Properties

Label 1575.4.a.bn.1.2
Level $1575$
Weight $4$
Character 1575.1
Self dual yes
Analytic conductor $92.928$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,4,Mod(1,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.9280082590\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 27x^{3} + 7x^{2} + 120x + 60 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.85474\) of defining polynomial
Character \(\chi\) \(=\) 1575.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.85474 q^{2} +0.149548 q^{4} +7.00000 q^{7} +22.4110 q^{8} -37.4408 q^{11} +3.96370 q^{13} -19.9832 q^{14} -65.1740 q^{16} -51.6780 q^{17} +25.9323 q^{19} +106.884 q^{22} +173.454 q^{23} -11.3154 q^{26} +1.04684 q^{28} +245.676 q^{29} -172.074 q^{31} +6.76690 q^{32} +147.527 q^{34} -250.699 q^{37} -74.0300 q^{38} +48.8649 q^{41} -143.612 q^{43} -5.59920 q^{44} -495.167 q^{46} +36.6415 q^{47} +49.0000 q^{49} +0.592765 q^{52} -645.286 q^{53} +156.877 q^{56} -701.343 q^{58} -395.495 q^{59} +47.5130 q^{61} +491.228 q^{62} +502.074 q^{64} +263.189 q^{67} -7.72835 q^{68} +268.177 q^{71} +199.757 q^{73} +715.680 q^{74} +3.87813 q^{76} -262.085 q^{77} +473.640 q^{79} -139.497 q^{82} +72.7028 q^{83} +409.975 q^{86} -839.086 q^{88} +1552.25 q^{89} +27.7459 q^{91} +25.9398 q^{92} -104.602 q^{94} +243.338 q^{97} -139.882 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 4 q^{2} + 18 q^{4} + 35 q^{7} - 42 q^{8} - 42 q^{11} + 34 q^{13} - 28 q^{14} + 74 q^{16} - 238 q^{17} - 36 q^{19} + 358 q^{22} - 152 q^{23} + 310 q^{26} + 126 q^{28} + 44 q^{29} + 60 q^{31} - 710 q^{32}+ \cdots - 196 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.85474 −1.00930 −0.504652 0.863323i \(-0.668379\pi\)
−0.504652 + 0.863323i \(0.668379\pi\)
\(3\) 0 0
\(4\) 0.149548 0.0186935
\(5\) 0 0
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 22.4110 0.990436
\(9\) 0 0
\(10\) 0 0
\(11\) −37.4408 −1.02626 −0.513128 0.858312i \(-0.671513\pi\)
−0.513128 + 0.858312i \(0.671513\pi\)
\(12\) 0 0
\(13\) 3.96370 0.0845641 0.0422821 0.999106i \(-0.486537\pi\)
0.0422821 + 0.999106i \(0.486537\pi\)
\(14\) −19.9832 −0.381481
\(15\) 0 0
\(16\) −65.1740 −1.01834
\(17\) −51.6780 −0.737279 −0.368640 0.929572i \(-0.620176\pi\)
−0.368640 + 0.929572i \(0.620176\pi\)
\(18\) 0 0
\(19\) 25.9323 0.313120 0.156560 0.987668i \(-0.449960\pi\)
0.156560 + 0.987668i \(0.449960\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 106.884 1.03580
\(23\) 173.454 1.57251 0.786255 0.617902i \(-0.212017\pi\)
0.786255 + 0.617902i \(0.212017\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −11.3154 −0.0853509
\(27\) 0 0
\(28\) 1.04684 0.00706549
\(29\) 245.676 1.57314 0.786568 0.617503i \(-0.211856\pi\)
0.786568 + 0.617503i \(0.211856\pi\)
\(30\) 0 0
\(31\) −172.074 −0.996951 −0.498475 0.866904i \(-0.666107\pi\)
−0.498475 + 0.866904i \(0.666107\pi\)
\(32\) 6.76690 0.0373822
\(33\) 0 0
\(34\) 147.527 0.744139
\(35\) 0 0
\(36\) 0 0
\(37\) −250.699 −1.11391 −0.556954 0.830543i \(-0.688030\pi\)
−0.556954 + 0.830543i \(0.688030\pi\)
\(38\) −74.0300 −0.316033
\(39\) 0 0
\(40\) 0 0
\(41\) 48.8649 0.186132 0.0930661 0.995660i \(-0.470333\pi\)
0.0930661 + 0.995660i \(0.470333\pi\)
\(42\) 0 0
\(43\) −143.612 −0.509317 −0.254658 0.967031i \(-0.581963\pi\)
−0.254658 + 0.967031i \(0.581963\pi\)
\(44\) −5.59920 −0.0191844
\(45\) 0 0
\(46\) −495.167 −1.58714
\(47\) 36.6415 0.113717 0.0568587 0.998382i \(-0.481892\pi\)
0.0568587 + 0.998382i \(0.481892\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0.592765 0.00158080
\(53\) −645.286 −1.67239 −0.836196 0.548430i \(-0.815226\pi\)
−0.836196 + 0.548430i \(0.815226\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 156.877 0.374350
\(57\) 0 0
\(58\) −701.343 −1.58777
\(59\) −395.495 −0.872696 −0.436348 0.899778i \(-0.643728\pi\)
−0.436348 + 0.899778i \(0.643728\pi\)
\(60\) 0 0
\(61\) 47.5130 0.0997282 0.0498641 0.998756i \(-0.484121\pi\)
0.0498641 + 0.998756i \(0.484121\pi\)
\(62\) 491.228 1.00623
\(63\) 0 0
\(64\) 502.074 0.980614
\(65\) 0 0
\(66\) 0 0
\(67\) 263.189 0.479906 0.239953 0.970785i \(-0.422868\pi\)
0.239953 + 0.970785i \(0.422868\pi\)
\(68\) −7.72835 −0.0137824
\(69\) 0 0
\(70\) 0 0
\(71\) 268.177 0.448264 0.224132 0.974559i \(-0.428045\pi\)
0.224132 + 0.974559i \(0.428045\pi\)
\(72\) 0 0
\(73\) 199.757 0.320271 0.160136 0.987095i \(-0.448807\pi\)
0.160136 + 0.987095i \(0.448807\pi\)
\(74\) 715.680 1.12427
\(75\) 0 0
\(76\) 3.87813 0.00585331
\(77\) −262.085 −0.387888
