.552 −0.173138 −0.0865689 0.996246i \(-0.527590\pi\)
−0.0865689 + 0.996246i \(0.527590\pi\)
\(282\) 0 0
\(283\) −6513.49 −1.36815 −0.684076 0.729411i \(-0.739794\pi\)
−0.684076 + 0.729411i \(0.739794\pi\)
\(284\) 1718.03 0.358965
\(285\) 0 0
\(286\) −4390.89 −0.907828
\(287\) −1186.89 −0.244112
\(288\) 0 0
\(289\) 3551.94 0.722967
\(290\) 0 0
\(291\) 0 0
\(292\) −2837.16 −0.568603
\(293\) −435.520 −0.0868373 −0.0434186 0.999057i \(-0.513825\pi\)
−0.0434186 + 0.999057i \(0.513825\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −5112.31 −1.00387
\(297\) 0 0
\(298\) −4211.36 −0.818650
\(299\) 7214.10 1.39533
\(300\) 0 0
\(301\) −1031.99 −0.197618
\(302\) 169.279 0.0322547
\(303\) 0 0
\(304\) 566.620 0.106901
\(305\) 0 0
\(306\) 0 0
\(307\) −4915.99 −0.913910 −0.456955 0.889490i \(-0.651060\pi\)
−0.456955 + 0.889490i \(0.651060\pi\)
\(308\) −2093.72 −0.387340
\(309\) 0 0
\(310\) 0 0
\(311\) 1831.11 0.333868 0.166934 0.985968i \(-0.446613\pi\)
0.166934 + 0.985968i \(0.446613\pi\)
\(312\) 0 0
\(313\) −2442.96 −0.441163 −0.220582 0.975369i \(-0.570796\pi\)
−0.220582 + 0.975369i \(0.570796\pi\)
\(314\) 3917.11 0.703998
\(315\) 0 0
\(316\) 131.449 0.0234006
\(317\) −1666.19 −0.295214 −0.147607 0.989046i \(-0.547157\pi\)
−0.147607 + 0.989046i \(0.547157\pi\)
\(318\) 0 0
\(319\) 2313.36 0.406029
\(320\) 0 0
\(321\) 0 0
\(322\) −1858.55 −0.321655
\(323\) −11516.9 −1.98396
\(324\) 0 0
\(325\) 0 0
\(326\) −2219.93 −0.377149
\(327\) 0 0
\(328\) 3747.50 0.630856
\(329\) 469.229 0.0786305
\(330\) 0 0
\(331\) −5466.38 −0.907732 −0.453866 0.891070i \(-0.649956\pi\)
−0.453866 + 0.891070i \(0.649956\pi\)
\(332\) 1954.20 0.323045
\(333\) 0 0
\(334\) −3494.72 −0.572522
\(335\) 0 0
\(336\) 0 0
\(337\) 10650.5 1.72157 0.860784 0.508970i \(-0.169973\pi\)
0.860784 + 0.508970i \(0.169973\pi\)
\(338\) −209.896 −0.0337776
\(339\) 0 0
\(340\) 0 0
\(341\) 2854.01 0.453235
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 3258.42 0.510704
\(345\) 0 0
\(346\) −3213.28 −0.499269
\(347\) −4019.13 −0.621782 −0.310891 0.950446i \(-0.600627\pi\)
−0.310891 + 0.950446i \(0.600627\pi\)
\(348\) 0 0
\(349\) 10544.9 1.61735 0.808674 0.588256i \(-0.200185\pi\)
0.808674 + 0.588256i \(0.200185\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 10619.1 1.60795
\(353\) −2959.98 −0.446300 −0.223150 0.974784i \(-0.571634\pi\)
−0.223150 + 0.974784i \(0.571634\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 5331.14 0.793680
\(357\) 0 0
\(358\) −1053.75 −0.155566
\(359\) −2170.17 −0.319045 −0.159523 0.987194i \(-0.550995\pi\)
−0.159523 + 0.987194i \(0.550995\pi\)
\(360\) 0 0
\(361\) 8810.30 1.28449
\(362\) −4691.88 −0.681215
\(363\) 0 0
\(364\) 1654.82 0.238285
\(365\) 0 0
\(366\) 0 0
\(367\) −1252.20 −0.178105 −0.0890523 0.996027i \(-0.528384\pi\)
−0.0890523 + 0.996027i \(0.528384\pi\)
\(368\) −717.441 −0.101628
\(369\) 0 0
\(370\) 0 0
\(371\) −1880.53 −0.263159
\(372\) 0 0
\(373\) 4646.02 0.644938 0.322469 0.946580i \(-0.395487\pi\)
0.322469 + 0.946580i \(0.395487\pi\)
