Properties

Label 1575.4.a.bn.1.1
Level $1575$
Weight $4$
Character 1575.1
Self dual yes
Analytic conductor $92.928$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,4,Mod(1,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.9280082590\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 27x^{3} + 7x^{2} + 120x + 60 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-4.31366\) of defining polynomial
Character \(\chi\) \(=\) 1575.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.31366 q^{2} +20.2350 q^{4} +7.00000 q^{7} -65.0123 q^{8} -25.5420 q^{11} -64.1014 q^{13} -37.1956 q^{14} +183.574 q^{16} +27.6952 q^{17} +0.792436 q^{19} +135.721 q^{22} -108.606 q^{23} +340.613 q^{26} +141.645 q^{28} +234.000 q^{29} +129.204 q^{31} -455.349 q^{32} -147.163 q^{34} +38.3108 q^{37} -4.21073 q^{38} +403.216 q^{41} +172.895 q^{43} -516.840 q^{44} +577.097 q^{46} -206.943 q^{47} +49.0000 q^{49} -1297.09 q^{52} -144.031 q^{53} -455.086 q^{56} -1243.40 q^{58} +679.086 q^{59} -574.717 q^{61} -686.544 q^{62} +950.977 q^{64} +515.640 q^{67} +560.411 q^{68} -556.612 q^{71} -173.243 q^{73} -203.571 q^{74} +16.0349 q^{76} -178.794 q^{77} +79.3290 q^{79} -2142.55 q^{82} -1043.56 q^{83} -918.703 q^{86} +1660.54 q^{88} -652.060 q^{89} -448.710 q^{91} -2197.65 q^{92} +1099.62 q^{94} +515.714 q^{97} -260.369 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 4 q^{2} + 18 q^{4} + 35 q^{7} - 42 q^{8} - 42 q^{11} + 34 q^{13} - 28 q^{14} + 74 q^{16} - 238 q^{17} - 36 q^{19} + 358 q^{22} - 152 q^{23} + 310 q^{26} + 126 q^{28} + 44 q^{29} + 60 q^{31} - 710 q^{32}+ \cdots - 196 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.31366 −1.87866 −0.939331 0.343013i \(-0.888553\pi\)
−0.939331 + 0.343013i \(0.888553\pi\)
\(3\) 0 0
\(4\) 20.2350 2.52937
\(5\) 0 0
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) −65.0123 −2.87317
\(9\) 0 0
\(10\) 0 0
\(11\) −25.5420 −0.700108 −0.350054 0.936730i \(-0.613837\pi\)
−0.350054 + 0.936730i \(0.613837\pi\)
\(12\) 0 0
\(13\) −64.1014 −1.36758 −0.683790 0.729679i \(-0.739670\pi\)
−0.683790 + 0.729679i \(0.739670\pi\)
\(14\) −37.1956 −0.710067
\(15\) 0 0
\(16\) 183.574 2.86834
\(17\) 27.6952 0.395122 0.197561 0.980291i \(-0.436698\pi\)
0.197561 + 0.980291i \(0.436698\pi\)
\(18\) 0 0
\(19\) 0.792436 0.00956828 0.00478414 0.999989i \(-0.498477\pi\)
0.00478414 + 0.999989i \(0.498477\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 135.721 1.31527
\(23\) −108.606 −0.984609 −0.492305 0.870423i \(-0.663845\pi\)
−0.492305 + 0.870423i \(0.663845\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 340.613 2.56922
\(27\) 0 0
\(28\) 141.645 0.956012
\(29\) 234.000 1.49837 0.749186 0.662360i \(-0.230445\pi\)
0.749186 + 0.662360i \(0.230445\pi\)
\(30\) 0 0
\(31\) 129.204 0.748570 0.374285 0.927314i \(-0.377888\pi\)
0.374285 + 0.927314i \(0.377888\pi\)
\(32\) −455.349 −2.51547
\(33\) 0 0
\(34\) −147.163 −0.742300
\(35\) 0 0
\(36\) 0 0
\(37\) 38.3108 0.170223 0.0851116 0.996371i \(-0.472875\pi\)
0.0851116 + 0.996371i \(0.472875\pi\)
\(38\) −4.21073 −0.0179756
\(39\) 0 0
\(40\) 0 0
\(41\) 403.216 1.53590 0.767949 0.640511i \(-0.221278\pi\)