\(78\) 0 0
\(79\) 473.640 0.674540 0.337270 0.941408i \(-0.390497\pi\)
0.337270 + 0.941408i \(0.390497\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −139.497 −0.187864
\(83\) 72.7028 0.0961466 0.0480733 0.998844i \(-0.484692\pi\)
0.0480733 + 0.998844i \(0.484692\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 409.975 0.514055
\(87\) 0 0
\(88\) −839.086 −1.01644
\(89\) 1552.25 1.84874 0.924369 0.381500i \(-0.124592\pi\)
0.924369 + 0.381500i \(0.124592\pi\)
\(90\) 0 0
\(91\) 27.7459 0.0319622
\(92\) 25.9398 0.0293958
\(93\) 0 0
\(94\) −104.602 −0.114775
\(95\) 0 0
\(96\) 0 0
\(97\) 243.338 0.254714 0.127357 0.991857i \(-0.459351\pi\)
0.127357 + 0.991857i \(0.459351\pi\)
\(98\) −139.882 −0.144186
\(99\) 0 0
\(100\) 0 0
\(101\) 1539.34 1.51653 0.758265 0.651946i \(-0.226047\pi\)
0.758265 + 0.651946i \(0.226047\pi\)
\(102\) 0 0
\(103\) 948.628 0.907486 0.453743 0.891133i \(-0.350088\pi\)
0.453743 + 0.891133i \(0.350088\pi\)
\(104\) 88.8306 0.0837554
\(105\) 0 0
\(106\) 1842.12 1.68795
\(107\) −863.983 −0.780602 −0.390301 0.920687i \(-0.627629\pi\)
−0.390301 + 0.920687i \(0.627629\pi\)
\(108\) 0 0
\(109\) 886.319 0.778844 0.389422 0.921060i \(-0.372675\pi\)
0.389422 + 0.921060i \(0.372675\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −456.218 −0.384898
\(113\) −765.957 −0.637657 −0.318828 0.947812i \(-0.603289\pi\)
−0.318828 + 0.947812i \(0.603289\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 36.7405 0.0294075
\(117\) 0 0
\(118\) 1129.04 0.880816
\(119\) −361.746 −0.278665
\(120\) 0 0
\(121\) 70.8116 0.0532018
\(122\) −135.637 −0.100656
\(123\) 0 0
\(124\) −25.7334 −0.0186365
\(125\) 0 0
\(126\) 0 0
\(127\) 505.042 0.352876 0.176438 0.984312i \(-0.443543\pi\)
0.176438 + 0.984312i \(0.443543\pi\)
\(128\) −1487.43 −1.02712
\(129\) 0 0
\(130\) 0 0
\(131\) −672.930 −0.448811 −0.224405 0.974496i \(-0.572044\pi\)
−0.224405 + 0.974496i \(0.572044\pi\)
\(132\) 0 0
\(133\) 181.526 0.118348
\(134\) −751.337 −0.484371
\(135\) 0 0
\(136\) −1158.16 −0.730228
\(137\) −1552.28 −0.968032 −0.484016 0.875059i \(-0.660822\pi\)
−0.484016 + 0.875059i \(0.660822\pi\)
\(138\) 0 0
\(139\) −1072.02 −0.654154 −0.327077 0.944998i \(-0.606064\pi\)
−0.327077 + 0.944998i \(0.606064\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −765.575 −0.452434
\(143\) −148.404 −0.0867845
\(144\) 0 0
\(145\) 0 0
\(146\) −570.255 −0.323251
\(147\) 0 0
\(148\) −37.4915 −0.0208229
\(149\) −645.936 −0.355149 −0.177574 0.984107i \(-0.556825\pi\)
−0.177574 + 0.984107i \(0.556825\pi\)
\(150\) 0 0
\(151\) 243.194 0.131065 0.0655326 0.997850i \(-0.479125\pi\)
0.0655326 + 0.997850i \(0.479125\pi\)
\(152\) 581.169 0.310125
\(153\) 0 0
\(154\) 748.186 0.391497
\(155\) 0 0
\(156\) 0 0
\(157\) −1552.56 −0.789223 −0.394611 0.918848i \(-0.629121\pi\)
−0.394611 + 0.918848i \(0.629121\pi\)
\(158\) −1352.12 −0.680815
\(159\) 0 0
\(160\) 0 0
\(161\) 1214.18 0.594353
\(162\) 0 0
\(163\) 2553.65 1.22710 0.613550 0.789656i \(-0.289741\pi\)
0.613550 + 0.789656i \(0.289741\pi\)
\(164\) 7.30766 0.00347947
\(165\) 0 0
\(166\) −207.548 −0.0970411
\(167\) −3573.14 −1.65568 −0.827839 0.560966i \(-0.810430\pi\)
−0.827839 + 0.560966i \(0.810430\pi\)
\(168\) 0 0
\(169\) −2181.29 −0.992849
\(170\) 0 0
\(171\) 0 0
\(172\) −21.4769 −0.00952093
\(173\) −2234.71 −0.982090 −0.491045 0.871134i \(-0.663385\pi\)
−0.491045 + 0.871134i \(0.663385\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2440.17 1.04508
\(177\) 0 0
\(178\) −4431.26 −1.86594
\(179\) 1830.53 0.764361 0.382180 0.924088i \(-0.375173\pi\)
0.382180 + 0.924088i \(0.375173\pi\)
\(180\) 0 0
\(181\) 2437.22 1.00087 0.500433 0.865775i \(-0.333174\pi\)
0.500433 + 0.865775i \(0.333174\pi\)
\(182\) −79.2075 −0.0322596
\(183\) 0 0
\(184\) 3887.29 1.55747
\(185\) 0 0
\(186\) 0 0
\(187\) 1934.86 0.756638
\(188\) 5.47968 0.00212578
\(189\) 0 0
\(190\) 0 0
\(191\) −5079.50 −1.92429 −0.962145 0.272538i \(-0.912137\pi\)
−0.962145 + 0.272538i \(0.912137\pi\)
\(192\) 0 0
\(193\) −2805.09 −1.04619 −0.523095 0.852274i \(-0.675223\pi\)
−0.523095 + 0.852274i \(0.675223\pi\)
\(194\) −694.667 −0.257084
\(195\) 0 0
\(196\) 7.32786 0.00267050
\(197\) 3107.79 1.12396 0.561982 0.827149i \(-0.310039\pi\)
0.561982 + 0.827149i \(0.310039\pi\)
\(198\) 0 0
\(199\) −2145.63 −0.764321 −0.382161 0.924096i \(-0.624820\pi\)
−0.382161 + 0.924096i \(0.624820\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −4394.41 −1.53064
\(203\) 1719.73 0.594590
\(204\) 0 0