\(374\) −8875.66 −1.22714
\(375\) 0 0
\(376\) −1481.54 −0.203204
\(377\) −1828.41 −0.249783
\(378\) 0 0
\(379\) 1434.84 0.194466 0.0972331 0.995262i \(-0.469001\pi\)
0.0972331 + 0.995262i \(0.469001\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −1240.05 −0.166090
\(383\) 13216.7 1.76330 0.881649 0.471905i \(-0.156434\pi\)
0.881649 + 0.471905i \(0.156434\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 6838.97 0.901799
\(387\) 0 0
\(388\) 4896.02 0.640612
\(389\) 7755.01 1.01078 0.505391 0.862890i \(-0.331348\pi\)
0.505391 + 0.862890i \(0.331348\pi\)
\(390\) 0 0
\(391\) 14582.5 1.88610
\(392\) −1082.99 −0.139539
\(393\) 0 0
\(394\) −5720.49 −0.731457
\(395\) 0 0
\(396\) 0 0
\(397\) −3560.83 −0.450158 −0.225079 0.974341i \(-0.572264\pi\)
−0.225079 + 0.974341i \(0.572264\pi\)
\(398\) −5682.89 −0.715723
\(399\) 0 0
\(400\) 0 0
\(401\) 5430.61 0.676288 0.338144 0.941094i \(-0.390201\pi\)
0.338144 + 0.941094i \(0.390201\pi\)
\(402\) 0 0
\(403\) −2255.73 −0.278823
\(404\) −3140.28 −0.386719
\(405\) 0 0
\(406\) 471.048 0.0575806
\(407\) 13320.5 1.62229
\(408\) 0 0
\(409\) −9698.79 −1.17255 −0.586277 0.810111i \(-0.699407\pi\)
−0.586277 + 0.810111i \(0.699407\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 1563.17 0.186922
\(413\) 1685.90 0.200866
\(414\) 0 0
\(415\) 0 0
\(416\) −8393.01 −0.989186
\(417\) 0 0
\(418\) 12075.7 1.41302
\(419\) −13830.9 −1.61261 −0.806307 0.591498i \(-0.798537\pi\)
−0.806307 + 0.591498i \(0.798537\pi\)
\(420\) 0 0
\(421\) 16703.0 1.93362 0.966810 0.255498i \(-0.0822393\pi\)
0.966810 + 0.255498i \(0.0822393\pi\)
\(422\) 5692.26 0.656623
\(423\) 0 0
\(424\) 5937.58 0.680081
\(425\) 0 0
\(426\) 0 0
\(427\) 633.205 0.0717634
\(428\) 7851.31 0.886699
\(429\) 0 0
\(430\) 0 0
\(431\) −8174.07 −0.913530 −0.456765 0.889588i \(-0.650992\pi\)
−0.456765 + 0.889588i \(0.650992\pi\)
\(432\) 0 0
\(433\) 14222.8 1.57853 0.789267 0.614051i \(-0.210461\pi\)
0.789267 + 0.614051i \(0.210461\pi\)
\(434\) 581.136 0.0642752
\(435\) 0 0
\(436\) 9177.96 1.00813
\(437\) −19840.1 −2.17181
\(438\) 0 0
\(439\) 5537.38 0.602016 0.301008 0.953622i \(-0.402677\pi\)
0.301008 + 0.953622i \(0.402677\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 7015.07 0.754916
\(443\) −3974.09 −0.426218 −0.213109 0.977028i \(-0.568359\pi\)
−0.213109 + 0.977028i \(0.568359\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 305.903 0.0324774
\(447\) 0 0
\(448\) 1908.78 0.201298
\(449\) 15243.1 1.60216 0.801078 0.598559i \(-0.204260\pi\)
0.801078 + 0.598559i \(0.204260\pi\)
\(450\) 0 0
\(451\) −9764.40 −1.01948
\(452\) 5428.95 0.564947
\(453\) 0 0
\(454\) 5280.67 0.545890
\(455\) 0 0
\(456\) 0 0
\(457\) −10768.9 −1.10229 −0.551145 0.834410i \(-0.685809\pi\)
−0.551145 + 0.834410i \(0.685809\pi\)
\(458\) 10071.7 1.02755
\(459\) 0 0
\(460\) 0 0
\(461\) 332.605 0.0336029 0.0168015 0.999859i \(-0.494652\pi\)
0.0168015 + 0.999859i \(0.494652\pi\)
\(462\) 0 0
\(463\) −8205.35 −0.823618 −0.411809 0.911270i \(-0.635103\pi\)
−0.411809 + 0.911270i \(0.635103\pi\)
\(464\) 181.835 0.0181929
\(465\) 0 0
\(466\) 1575.76 0.156643
\(467\) 167.628 0.0166100 0.00830501 0.999966i \(-0.497356\pi\)
0.00830501 + 0.999966i \(0.497356\pi\)
\(468\) 0 0
\(469\) −2845.49 −0.280154
\(470\) 0 0
\(471\) 0 0
\(472\) −5323.06 −0.519097
\(473\) −8490.07 −0.825315
\(474\) 0 0
\(475\) 0 0
\(476\) 3345.01 0.322098
\(477\) 0 0
\(478\) −8641.86 −0.826924
\(479\) −6628.58 −0.632292 −0.316146 0.948711i \(-0.602389\pi\)
−0.316146 + 0.948711i \(0.602389\pi\)
\(480\) 0 0
\(481\) −10528.2 −0.998010
\(482\) −777.001 −0.0734262
\(483\) 0 0
\(484\) −10311.7 −0.968419
\(485\) 0 0
\(486\) 0 0
\(487\) −20641.6 −1.92065 −0.960327 0.278875i \(-0.910039\pi\)
−0.960327 + 0.278875i \(0.910039\pi\)
\(488\) −1999.28 −0.185458
\(489\) 0 0
\(490\) 0 0
\(491\) 16710.8 1.53594 0.767972 0.640484i \(-0.221266\pi\)
0.767972 + 0.640484i \(0.221266\pi\)
\(492\) 0 0
\(493\) −3695.92 −0.337639
\(494\) −9544.32 −0.869270
\(495\) 0 0
\(496\) 224.331 0.0203080
\(497\) −2315.47 −0.208980
\(498\) 0 0
\(499\) −13728.7 −1.23162 −0.615812 0.787893i \(-0.711172\pi\)
−0.615812 + 0.787893i \(0.711172\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −3836.54 −0.341102
\(503\) 19523.7 1.73065 0.865326 0.501209i \(-0.167111\pi\)
0.865326 + 0.501209i \(0.167111\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −15290.0 −1.34333
\(507\) 0 0
\(508\) −1354.17 −0.118271
\(509\) 8688.17 0.756574 0.378287 0.925688i \(-0.376513\pi\)
0.378287 + 0.925688i \(0.376513\pi\)
\(510\) 0 0
\(511\) 3823.78 0.331026
\(512\) 1635.04 0.141131
\(513\) 0 0
\(514\) 1343.82 0.115318
\(515\) 0 0
\(516\) 0 0
\(517\) 3860.28 0.328385
\(518\) 2712.34 0.230064
\(519\) 0 0
\(520\) 0 0
\(521\) −6771.36 −0.569402 −0.284701 0.958616i \(-0.591894\pi\)
−0.284701 + 0.958616i \(0.591894\pi\)
\(522\) 0 0
\(523\) −1365.89 −0.114200 −0.0570998 0.998368i \(-0.518185\pi\)
−0.0570998 + 0.998368i \(0.518185\pi\)
\(524\) −3757.85 −0.313287
\(525\) 0 0
\(526\) 480.735 0.0398499
\(527\) −4559.68 −0.376894
\(528\) 0 0
\(529\) 12954.0 1.06469
\(530\) 0 0
\(531\) 0 0
\(532\) −4551.04 −0.370888
\(533\) 7717.51 0.627171
\(534\) 0 0
\(535\) 0 0
\(536\) 8984.34 0.724001
\(537\) 0 0
\(538\) −5965.62 −0.478060
\(539\) 2821.81 0.225499
\(540\) 0 0
\(541\) −23250.1 −1.84769 −0.923844 0.382770i \(-0.874970\pi\)
−0.923844 + 0.382770i \(0.874970\pi\)
\(542\) 3231.06 0.256063
\(543\) 0 0
\(544\) −16965.5 −1.33711
\(545\) 0 0
\(546\) 0 0
\(547\) −11552.7 −0.903033 −0.451516 0.892263i \(-0.649117\pi\)
−0.451516 + 0.892263i \(0.649117\pi\)
\(548\) 4018.43 0.313246
\(549\) 0 0
\(550\) 0 0
\(551\) 5028.47 0.388784
\(552\) 0 0
\(553\) −177.161 −0.0136232
\(554\) 11037.1 0.846430
\(555\) 0 0
\(556\) 15337.2 1.16986
\(557\) 16406.2 1.24803 0.624014 0.781413i \(-0.285501\pi\)
0.624014 + 0.781413i \(0.285501\pi\)
\(558\) 0 0
\(559\) 6710.31 0.507721
\(560\) 0 0
\(561\) 0 0
\(562\) −1366.18 −0.102542
\(563\) −13631.9 −1.02045 −0.510227 0.860040i \(-0.670439\pi\)
−0.510227 + 0.860040i \(0.670439\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −10911.2 −0.810300