\(205\) 0 0
\(206\) −2708.09 −0.915929
\(207\) 0 0
\(208\) −258.331 −0.0861154
\(209\) −970.925 −0.321341
\(210\) 0 0
\(211\) 2837.45 0.925772 0.462886 0.886418i \(-0.346814\pi\)
0.462886 + 0.886418i \(0.346814\pi\)
\(212\) −96.5013 −0.0312629
\(213\) 0 0
\(214\) 2466.45 0.787864
\(215\) 0 0
\(216\) 0 0
\(217\) −1204.52 −0.376812
\(218\) −2530.21 −0.786089
\(219\) 0 0
\(220\) 0 0
\(221\) −204.836 −0.0623474
\(222\) 0 0
\(223\) −4741.40 −1.42380 −0.711901 0.702280i \(-0.752166\pi\)
−0.711901 + 0.702280i \(0.752166\pi\)
\(224\) 47.3683 0.0141291
\(225\) 0 0
\(226\) 2186.61 0.643589
\(227\) 960.790 0.280925 0.140462 0.990086i \(-0.455141\pi\)
0.140462 + 0.990086i \(0.455141\pi\)
\(228\) 0 0
\(229\) 744.006 0.214696 0.107348 0.994222i \(-0.465764\pi\)
0.107348 + 0.994222i \(0.465764\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 5505.86 1.55809
\(233\) −1550.56 −0.435968 −0.217984 0.975952i \(-0.569948\pi\)
−0.217984 + 0.975952i \(0.569948\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −59.1456 −0.0163138
\(237\) 0 0
\(238\) 1032.69 0.281258
\(239\) −2775.00 −0.751045 −0.375523 0.926813i \(-0.622537\pi\)
−0.375523 + 0.926813i \(0.622537\pi\)
\(240\) 0 0
\(241\) −2550.20 −0.681630 −0.340815 0.940130i \(-0.610703\pi\)
−0.340815 + 0.940130i \(0.610703\pi\)
\(242\) −202.149 −0.0536968
\(243\) 0 0
\(244\) 7.10549 0.00186427
\(245\) 0 0
\(246\) 0 0
\(247\) 102.788 0.0264787
\(248\) −3856.36 −0.987416
\(249\) 0 0
\(250\) 0 0
\(251\) 2933.00 0.737568 0.368784 0.929515i \(-0.379774\pi\)
0.368784 + 0.929515i \(0.379774\pi\)
\(252\) 0 0
\(253\) −6494.26 −1.61380
\(254\) −1441.76 −0.356159
\(255\) 0 0
\(256\) 229.626 0.0560611
\(257\) −2725.22 −0.661459 −0.330729 0.943726i \(-0.607295\pi\)
−0.330729 + 0.943726i \(0.607295\pi\)
\(258\) 0 0
\(259\) −1754.89 −0.421018
\(260\) 0 0
\(261\) 0 0
\(262\) 1921.04 0.452986
\(263\) −3027.26 −0.709767 −0.354884 0.934910i \(-0.615480\pi\)
−0.354884 + 0.934910i \(0.615480\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −518.210 −0.119449
\(267\) 0 0
\(268\) 39.3595 0.00897114
\(269\) 1442.46 0.326946 0.163473 0.986548i \(-0.447730\pi\)
0.163473 + 0.986548i \(0.447730\pi\)
\(270\) 0 0
\(271\) −6464.45 −1.44903 −0.724516 0.689258i \(-0.757937\pi\)
−0.724516 + 0.689258i \(0.757937\pi\)
\(272\) 3368.06 0.750804
\(273\) 0 0
\(274\) 4431.36 0.977038
\(275\) 0 0
\(276\) 0 0
\(277\) −876.614 −0.190147 −0.0950733 0.995470i \(-0.530309\pi\)
−0.0950733 + 0.995470i \(0.530309\pi\)
\(278\) 3060.33 0.660240
\(279\) 0 0
\(280\) 0 0
\(281\) −6252.19 −1.32731 −0.663655 0.748038i \(-0.730996\pi\)
−0.663655 + 0.748038i \(0.730996\pi\)
\(282\) 0 0
\(283\) −2250.07 −0.472625 −0.236312 0.971677i \(-0.575939\pi\)
−0.236312 + 0.971677i \(0.575939\pi\)
\(284\) 40.1054 0.00837963
\(285\) 0 0
\(286\) 423.655 0.0875919
\(287\) 342.054 0.0703513
\(288\) 0 0
\(289\) −2242.39 −0.456419
\(290\) 0 0
\(291\) 0 0
\(292\) 29.8733 0.00598700
\(293\) −5917.86 −1.17995 −0.589975 0.807422i \(-0.700862\pi\)
−0.589975 + 0.807422i \(0.700862\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −5618.41 −1.10325
\(297\) 0 0
\(298\) 1843.98 0.358453
\(299\) 687.522 0.132978
\(300\) 0 0
\(301\) −1005.28 −0.192504
\(302\) −694.256 −0.132284
\(303\) 0 0
\(304\) −1690.11 −0.318864
\(305\) 0 0
\(306\) 0 0
\(307\) −9458.47 −1.75838 −0.879191 0.476469i \(-0.841916\pi\)
−0.879191 + 0.476469i \(0.841916\pi\)
\(308\) −39.1944 −0.00725100
\(309\) 0 0
\(310\) 0 0
\(311\) 7576.78 1.38148 0.690739 0.723104i \(-0.257285\pi\)
0.690739 + 0.723104i \(0.257285\pi\)
\(312\) 0 0
\(313\) 9172.41 1.65641 0.828204 0.560427i \(-0.189363\pi\)
0.828204 + 0.560427i \(0.189363\pi\)
\(314\) 4432.16 0.796565
\(315\) 0 0
\(316\) 70.8320 0.0126095
\(317\) −3077.94 −0.545345 −0.272672 0.962107i \(-0.587908\pi\)
−0.272672 + 0.962107i \(0.587908\pi\)
\(318\) 0 0
\(319\) −9198.31 −1.61444
\(320\) 0 0
\(321\) 0 0
\(322\) −3466.17 −0.599882
\(323\) −1340.13 −0.230857
\(324\) 0 0
\(325\) 0 0
\(326\) −7290.01 −1.23852
\(327\) 0 0
\(328\) 1095.11 0.184352
\(329\) 256.491 0.0429811
\(330\) 0 0
\(331\) 3234.50 0.537113 0.268557 0.963264i \(-0.413453\pi\)
0.268557 + 0.963264i \(0.413453\pi\)
\(332\) 10.8726 0.00179732
\(333\) 0 0
\(334\) 10200.4 1.67108
\(335\) 0 0
\(336\) 0 0
\(337\) 3777.84 0.610658 0.305329 0.952247i \(-0.401234\pi\)
0.305329 + 0.952247i \(0.401234\pi\)
\(338\) 6227.02 1.00209
\(339\) 0 0
\(340\) 0 0
\(341\) 6442.60 1.02313
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) −3218.49 −0.504446
\(345\) 0 0
\(346\) 6379.51 0.991227
\(347\) −8244.08 −1.27540 −0.637702 0.770283i \(-0.720115\pi\)
−0.637702 + 0.770283i \(0.720115\pi\)
\(348\) 0 0
\(349\) 7173.78 1.10030 0.550148 0.835067i \(-0.314571\pi\)
0.550148 + 0.835067i \(0.314571\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −253.358 −0.0383637
\(353\) −4191.51 −0.631987 −0.315994 0.948761i \(-0.602338\pi\)
−0.315994 + 0.948761i \(0.602338\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 232.136 0.0345594
\(357\) 0 0
\(358\) −5225.70 −0.771472
\(359\) 3136.29 0.461078 0.230539 0.973063i \(-0.425951\pi\)
0.230539 + 0.973063i \(0.425951\pi\)
\(360\) 0 0
\(361\) −6186.52 −0.901956
\(362\) −6957.62 −1.01018
\(363\) 0 0
\(364\) 4.14936 0.000597487 0
\(365\) 0 0
\(366\) 0 0
\(367\) −1723.30 −0.245110 −0.122555 0.992462i \(-0.539109\pi\)
−0.122555 + 0.992462i \(0.539109\pi\)
\(368\) −11304.7 −1.60136
\(369\) 0 0
\(370\) 0 0
\(371\) −4517.00 −0.632105
\(372\) 0 0
\(373\) 2818.55 0.391258 0.195629 0.980678i \(-0.437325\pi\)
0.195629 + 0.980678i \(0.437325\pi\)
\(374\) −5523.53 −0.763677
\(375\) 0 0
\(376\) 821.174 0.112630
\(377\) 973.788 0.133031
\(378\) 0 0
\(379\) −10466.1 −1.41849 −0.709246 0.704961i \(-0.750964\pi\)
−0.709246 + 0.704961i \(0.750964\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 14500.6 1.94219
\(383\) 258.055 0.0344282 0.0172141 0.999852i \(-0.494520\pi\)
0.0172141 + 0.999852i \(0.494520\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 8007.81 1.05592
\(387\) 0 0
\(388\) 36.3908 0.00476150
\(389\) −4573.87 −0.596156 −0.298078 0.954542i \(-0.596346\pi\)
−0.298078 + 0.954542i \(0.596346\pi\)
\(390\) 0 0
\(391\) −8963.77 −1.15938
\(392\) 1098.14 0.141491
\(393\) 0 0
\(394\) −8871.94 −1.13442
\(395\) 0 0
\(396\) 0 0
\(397\) 3624.55 0.458215 0.229107 0.973401i \(-0.426419\pi\)
0.229107 + 0.973401i \(0.426419\pi\)
\(398\) 6125.23 0.771432
\(399\) 0 0
\(400\) 0 0
\(401\) −6358.32 −0.791819 −0.395910 0.918289i \(-0.629571\pi\)
−0.395910 + 0.918289i \(0.629571\pi\)
\(402\) 0 0
\(403\) −682.052 −0.0843063
\(404\) 230.205 0.0283493
\(405\) 0 0
\(406\) −4909.40 −0.600121
\(407\) 9386.35 1.14316
\(408\) 0 0
\(409\) −6536.39 −0.790228 −0.395114 0.918632i \(-0.629295\pi\)
−0.395114 + 0.918632i \(0.629295\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 141.866 0.0169641
\(413\) −2768.47 −0.329848
\(414\) 0 0
\(415\) 0 0
\(416\) 26.8220 0.00316119
\(417\) 0 0
\(418\) 2771.74 0.324331
\(419\) −6333.56 −0.738460 −0.369230 0.929338i \(-0.620379\pi\)
−0.369230 + 0.929338i \(0.620379\pi\)
\(420\) 0 0
\(421\) −8139.62 −0.942282 −0.471141 0.882058i \(-0.656158\pi\)
−0.471141 + 0.882058i \(0.656158\pi\)
\(422\) −8100.18 −0.934385
\(423\) 0 0
\(424\) −14461.5 −1.65640
\(425\) 0 0
\(426\) 0 0
\(427\) 332.591 0.0376937
\(428\) −129.207 −0.0145922
\(429\) 0 0
\(430\) 0 0
\(431\) 14367.6 1.60571 0.802856 0.596173i \(-0.203313\pi\)
0.802856 + 0.596173i \(0.203313\pi\)
\(432\) 0 0
\(433\) −8399.05 −0.932176 −0.466088 0.884738i \(-0.654337\pi\)
−0.466088 + 0.884738i \(0.654337\pi\)
\(434\) 3438.59 0.380318
\(435\) 0 0
\(436\) 132.547 0.0145593
\(437\) 4498.07 0.492384
\(438\) 0 0
\(439\) −17860.8 −1.94180 −0.970901 0.239482i \(-0.923022\pi\)
−0.970901 + 0.239482i \(0.923022\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 584.754 0.0629274
\(443\) −1901.57 −0.203942 −0.101971 0.994787i \(-0.532515\pi\)
−0.101971 + 0.994787i \(0.532515\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 13535.5 1.43705
\(447\) 0 0
\(448\) 3514.52 0.370637
\(449\) 5185.68 0.545050 0.272525 0.962149i \(-0.412141\pi\)
0.272525 + 0.962149i \(0.412141\pi\)
\(450\) 0 0
\(451\) −1829.54 −0.191019
\(452\) −114.548 −0.0119201
\(453\) 0 0
\(454\) −2742.81 −0.283538
\(455\) 0 0
\(456\) 0 0
\(457\) −11198.8 −1.14630 −0.573149 0.819451i \(-0.694278\pi\)
−0.573149 + 0.819451i \(0.694278\pi\)
\(458\) −2123.94 −0.216693
\(459\) 0 0
\(460\) 0 0
\(461\) −17270.7 −1.74485 −0.872427 0.488744i \(-0.837455\pi\)
−0.872427 + 0.488744i \(0.837455\pi\)
\(462\) 0 0
\(463\) 385.660 0.0387109 0.0193554 0.999813i \(-0.493839\pi\)
0.0193554 + 0.999813i \(0.493839\pi\)
\(464\) −16011.7 −1.60199
\(465\) 0 0
\(466\) 4426.44 0.440024
\(467\) −5035.36 −0.498947 −0.249474 0.968382i \(-0.580258\pi\)
−0.249474 + 0.968382i \(0.580258\pi\)
\(468\) 0 0
\(469\) 1842.33 0.181387
\(470\) 0 0
\(471\) 0 0
\(472\) −8863.45 −0.864350
\(473\) 5376.94 0.522689
\(474\) 0 0
\(475\) 0 0
\(476\) −54.0985 −0.00520924