\(567\) 0 0
\(568\) 7310.88 0.540067
\(569\) 3086.83 0.227428 0.113714 0.993514i \(-0.463725\pi\)
0.113714 + 0.993514i \(0.463725\pi\)
\(570\) 0 0
\(571\) −3258.06 −0.238784 −0.119392 0.992847i \(-0.538095\pi\)
−0.119392 + 0.992847i \(0.538095\pi\)
\(572\) 13613.9 0.995152
\(573\) 0 0
\(574\) −1988.24 −0.144577
\(575\) 0 0
\(576\) 0 0
\(577\) 23758.4 1.71417 0.857083 0.515178i \(-0.172274\pi\)
0.857083 + 0.515178i \(0.172274\pi\)
\(578\) 5950.07 0.428184
\(579\) 0 0
\(580\) 0 0
\(581\) −2633.78 −0.188068
\(582\) 0 0
\(583\) −15470.8 −1.09903
\(584\) −12073.2 −0.855468
\(585\) 0 0
\(586\) −729.566 −0.0514302
\(587\) −596.893 −0.0419701 −0.0209850 0.999780i \(-0.506680\pi\)
−0.0209850 + 0.999780i \(0.506680\pi\)
\(588\) 0 0
\(589\) 6203.66 0.433985
\(590\) 0 0
\(591\) 0 0
\(592\) 1047.02 0.0726898
\(593\) −19496.3 −1.35012 −0.675058 0.737765i \(-0.735881\pi\)
−0.675058 + 0.737765i \(0.735881\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 13057.3 0.897396
\(597\) 0 0
\(598\) 12084.8 0.826395
\(599\) −3797.02 −0.259001 −0.129501 0.991579i \(-0.541337\pi\)
−0.129501 + 0.991579i \(0.541337\pi\)
\(600\) 0 0
\(601\) 5789.33 0.392931 0.196466 0.980511i \(-0.437054\pi\)
0.196466 + 0.980511i \(0.437054\pi\)
\(602\) −1728.76 −0.117041
\(603\) 0 0
\(604\) −524.850 −0.0353573
\(605\) 0 0
\(606\) 0 0
\(607\) 18536.4 1.23949 0.619745 0.784803i \(-0.287236\pi\)
0.619745 + 0.784803i \(0.287236\pi\)
\(608\) 23082.3 1.53966
\(609\) 0 0
\(610\) 0 0
\(611\) −3051.06 −0.202017
\(612\) 0 0
\(613\) 2163.47 0.142548 0.0712738 0.997457i \(-0.477294\pi\)
0.0712738 + 0.997457i \(0.477294\pi\)
\(614\) −8235.08 −0.541272
\(615\) 0 0
\(616\) −8909.59 −0.582756
\(617\) −22964.9 −1.49843 −0.749215 0.662327i \(-0.769569\pi\)
−0.749215 + 0.662327i \(0.769569\pi\)
\(618\) 0 0
\(619\) −1386.67 −0.0900401 −0.0450200 0.998986i \(-0.514335\pi\)
−0.0450200 + 0.998986i \(0.514335\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 3067.41 0.197736
\(623\) −7185.06 −0.462060
\(624\) 0 0
\(625\) 0 0
\(626\) −4092.35 −0.261283
\(627\) 0 0
\(628\) −12145.0 −0.771716
\(629\) −21281.4 −1.34904
\(630\) 0 0
\(631\) 5969.39 0.376605 0.188303 0.982111i \(-0.439701\pi\)
0.188303 + 0.982111i \(0.439701\pi\)
\(632\) 559.367 0.0352064
\(633\) 0 0
\(634\) −2791.14 −0.174843
\(635\) 0 0
\(636\) 0 0
\(637\) −2230.28 −0.138724
\(638\) 3875.25 0.240474
\(639\) 0 0
\(640\) 0 0
\(641\) −30367.1 −1.87118 −0.935592 0.353084i \(-0.885133\pi\)
−0.935592 + 0.353084i \(0.885133\pi\)
\(642\) 0 0
\(643\) 28592.2 1.75360 0.876802 0.480851i \(-0.159672\pi\)
0.876802 + 0.480851i \(0.159672\pi\)
\(644\) 5762.42 0.352595
\(645\) 0 0
\(646\) −19292.7 −1.17502
\(647\) 14507.9 0.881555 0.440778 0.897616i \(-0.354703\pi\)
0.440778 + 0.897616i \(0.354703\pi\)
\(648\) 0 0
\(649\) 13869.7 0.838877
\(650\) 0 0
\(651\) 0 0
\(652\) 6882.89 0.413428
\(653\) −6999.85 −0.419488 −0.209744 0.977756i \(-0.567263\pi\)
−0.209744 + 0.977756i \(0.567263\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −767.504 −0.0456799