\(477\) 0 0
\(478\) 7921.91 0.758033
\(479\) 8681.99 0.828163 0.414082 0.910240i \(-0.364103\pi\)
0.414082 + 0.910240i \(0.364103\pi\)
\(480\) 0 0
\(481\) −993.695 −0.0941967
\(482\) 7280.16 0.687972
\(483\) 0 0
\(484\) 10.5898 0.000994530 0
\(485\) 0 0
\(486\) 0 0
\(487\) 890.476 0.0828569 0.0414284 0.999141i \(-0.486809\pi\)
0.0414284 + 0.999141i \(0.486809\pi\)
\(488\) 1064.81 0.0987744
\(489\) 0 0
\(490\) 0 0
\(491\) −1562.48 −0.143613 −0.0718063 0.997419i \(-0.522876\pi\)
−0.0718063 + 0.997419i \(0.522876\pi\)
\(492\) 0 0
\(493\) −12696.1 −1.15984
\(494\) −293.433 −0.0267250
\(495\) 0 0
\(496\) 11214.8 1.01524
\(497\) 1877.24 0.169428
\(498\) 0 0
\(499\) 8234.33 0.738716 0.369358 0.929287i \(-0.379578\pi\)
0.369358 + 0.929287i \(0.379578\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −8372.97 −0.744430
\(503\) −72.5340 −0.00642969 −0.00321484 0.999995i \(-0.501023\pi\)
−0.00321484 + 0.999995i \(0.501023\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 18539.4 1.62881
\(507\) 0 0
\(508\) 75.5281 0.00659649
\(509\) −7793.44 −0.678660 −0.339330 0.940667i \(-0.610200\pi\)
−0.339330 + 0.940667i \(0.610200\pi\)
\(510\) 0 0
\(511\) 1398.30 0.121051
\(512\) 11243.9 0.970537
\(513\) 0 0
\(514\) 7779.81 0.667612
\(515\) 0 0
\(516\) 0 0
\(517\) −1371.89 −0.116703
\(518\) 5009.76 0.424935
\(519\) 0 0
\(520\) 0 0
\(521\) −4645.42 −0.390633 −0.195316 0.980740i \(-0.562573\pi\)
−0.195316 + 0.980740i \(0.562573\pi\)
\(522\) 0 0
\(523\) 8783.88 0.734402 0.367201 0.930142i \(-0.380316\pi\)
0.367201 + 0.930142i \(0.380316\pi\)
\(524\) −100.636 −0.00838986
\(525\) 0 0
\(526\) 8642.04 0.716371
\(527\) 8892.46 0.735031
\(528\) 0 0
\(529\) 17919.4 1.47279
\(530\) 0 0
\(531\) 0 0
\(532\) 27.1469 0.00221234
\(533\) 193.686 0.0157401
\(534\) 0 0
\(535\) 0 0
\(536\) 5898.34 0.475316
\(537\) 0 0
\(538\) −4117.86 −0.329988
\(539\) −1834.60 −0.146608
\(540\) 0 0
\(541\) −7054.13 −0.560593 −0.280296 0.959913i \(-0.590433\pi\)
−0.280296 + 0.959913i \(0.590433\pi\)
\(542\) 18454.3 1.46251
\(543\) 0 0
\(544\) −349.700 −0.0275611
\(545\) 0 0
\(546\) 0 0
\(547\) −5776.83 −0.451553 −0.225776 0.974179i \(-0.572492\pi\)
−0.225776 + 0.974179i \(0.572492\pi\)
\(548\) −232.141 −0.0180959
\(549\) 0 0
\(550\) 0 0
\(551\) 6370.95 0.492580
\(552\) 0 0
\(553\) 3315.48 0.254952
\(554\) 2502.51 0.191916
\(555\) 0 0
\(556\) −160.318 −0.0122284
\(557\) −20562.6 −1.56421 −0.782106 0.623145i \(-0.785854\pi\)
−0.782106 + 0.623145i \(0.785854\pi\)
\(558\) 0 0
\(559\) −569.235 −0.0430699
\(560\) 0 0
\(561\) 0 0
\(562\) 17848.4 1.33966
\(563\) 24009.5 1.79730 0.898650 0.438666i \(-0.144549\pi\)
0.898650 + 0.438666i \(0.144549\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 6423.37 0.477022
\(567\) 0 0
\(568\) 6010.11 0.443977
\(569\) 24157.5 1.77985 0.889925 0.456107i \(-0.150757\pi\)
0.889925 + 0.456107i \(0.150757\pi\)
\(570\) 0 0
\(571\) −706.993 −0.0518157 −0.0259078 0.999664i \(-0.508248\pi\)
−0.0259078 + 0.999664i \(0.508248\pi\)
\(572\) −22.1936 −0.00162231
\(573\) 0 0
\(574\) −976.477 −0.0710059
\(575\) 0 0
\(576\) 0 0
\(577\) 16057.2 1.15853 0.579265 0.815139i \(-0.303340\pi\)
0.579265 + 0.815139i \(0.303340\pi\)
\(578\) 6401.44 0.460665
\(579\) 0 0
\(580\) 0 0
\(581\) 508.919 0.0363400
\(582\) 0 0
\(583\) 24160.0 1.71630
\(584\) 4476.76 0.317208
\(585\) 0 0
\(586\) 16894.0 1.19093
\(587\) −8605.63 −0.605098 −0.302549 0.953134i \(-0.597838\pi\)
−0.302549 + 0.953134i \(0.597838\pi\)
\(588\) 0 0
\(589\) −4462.28 −0.312165
\(590\) 0 0
\(591\) 0 0
\(592\) 16339.0 1.13434
\(593\) 20355.6 1.40962 0.704809 0.709397i \(-0.251033\pi\)
0.704809 + 0.709397i \(0.251033\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −96.5986 −0.00663898
\(597\) 0 0
\(598\) −1962.70 −0.134215
\(599\) −22635.7 −1.54402 −0.772010 0.635610i \(-0.780749\pi\)
−0.772010 + 0.635610i \(0.780749\pi\)
\(600\) 0 0
\(601\) −22553.8 −1.53077 −0.765383 0.643575i \(-0.777450\pi\)
−0.765383 + 0.643575i \(0.777450\pi\)
\(602\) 2869.83 0.194295
\(603\) 0 0
\(604\) 36.3692 0.00245007
\(605\) 0 0
\(606\) 0 0
\(607\) −17534.2 −1.17248 −0.586238 0.810139i \(-0.699392\pi\)
−0.586238 + 0.810139i \(0.699392\pi\)
\(608\) 175.481 0.0117051
\(609\) 0 0
\(610\) 0 0
\(611\) 145.236 0.00961641
\(612\) 0 0
\(613\) −10445.5 −0.688238 −0.344119 0.938926i \(-0.611822\pi\)
−0.344119 + 0.938926i \(0.611822\pi\)
\(614\) 27001.5 1.77474
\(615\) 0 0
\(616\) −5873.60 −0.384179
\(617\) −13218.9 −0.862516 −0.431258 0.902229i \(-0.641930\pi\)