\(657\) 0 0
\(658\) 786.035 0.0465696
\(659\) −7308.92 −0.432041 −0.216020 0.976389i \(-0.569308\pi\)
−0.216020 + 0.976389i \(0.569308\pi\)
\(660\) 0 0
\(661\) −30097.2 −1.77102 −0.885512 0.464617i \(-0.846192\pi\)
−0.885512 + 0.464617i \(0.846192\pi\)
\(662\) −9157.07 −0.537613
\(663\) 0 0
\(664\) 8315.91 0.486024
\(665\) 0 0
\(666\) 0 0
\(667\) −6366.92 −0.369608
\(668\) 10835.4 0.627594
\(669\) 0 0
\(670\) 0 0
\(671\) 5209.29 0.299706
\(672\) 0 0
\(673\) −5400.26 −0.309309 −0.154654 0.987969i \(-0.549426\pi\)
−0.154654 + 0.987969i \(0.549426\pi\)
\(674\) 17841.3 1.01962
\(675\) 0 0
\(676\) 650.781 0.0370267
\(677\) −6431.09 −0.365091 −0.182546 0.983197i \(-0.558434\pi\)
−0.182546 + 0.983197i \(0.558434\pi\)
\(678\) 0 0
\(679\) −6598.62 −0.372948
\(680\) 0 0
\(681\) 0 0
\(682\) 4780.92 0.268433
\(683\) 20865.8 1.16897 0.584486 0.811404i \(-0.301296\pi\)
0.584486 + 0.811404i \(0.301296\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 574.581 0.0319790
\(687\) 0 0
\(688\) −667.339 −0.0369797
\(689\) 12227.7 0.676109
\(690\) 0 0
\(691\) 18450.3 1.01575 0.507873 0.861432i \(-0.330432\pi\)
0.507873 + 0.861432i \(0.330432\pi\)
\(692\) 9962.76 0.547294
\(693\) 0 0
\(694\) −6732.70 −0.368256
\(695\) 0 0
\(696\) 0 0
\(697\) 15600.0 0.847766
\(698\) 17664.4 0.957890
\(699\) 0 0
\(700\) 0 0
\(701\) −12639.3 −0.680996 −0.340498 0.940245i \(-0.610596\pi\)
−0.340498 + 0.940245i \(0.610596\pi\)
\(702\) 0 0
\(703\) 28954.4 1.55339
\(704\) 15703.3 0.840680
\(705\) 0 0
\(706\) −4958.45 −0.264325
\(707\) 4232.32 0.225138
\(708\) 0 0
\(709\) −23126.8 −1.22503 −0.612514 0.790460i \(-0.709842\pi\)
−0.612514 + 0.790460i \(0.709842\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 22686.1 1.19410
\(713\) −7854.92 −0.412579
\(714\) 0 0
\(715\) 0 0
\(716\) 3267.16 0.170530
\(717\) 0 0
\(718\) −3635.39 −0.188957
\(719\) 24093.1 1.24968 0.624841 0.780752i \(-0.285164\pi\)
0.624841 + 0.780752i \(0.285164\pi\)
\(720\) 0 0
\(721\) −2106.77 −0.108821
\(722\) 14758.7 0.760750
\(723\) 0 0
\(724\) 14547.2 0.746741
\(725\) 0 0
\(726\) 0 0
\(727\) 35983.4 1.83570 0.917849 0.396931i \(-0.129925\pi\)
0.917849 + 0.396931i \(0.129925\pi\)
\(728\) 7041.89 0.358503
\(729\) 0 0
\(730\) 0 0
\(731\) 13564.1 0.686302
\(732\) 0 0
\(733\) −1451.50 −0.0731413 −0.0365706 0.999331i \(-0.511643\pi\)
−0.0365706 + 0.999331i \(0.511643\pi\)
\(734\) −2097.64 −0.105484
\(735\) 0 0
\(736\) −29226.3 −1.46371
\(737\) −23409.4 −1.17001
\(738\) 0 0
\(739\) −5891.67 −0.293273 −0.146636 0.989190i \(-0.546845\pi\)
−0.146636 + 0.989190i \(0.546845\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −3150.19 −0.155859
\(743\) −7438.65 −0.367292 −0.183646 0.982992i \(-0.558790\pi\)
−0.183646 + 0.982992i \(0.558790\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 7782.84 0.381970
\(747\) 0 0
\(748\) 27518.9 1.34518
\(749\) −10581.6 −0.516214
\(750\) 0 0
\(751\) 20272.4 0.985018 0.492509 0.870307i \(-0.336080\pi\)
0.492509 + 0.870307i \(0.336080\pi\)
\(752\) 303.427 0.0147139
\(753\) 0 0
\(754\) −3062.89 −0.147936
\(755\) 0 0
\(756\) 0 0
\(757\) −10193.8 −0.489432 −0.244716 0.969595i \(-0.578695\pi\)
−0.244716 + 0.969595i \(0.578695\pi\)
\(758\) 2403.59 0.115174
\(759\) 0 0
\(760\) 0 0
\(761\) 41117.6 1.95862 0.979311 0.202362i \(-0.0648618\pi\)
0.979311 + 0.202362i \(0.0648618\pi\)
\(762\) 0 0
\(763\) −12369.6 −0.586908
\(764\) 3844.76 0.182066
\(765\) 0 0
\(766\) 22140.2 1.04433
\(767\) −10962.2 −0.516065
\(768\) 0 0
\(769\) 11486.6 0.538642 0.269321 0.963050i \(-0.413201\pi\)
0.269321 + 0.963050i \(0.413201\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −21204.2 −0.988544
\(773\) 21799.2 1.01431 0.507156 0.861854i \(-0.330697\pi\)
0.507156 + 0.861854i \(0.330697\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 20834.5 0.963807
\(777\) 0 0
\(778\) 12990.9 0.598645
\(779\) −21224.5 −0.976185
\(780\) 0 0
\(781\) −19049.1 −0.872765
\(782\) 24428.0 1.11706
\(783\) 0 0
\(784\) 221.801 0.0101039
\(785\) 0 0
\(786\) 0 0
\(787\) −24080.3 −1.09068 −0.545342 0.838214i \(-0.683600\pi\)
−0.545342 + 0.838214i \(0.683600\pi\)
\(788\) 17736.4 0.801817
\(789\) 0 0
\(790\) 0 0
\(791\) −7316.87 −0.328898
\(792\) 0 0
\(793\) −4117.28 −0.184374
\(794\) −5964.96 −0.266610
\(795\) 0 0
\(796\) 17619.8 0.784569
\(797\) 17194.3 0.764184 0.382092 0.924124i \(-0.375204\pi\)
0.382092 + 0.924124i \(0.375204\pi\)
\(798\) 0 0
\(799\) −6167.35 −0.273073
\(800\) 0 0
\(801\) 0 0
\(802\) 9097.15 0.400538
\(803\) 31457.7 1.38246
\(804\) 0 0
\(805\) 0 0
\(806\) −3778.71 −0.165136
\(807\) 0 0
\(808\) −13363.1 −0.581823
\(809\) −33349.1 −1.44931 −0.724656 0.689111i \(-0.758001\pi\)
−0.724656 + 0.689111i \(0.758001\pi\)
\(810\) 0 0
\(811\) 4577.87 0.198213 0.0991066 0.995077i \(-0.468402\pi\)
0.0991066 + 0.995077i \(0.468402\pi\)
\(812\) −1460.48 −0.0631194
\(813\) 0 0
\(814\) 22314.0 0.960819
\(815\) 0 0
\(816\) 0 0
\(817\) −18454.6 −0.790262
\(818\) −16247.0 −0.694455
\(819\) 0 0
\(820\) 0 0
\(821\) 5832.52 0.247937 0.123969 0.992286i \(-0.460438\pi\)
0.123969 + 0.992286i \(0.460438\pi\)
\(822\) 0 0
\(823\) 37974.3 1.60838 0.804192 0.594369i \(-0.202598\pi\)
0.804192 + 0.594369i \(0.202598\pi\)
\(824\) 6651.92 0.281226
\(825\) 0 0
\(826\) 2824.15 0.118965
\(827\) −15796.2 −0.664193 −0.332096 0.943245i \(-0.607756\pi\)
−0.332096 + 0.943245i \(0.607756\pi\)
\(828\) 0 0
\(829\) −12714.1 −0.532666 −0.266333 0.963881i \(-0.585812\pi\)
−0.266333 + 0.963881i \(0.585812\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −12411.4 −0.517173
\(833\) −4508.25 −0.187517
\(834\) 0 0
\(835\) 0 0
\(836\) −37440.8 −1.54894
\(837\) 0 0
\(838\) −23169.0 −0.955085
\(839\) 42924.2 1.76628 0.883140 0.469109i \(-0.155425\pi\)
0.883140 + 0.469109i \(0.155425\pi\)
\(840\) 0 0
\(841\) −22775.3 −0.933835
\(842\) 27980.2 1.14520
\(843\) 0 0
\(844\) −17648.8 −0.719784
\(845\) 0 0
\(846\) 0 0
\(847\) 13897.6 0.563788
\(848\) −1216.04 −0.0492442
\(849\) 0 0
\(850\) 0 0
\(851\) −36661.3 −1.47677
\(852\) 0 0
\(853\) −36172.5 −1.45196 −0.725980 0.687716i \(-0.758613\pi\)