−0.431258 + 0.902229i \(0.641930\pi\)
\(618\) 0 0
\(619\) 23438.9 1.52195 0.760976 0.648780i \(-0.224720\pi\)
0.760976 + 0.648780i \(0.224720\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −21629.8 −1.39433
\(623\) 10865.7 0.698757
\(624\) 0 0
\(625\) 0 0
\(626\) −26184.9 −1.67182
\(627\) 0 0
\(628\) −232.183 −0.0147534
\(629\) 12955.6 0.821262
\(630\) 0 0
\(631\) −874.004 −0.0551403 −0.0275702 0.999620i \(-0.508777\pi\)
−0.0275702 + 0.999620i \(0.508777\pi\)
\(632\) 10614.7 0.668089
\(633\) 0 0
\(634\) 8786.72 0.550419
\(635\) 0 0
\(636\) 0 0
\(637\) 194.222 0.0120806
\(638\) 26258.8 1.62946
\(639\) 0 0
\(640\) 0 0
\(641\) −23977.0 −1.47743 −0.738715 0.674017i \(-0.764567\pi\)
−0.738715 + 0.674017i \(0.764567\pi\)
\(642\) 0 0
\(643\) −27698.0 −1.69876 −0.849380 0.527782i \(-0.823024\pi\)
−0.849380 + 0.527782i \(0.823024\pi\)
\(644\) 181.579 0.0111106
\(645\) 0 0
\(646\) 3825.72 0.233004
\(647\) 10965.1 0.666282 0.333141 0.942877i \(-0.391891\pi\)
0.333141 + 0.942877i \(0.391891\pi\)
\(648\) 0 0
\(649\) 14807.6 0.895610
\(650\) 0 0
\(651\) 0 0
\(652\) 381.894 0.0229388
\(653\) 12336.2 0.739285 0.369642 0.929174i \(-0.379480\pi\)
0.369642 + 0.929174i \(0.379480\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −3184.72 −0.189547
\(657\) 0 0
\(658\) −732.215 −0.0433810
\(659\) 25275.6 1.49408 0.747040 0.664779i \(-0.231474\pi\)
0.747040 + 0.664779i \(0.231474\pi\)
\(660\) 0 0
\(661\) −4447.92 −0.261731 −0.130865 0.991400i \(-0.541776\pi\)
−0.130865 + 0.991400i \(0.541776\pi\)
\(662\) −9233.67 −0.542110
\(663\) 0 0
\(664\) 1629.34 0.0952270
\(665\) 0 0
\(666\) 0 0
\(667\) 42613.6 2.47377
\(668\) −534.357 −0.0309505
\(669\) 0 0
\(670\) 0 0
\(671\) −1778.92 −0.102347
\(672\) 0 0
\(673\) 30358.9 1.73885 0.869427 0.494061i \(-0.164488\pi\)
0.869427 + 0.494061i \(0.164488\pi\)
\(674\) −10784.7 −0.616340
\(675\) 0 0
\(676\) −326.208 −0.0185599
\(677\) −6916.48 −0.392647 −0.196324 0.980539i \(-0.562900\pi\)
−0.196324 + 0.980539i \(0.562900\pi\)
\(678\) 0 0
\(679\) 1703.37 0.0962728
\(680\) 0 0
\(681\) 0 0
\(682\) −18392.0 −1.03265
\(683\) −4532.72 −0.253938 −0.126969 0.991907i \(-0.540525\pi\)
−0.126969 + 0.991907i \(0.540525\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −979.176 −0.0544973
\(687\) 0 0
\(688\) 9359.77 0.518660
\(689\) −2557.72 −0.141424
\(690\) 0 0
\(691\) 27235.2 1.49939 0.749694 0.661785i \(-0.230201\pi\)
0.749694 + 0.661785i \(0.230201\pi\)
\(692\) −334.197 −0.0183587
\(693\) 0 0
\(694\) 23534.7 1.28727
\(695\) 0 0
\(696\) 0 0
\(697\) −2525.24 −0.137231
\(698\) −20479.3 −1.11053
\(699\) 0 0
\(700\) 0 0
\(701\) 17144.3 0.923726 0.461863 0.886951i \(-0.347181\pi\)
0.461863 + 0.886951i \(0.347181\pi\)
\(702\) 0 0
\(703\) −6501.19 −0.348787
\(704\) −18798.1 −1.00636
\(705\) 0 0
\(706\) 11965.7 0.637867
\(707\) 10775.3 0.573195
\(708\) 0 0
\(709\) 16724.1 0.885877 0.442939 0.896552i \(-0.353936\pi\)
0.442939 + 0.896552i \(0.353936\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 34787.4 1.83106
\(713\) −29847.0 −1.56771
\(714\) 0 0
\(715\) 0 0
\(716\) 273.753 0.0142886
\(717\) 0 0
\(718\) −8953.30 −0.465368
\(719\) −4308.66 −0.223485 −0.111743 0.993737i \(-0.535643\pi\)
−0.111743 + 0.993737i \(0.535643\pi\)
\(720\) 0 0
\(721\) 6640.39 0.342997
\(722\) 17660.9 0.910347
\(723\) 0 0
\(724\) 364.481 0.0187097
\(725\) 0 0
\(726\) 0 0
\(727\) −29435.6 −1.50166 −0.750830 0.660496i \(-0.770346\pi\)
−0.750830 + 0.660496i \(0.770346\pi\)
\(728\) 621.814 0.0316566
\(729\) 0 0
\(730\) 0 0
\(731\) 7421.58 0.375509
\(732\) 0 0
\(733\) −6587.69 −0.331954 −0.165977 0.986130i \(-0.553078\pi\)
−0.165977 + 0.986130i \(0.553078\pi\)
\(734\) 4919.57 0.247390
\(735\) 0 0
\(736\) 1173.75 0.0587839
\(737\) −9854.01 −0.492506
\(738\) 0 0
\(739\) 3684.46 0.183404 0.0917018 0.995787i \(-0.470769\pi\)
0.0917018 + 0.995787i \(0.470769\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 12894.9 0.637986
\(743\) −12271.9 −0.605940 −0.302970 0.953000i \(-0.597978\pi\)
−0.302970 + 0.953000i \(0.597978\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −8046.24 −0.394898
\(747\) 0 0
\(748\) 289.355 0.0141442
\(749\) −6047.88 −0.295040
\(750\) 0 0
\(751\) −30871.0 −1.50000 −0.749999 0.661439i \(-0.769946\pi\)
−0.749999 + 0.661439i \(0.769946\pi\)
\(752\) −2388.08 −0.115803
\(753\) 0 0
\(754\) −2779.91 −0.134269
\(755\) 0 0
\(756\) 0 0
\(757\) 11442.1 0.549368 0.274684 0.961535i \(-0.411427\pi\)
0.274684 + 0.961535i \(0.411427\pi\)