−0.725980 + 0.687716i \(0.758613\pi\)
\(854\) 1060.72 0.0425025
\(855\) 0 0
\(856\) 33410.4 1.33405
\(857\) 32039.9 1.27709 0.638544 0.769586i \(-0.279537\pi\)
0.638544 + 0.769586i \(0.279537\pi\)
\(858\) 0 0
\(859\) −6798.07 −0.270020 −0.135010 0.990844i \(-0.543107\pi\)
−0.135010 + 0.990844i \(0.543107\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −13692.9 −0.541046
\(863\) 30179.3 1.19040 0.595200 0.803577i \(-0.297073\pi\)
0.595200 + 0.803577i \(0.297073\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 23825.5 0.934901
\(867\) 0 0
\(868\) −1801.81 −0.0704578
\(869\) −1457.47 −0.0568946
\(870\) 0 0
\(871\) 18502.1 0.719772
\(872\) 39055.9 1.51674
\(873\) 0 0
\(874\) −33235.4 −1.28627
\(875\) 0 0
\(876\) 0 0
\(877\) −1700.51 −0.0654758 −0.0327379 0.999464i \(-0.510423\pi\)
−0.0327379 + 0.999464i \(0.510423\pi\)
\(878\) 9276.02 0.356549
\(879\) 0 0
\(880\) 0 0
\(881\) −1678.46 −0.0641869 −0.0320935 0.999485i \(-0.510217\pi\)
−0.0320935 + 0.999485i \(0.510217\pi\)
\(882\) 0 0
\(883\) 10285.8 0.392009 0.196005 0.980603i \(-0.437203\pi\)
0.196005 + 0.980603i \(0.437203\pi\)
\(884\) −21750.2 −0.827532
\(885\) 0 0
\(886\) −6657.24 −0.252432
\(887\) 12167.5 0.460593 0.230296 0.973121i \(-0.426030\pi\)
0.230296 + 0.973121i \(0.426030\pi\)
\(888\) 0 0
\(889\) 1825.09 0.0688543
\(890\) 0 0
\(891\) 0 0
\(892\) −948.452 −0.0356015
\(893\) 8390.96 0.314438
\(894\) 0 0
\(895\) 0 0
\(896\) −7128.73 −0.265797
\(897\) 0 0
\(898\) 25534.7 0.948892
\(899\) 1990.83 0.0738574
\(900\) 0 0
\(901\) 24716.9 0.913916
\(902\) −16356.9 −0.603799
\(903\) 0 0
\(904\) 23102.3 0.849968
\(905\) 0 0
\(906\) 0 0
\(907\) −50766.0 −1.85850 −0.929250 0.369452i \(-0.879545\pi\)
−0.929250 + 0.369452i \(0.879545\pi\)
\(908\) −16372.7 −0.598399
\(909\) 0 0
\(910\) 0 0
\(911\) −18451.1 −0.671033 −0.335517 0.942034i \(-0.608911\pi\)
−0.335517 + 0.942034i \(0.608911\pi\)
\(912\) 0 0
\(913\) −21667.8 −0.785431
\(914\) −18039.6 −0.652841
\(915\) 0 0
\(916\) −31227.1 −1.12639
\(917\) 5064.65 0.182388
\(918\) 0 0
\(919\) 393.861 0.0141374 0.00706870 0.999975i \(-0.497750\pi\)
0.00706870 + 0.999975i \(0.497750\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 557.167 0.0199016
\(923\) 15055.9 0.536912
\(924\) 0 0
\(925\) 0 0
\(926\) −13745.3 −0.487795
\(927\) 0 0
\(928\) 7407.39 0.262025
\(929\) −27452.3 −0.969517 −0.484759 0.874648i \(-0.661093\pi\)
−0.484759 + 0.874648i \(0.661093\pi\)
\(930\) 0 0
\(931\) 6133.68 0.215922
\(932\) −4885.63 −0.171710
\(933\) 0 0
\(934\) 280.803 0.00983744
\(935\) 0 0
\(936\) 0 0
\(937\) 21608.3 0.753375 0.376688 0.926340i \(-0.377063\pi\)
0.376688 + 0.926340i \(0.377063\pi\)
\(938\) −4766.65 −0.165924
\(939\) 0 0
\(940\) 0 0
\(941\) 16708.5 0.578832 0.289416 0.957203i \(-0.406539\pi\)
0.289416 + 0.957203i \(0.406539\pi\)
\(942\) 0 0
\(943\) 26874.0 0.928036
\(944\) 1090.19 0.0375874
\(945\) 0 0
\(946\) −14222.2 −0.488800
\(947\) −13972.8 −0.479466 −0.239733 0.970839i \(-0.577060\pi\)
−0.239733 + 0.970839i \(0.577060\pi\)