\(758\) 29878.1 1.43169
\(759\) 0 0
\(760\) 0 0
\(761\) −14423.3 −0.687048 −0.343524 0.939144i \(-0.611621\pi\)
−0.343524 + 0.939144i \(0.611621\pi\)
\(762\) 0 0
\(763\) 6204.23 0.294375
\(764\) −759.630 −0.0359718
\(765\) 0 0
\(766\) −736.681 −0.0347485
\(767\) −1567.63 −0.0737988
\(768\) 0 0
\(769\) 26772.8 1.25546 0.627731 0.778430i \(-0.283984\pi\)
0.627731 + 0.778430i \(0.283984\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −419.496 −0.0195570
\(773\) −27669.3 −1.28745 −0.643724 0.765258i \(-0.722611\pi\)
−0.643724 + 0.765258i \(0.722611\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 5453.45 0.252278
\(777\) 0 0
\(778\) 13057.2 0.601702
\(779\) 1267.18 0.0582816
\(780\) 0 0
\(781\) −10040.7 −0.460034
\(782\) 25589.2 1.17017
\(783\) 0 0
\(784\) −3193.53 −0.145478
\(785\) 0 0
\(786\) 0 0
\(787\) −10934.5 −0.495263 −0.247632 0.968854i \(-0.579652\pi\)
−0.247632 + 0.968854i \(0.579652\pi\)
\(788\) 464.765 0.0210109
\(789\) 0 0
\(790\) 0 0
\(791\) −5361.70 −0.241012
\(792\) 0 0
\(793\) 188.328 0.00843343
\(794\) −10347.2 −0.462478
\(795\) 0 0
\(796\) −320.876 −0.0142879
\(797\) 31967.3 1.42075 0.710376 0.703823i \(-0.248525\pi\)
0.710376 + 0.703823i \(0.248525\pi\)
\(798\) 0 0
\(799\) −1893.56 −0.0838415
\(800\) 0 0
\(801\) 0 0
\(802\) 18151.4 0.799186
\(803\) −7479.06 −0.328680
\(804\) 0 0
\(805\) 0 0
\(806\) 1947.08 0.0850906
\(807\) 0 0
\(808\) 34498.1 1.50203
\(809\) 17924.8 0.778989 0.389495 0.921029i \(-0.372650\pi\)
0.389495 + 0.921029i \(0.372650\pi\)
\(810\) 0 0
\(811\) 28541.4 1.23579 0.617895 0.786261i \(-0.287986\pi\)
0.617895 + 0.786261i \(0.287986\pi\)
\(812\) 257.183 0.0111150
\(813\) 0 0
\(814\) −26795.6 −1.15379
\(815\) 0 0
\(816\) 0 0
\(817\) −3724.19 −0.159477
\(818\) 18659.7 0.797580
\(819\) 0 0
\(820\) 0 0
\(821\) −18878.6 −0.802517 −0.401259 0.915965i \(-0.631427\pi\)
−0.401259 + 0.915965i \(0.631427\pi\)
\(822\) 0 0
\(823\) 46589.1 1.97326 0.986631 0.162971i \(-0.0521078\pi\)
0.986631 + 0.162971i \(0.0521078\pi\)
\(824\) 21259.7 0.898807
\(825\) 0 0
\(826\) 7903.26 0.332917
\(827\) −14649.8 −0.615989 −0.307994 0.951388i \(-0.599658\pi\)
−0.307994 + 0.951388i \(0.599658\pi\)
\(828\) 0 0
\(829\) −34408.0 −1.44154 −0.720771 0.693173i \(-0.756212\pi\)
−0.720771 + 0.693173i \(0.756212\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1990.07 0.0829248
\(833\) −2532.22 −0.105326
\(834\) 0 0
\(835\) 0 0
\(836\) −145.200 −0.00600700
\(837\) 0 0
\(838\) 18080.7 0.745331
\(839\) −25934.2 −1.06716 −0.533580 0.845749i \(-0.679154\pi\)
−0.533580 + 0.845749i \(0.679154\pi\)
\(840\) 0 0
\(841\) 35967.9 1.47476
\(842\) 23236.5 0.951048
\(843\) 0 0
\(844\) 424.335 0.0173060
\(845\) 0 0
\(846\) 0 0
\(847\) 495.681 0.0201084
\(848\) 42055.9 1.70307
\(849\) 0 0
\(850\) 0 0
\(851\) −43484.8 −1.75163
\(852\) 0 0
\(853\) −48456.3 −1.94503 −0.972516 0.232836i \(-0.925199\pi\)
−0.972516 + 0.232836i \(0.925199\pi\)
\(854\) −949.462 −0.0380444
\(855\) 0 0
\(856\) −19362.7 −0.773136
\(857\) −36273.9 −1.44585 −0.722924 0.690928i \(-0.757202\pi\)
−0.722924 + 0.690928i \(0.757202\pi\)
\(858\) 0 0
\(859\) 28067.2 1.11483 0.557415 0.830234i \(-0.311793\pi\)
0.557415 + 0.830234i \(0.311793\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −41015.7 −1.62065
\(863\) 8330.92 0.328607 0.164303 0.986410i \(-0.447462\pi\)
0.164303 + 0.986410i \(0.447462\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 23977.1 0.940849
\(867\) 0 0
\(868\) −180.134 −0.00704395
\(869\) −17733.4 −0.692251
\(870\) 0 0
\(871\) 1043.20 0.0405828
\(872\) 19863.3 0.771395
\(873\) 0 0
\(874\) −12840.8 −0.496965
\(875\) 0 0
\(876\) 0 0
\(877\) −16469.6 −0.634137 −0.317068 0.948403i \(-0.602698\pi\)
−0.317068 + 0.948403i \(0.602698\pi\)
\(878\) 50988.0 1.95987
\(879\) 0 0
\(880\) 0 0
\(881\) 46635.9 1.78343 0.891715 0.452597i \(-0.149502\pi\)
0.891715 + 0.452597i \(0.149502\pi\)
\(882\) 0 0
\(883\) 14075.8 0.536453 0.268227 0.963356i \(-0.413562\pi\)
0.268227 + 0.963356i \(0.413562\pi\)
\(884\) −30.6329 −0.00116549
\(885\) 0 0
\(886\) 5428.48 0.205839
\(887\) −26222.9 −0.992649 −0.496324 0.868137i \(-0.665317\pi\)
−0.496324 + 0.868137i \(0.665317\pi\)
\(888\) 0 0
\(889\) 3535.29 0.133374
\(890\) 0 0
\(891\) 0 0
\(892\) −709.069 −0.0266159
\(893\) 950.199 0.0356072
\(894\) 0 0
\(895\) 0 0
\(896\) −10412.0 −0.388215
\(897\) 0 0
\(898\) −14803.8 −0.550121
\(899\) −42274.6 −1.56834
\(900\) 0 0
\(901\) 33347.1 1.23302
\(902\) 5222.87 0.192796
\(903\) 0 0