\(948\) 0 0
\(949\) −24863.3 −0.850471
\(950\) 0 0
\(951\) 0 0
\(952\) 14234.4 0.484599
\(953\) 11155.9 0.379197 0.189598 0.981862i \(-0.439281\pi\)
0.189598 + 0.981862i \(0.439281\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 26794.0 0.906466
\(957\) 0 0
\(958\) −11104.0 −0.374481
\(959\) −5415.85 −0.182364
\(960\) 0 0
\(961\) −27334.9 −0.917556
\(962\) −17636.4 −0.591081
\(963\) 0 0
\(964\) 2409.09 0.0804891
\(965\) 0 0
\(966\) 0 0
\(967\) −1212.55 −0.0403238 −0.0201619 0.999797i \(-0.506418\pi\)
−0.0201619 + 0.999797i \(0.506418\pi\)
\(968\) −43880.4 −1.45699
\(969\) 0 0
\(970\) 0 0
\(971\) 48832.2 1.61390 0.806952 0.590617i \(-0.201115\pi\)
0.806952 + 0.590617i \(0.201115\pi\)
\(972\) 0 0
\(973\) −20670.8 −0.681063
\(974\) −34578.0 −1.13753
\(975\) 0 0
\(976\) 409.462 0.0134289
\(977\) −5939.19 −0.194485 −0.0972424 0.995261i \(-0.531002\pi\)
−0.0972424 + 0.995261i \(0.531002\pi\)
\(978\) 0 0
\(979\) −59110.5 −1.92970
\(980\) 0 0
\(981\) 0 0
\(982\) 27993.3 0.909677
\(983\) 21863.5 0.709398 0.354699 0.934980i \(-0.384583\pi\)
0.354699 + 0.934980i \(0.384583\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −6191.26 −0.199970
\(987\) 0 0
\(988\) 29592.1 0.952886
\(989\) 23366.7 0.751283
\(990\) 0 0
\(991\) −44618.5 −1.43023 −0.715113 0.699009i \(-0.753625\pi\)
−0.715113 + 0.699009i \(0.753625\pi\)
\(992\) 9138.55 0.292489
\(993\) 0 0
\(994\) −3878.80 −0.123771
\(995\) 0 0
\(996\) 0 0
\(997\) −37923.9 −1.20468 −0.602338 0.798241i \(-0.705764\pi\)
−0.602338 + 0.798241i \(0.705764\pi\)
\(998\) −22997.8 −0.729441
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.4.a.bn.1.4 5
3.2 odd 2 175.4.a.j.1.2 5
5.2 odd 4 315.4.d.c.64.7 10
5.3 odd 4 315.4.d.c.64.4 10
5.4 even 2 1575.4.a.bq.1.2 5
15.2 even 4 35.4.b.a.29.4 10
15.8 even 4 35.4.b.a.29.7 yes 10
15.14 odd 2 175.4.a.i.1.4 5
21.20 even 2 1225.4.a.bh.1.2 5
60.23 odd 4 560.4.g.f.449.7 10
60.47 odd 4 560.4.g.f.449.4 10
105.2 even 12 245.4.j.e.214.4 20
105.17 odd 12 245.4.j.f.79.7 20
105.23 even 12 245.4.j.e.214.7 20
105.32 even 12 245.4.j.e.79.7 20
105.38 odd 12 245.4.j.f.79.4 20
105.47 odd 12 245.4.j.f.214.4 20
105.53 even 12 245.4.j.e.79.4 20
105.62 odd 4 245.4.b.d.99.4 10
105.68 odd 12 245.4.j.f.214.7 20
105.83 odd 4 245.4.b.d.99.7 10
105.104 even 2 1225.4.a.be.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.b.a.29.4 10 15.2 even 4
35.4.b.a.29.7 yes 10 15.8 even 4
175.4.a.i.1.4 5 15.14 odd 2
175.4.a.j.1.2 5 3.2 odd 2
245.4.b.d.99.4 10 105.62 odd 4
245.4.b.d.99.7 10 105.83 odd 4
245.4.j.e.79.4 20 105.53 even 12
245.4.j.e.79.7 20 105.32 even 12
245.4.j.e.214.4 20 105.2 even 12
245.4.j.e.214.7 20 105.23 even 12
245.4.j.f.79.4 20 105.38 odd 12
245.4.j.f.79.7 20 105.17 odd 12
245.4.j.f.214.4 20 105.47 odd 12
245.4.j.f.214.7 20 105.68 odd 12
315.4.d.c.64.4 10 5.3 odd 4
315.4.d.c.64.7 10 5.2 odd 4
560.4.g.f.449.4 10 60.47 odd 4
560.4.g.f.449.7 10 60.23 odd 4
1225.4.a.be.1.4 5 105.104 even 2
1225.4.a.bh.1.2 5 21.20 even 2
1575.4.a.bn.1.4 5 1.1 even 1 trivial
1575.4.a.bq.1.2 5 5.4 even 2