\(904\) −17165.9 −0.631558
\(905\) 0 0
\(906\) 0 0
\(907\) −15373.0 −0.562793 −0.281396 0.959592i \(-0.590798\pi\)
−0.281396 + 0.959592i \(0.590798\pi\)
\(908\) 143.685 0.00525147
\(909\) 0 0
\(910\) 0 0
\(911\) 21189.3 0.770619 0.385310 0.922787i \(-0.374095\pi\)
0.385310 + 0.922787i \(0.374095\pi\)
\(912\) 0 0
\(913\) −2722.05 −0.0986710
\(914\) 31969.7 1.15696
\(915\) 0 0
\(916\) 111.265 0.00401342
\(917\) −4710.51 −0.169635
\(918\) 0 0
\(919\) −18364.2 −0.659172 −0.329586 0.944126i \(-0.606909\pi\)
−0.329586 + 0.944126i \(0.606909\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 49303.4 1.76109
\(923\) 1062.97 0.0379070
\(924\) 0 0
\(925\) 0 0
\(926\) −1100.96 −0.0390710
\(927\) 0 0
\(928\) 1662.47 0.0588073
\(929\) −15460.6 −0.546011 −0.273006 0.962012i \(-0.588018\pi\)
−0.273006 + 0.962012i \(0.588018\pi\)
\(930\) 0 0
\(931\) 1270.68 0.0447314
\(932\) −231.883 −0.00814978
\(933\) 0 0
\(934\) 14374.6 0.503589
\(935\) 0 0
\(936\) 0 0
\(937\) 28824.7 1.00498 0.502488 0.864584i \(-0.332418\pi\)
0.502488 + 0.864584i \(0.332418\pi\)
\(938\) −5259.36 −0.183075
\(939\) 0 0
\(940\) 0 0
\(941\) −42172.5 −1.46098 −0.730492 0.682922i \(-0.760709\pi\)
−0.730492 + 0.682922i \(0.760709\pi\)
\(942\) 0 0
\(943\) 8475.83 0.292695
\(944\) 25776.0 0.888705
\(945\) 0 0
\(946\) −15349.8 −0.527552
\(947\) −8926.33 −0.306301 −0.153150 0.988203i \(-0.548942\pi\)
−0.153150 + 0.988203i \(0.548942\pi\)
\(948\) 0 0
\(949\) 791.778 0.0270835
\(950\) 0 0
\(951\) 0 0
\(952\) −8107.09 −0.276000
\(953\) 40420.6 1.37392 0.686962 0.726693i \(-0.258944\pi\)
0.686962 + 0.726693i \(0.258944\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −414.996 −0.0140397
\(957\) 0 0
\(958\) −24784.8 −0.835868
\(959\) −10866.0 −0.365882
\(960\) 0 0
\(961\) −181.408 −0.00608935
\(962\) 2836.74 0.0950730
\(963\) 0 0
\(964\) −381.378 −0.0127421
\(965\) 0 0
\(966\) 0 0
\(967\) −33914.1 −1.12782 −0.563910 0.825836i \(-0.690704\pi\)
−0.563910 + 0.825836i \(0.690704\pi\)
\(968\) 1586.96 0.0526930
\(969\) 0 0
\(970\) 0 0
\(971\) 59339.0 1.96115 0.980577 0.196136i \(-0.0628393\pi\)
0.980577 + 0.196136i \(0.0628393\pi\)
\(972\) 0 0
\(973\) −7504.12 −0.247247
\(974\) −2542.08 −0.0836277
\(975\) 0 0
\(976\) −3096.62 −0.101558
\(977\) −7032.14 −0.230274 −0.115137 0.993350i \(-0.536731\pi\)
−0.115137 + 0.993350i \(0.536731\pi\)
\(978\) 0 0
\(979\) −58117.3 −1.89728
\(980\) 0 0
\(981\) 0 0
\(982\) 4460.48 0.144949
\(983\) 1703.63 0.0552772 0.0276386 0.999618i \(-0.491201\pi\)
0.0276386 + 0.999618i \(0.491201\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 36244.0 1.17063
\(987\) 0 0
\(988\) 15.3718 0.000494980 0
\(989\) −24910.1 −0.800906
\(990\) 0 0
\(991\) 12740.3 0.408383 0.204192 0.978931i \(-0.434543\pi\)
0.204192 + 0.978931i \(0.434543\pi\)
\(992\) −1164.41 −0.0372682
\(993\) 0 0
\(994\) −5359.03 −0.171004
\(995\) 0 0
\(996\) 0 0
\(997\) −16609.6 −0.527615 −0.263808 0.964575i \(-0.584978\pi\)
−0.263808 + 0.964575i \(0.584978\pi\)
\(998\) −23506.9 −0.745589
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.4.a.bn.1.2 5
3.2 odd 2 175.4.a.j.1.4 5
5.2 odd 4 315.4.d.c.64.3 10
5.3 odd 4 315.4.d.c.64.8 10
5.4 even 2 1575.4.a.bq.1.4 5
15.2 even 4 35.4.b.a.29.8 yes 10
15.8 even 4 35.4.b.a.29.3 10
15.14 odd 2 175.4.a.i.1.2 5
21.20 even 2 1225.4.a.bh.1.4 5
60.23 odd 4 560.4.g.f.449.1 10
60.47 odd 4 560.4.g.f.449.10 10
105.2 even 12 245.4.j.e.214.8 20
105.17 odd 12 245.4.j.f.79.3 20
105.23 even 12 245.4.j.e.214.3 20
105.32 even 12 245.4.j.e.79.3 20
105.38 odd 12 245.4.j.f.79.8 20
105.47 odd 12 245.4.j.f.214.8 20
105.53 even 12 245.4.j.e.79.8 20
105.62 odd 4 245.4.b.d.99.8 10
105.68 odd 12 245.4.j.f.214.3 20
105.83 odd 4 245.4.b.d.99.3 10
105.104 even 2 1225.4.a.be.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.b.a.29.3 10 15.8 even 4
35.4.b.a.29.8 yes 10 15.2 even 4
175.4.a.i.1.2 5 15.14 odd 2
175.4.a.j.1.4 5 3.2 odd 2
245.4.b.d.99.3 10 105.83 odd 4
245.4.b.d.99.8 10 105.62 odd 4
245.4.j.e.79.3 20 105.32 even 12
245.4.j.e.79.8 20 105.53 even 12
245.4.j.e.214.3 20 105.23 even 12
245.4.j.e.214.8 20 105.2 even 12
245.4.j.f.79.3 20 105.17 odd 12
245.4.j.f.79.8 20 105.38 odd 12
245.4.j.f.214.3 20 105.68 odd 12
245.4.j.f.214.8 20 105.47 odd 12
315.4.d.c.64.3 10 5.2 odd 4
315.4.d.c.64.8 10 5.3 odd 4
560.4.g.f.449.1 10 60.23 odd 4
560.4.g.f.449.10 10 60.47 odd 4
1225.4.a.be.1.2 5 105.104 even 2
1225.4.a.bh.1.4 5 21.20 even 2
1575.4.a.bn.1.2 5 1.1 even 1 trivial
1575.4.a.bq.1.4 5 5.4 even 2