0.767949 + 0.640511i \(0.221278\pi\)
\(42\) 0 0
\(43\) 172.895 0.613167 0.306584 0.951844i \(-0.400814\pi\)
0.306584 + 0.951844i \(0.400814\pi\)
\(44\) −516.840 −1.77083
\(45\) 0 0
\(46\) 577.097 1.84975
\(47\) −206.943 −0.642250 −0.321125 0.947037i \(-0.604061\pi\)
−0.321125 + 0.947037i \(0.604061\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) −1297.09 −3.45911
\(53\) −144.031 −0.373287 −0.186643 0.982428i \(-0.559761\pi\)
−0.186643 + 0.982428i \(0.559761\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −455.086 −1.08595
\(57\) 0 0
\(58\) −1243.40 −2.81493
\(59\) 679.086 1.49846 0.749232 0.662307i \(-0.230423\pi\)
0.749232 + 0.662307i \(0.230423\pi\)
\(60\) 0 0
\(61\) −574.717 −1.20631 −0.603155 0.797624i \(-0.706090\pi\)
−0.603155 + 0.797624i \(0.706090\pi\)
\(62\) −686.544 −1.40631
\(63\) 0 0
\(64\) 950.977 1.85738
\(65\) 0 0
\(66\) 0 0
\(67\) 515.640 0.940230 0.470115 0.882605i \(-0.344212\pi\)
0.470115 + 0.882605i \(0.344212\pi\)
\(68\) 560.411 0.999409
\(69\) 0 0
\(70\) 0 0
\(71\) −556.612 −0.930391 −0.465195 0.885208i \(-0.654016\pi\)
−0.465195 + 0.885208i \(0.654016\pi\)
\(72\) 0 0
\(73\) −173.243 −0.277762 −0.138881 0.990309i \(-0.544350\pi\)
−0.138881 + 0.990309i \(0.544350\pi\)
\(74\) −203.571 −0.319792
\(75\) 0 0
\(76\) 16.0349 0.0242017
\(77\) −178.794 −0.264616
\(78\) 0 0
\(79\) 79.3290 0.112977 0.0564887 0.998403i \(-0.482010\pi\)
0.0564887 + 0.998403i \(0.482010\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −2142.55 −2.88543
\(83\) −1043.56 −1.38007 −0.690034 0.723777i \(-0.742404\pi\)
−0.690034 + 0.723777i \(0.742404\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −918.703 −1.15193
\(87\) 0 0
\(88\) 1660.54 2.01153
\(89\) −652.060 −0.776609 −0.388304 0.921531i \(-0.626939\pi\)
−0.388304 + 0.921531i \(0.626939\pi\)
\(90\) 0 0
\(91\) −448.710 −0.516897
\(92\) −2197.65 −2.49044
\(93\) 0 0
\(94\) 1099.62 1.20657
\(95\) 0 0
\(96\) 0 0
\(97\) 515.714 0.539823 0.269912 0.962885i \(-0.413005\pi\)
0.269912 + 0.962885i \(0.413005\pi\)
\(98\) −260.369 −0.268380
\(99\) 0 0
\(100\) 0 0
\(101\) 536.339 0.528394 0.264197 0.964469i \(-0.414893\pi\)
0.264197 + 0.964469i \(0.414893\pi\)
\(102\) 0 0
\(103\) 381.693 0.365139 0.182570 0.983193i \(-0.441559\pi\)
0.182570 + 0.983193i \(0.441559\pi\)
\(104\) 4167.38 3.92928
\(105\) 0 0
\(106\) 765.332 0.701279
\(107\) 1381.12 1.24783 0.623915 0.781492i \(-0.285541\pi\)
0.623915 + 0.781492i \(0.285541\pi\)
\(108\) 0 0
\(109\) −390.582 −0.343220 −0.171610 0.985165i \(-0.554897\pi\)
−0.171610 + 0.985165i \(0.554897\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1285.02 1.08413
\(113\) −1643.15 −1.36792 −0.683958 0.729521i \(-0.739743\pi\)
−0.683958 + 0.729521i \(0.739743\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 4734.99 3.78994
\(117\) 0 0
\(118\) −3608.43 −2.81511
\(119\) 193.866 0.149342
\(120\) 0 0
\(121\) −678.609 −0.509849
\(122\) 3053.85 2.26625
\(123\) 0 0
\(124\) 2614.43 1.89341
\(125\) 0 0
\(126\) 0 0
\(127\) −192.032 −0.134174 −0.0670869 0.997747i \(-0.521370\pi\)
−0.0670869 + 0.997747i \(0.521370\pi\)
\(128\) −1410.38 −0.973914
\(129\) 0 0
\(130\) 0 0
\(131\) −2082.90 −1.38919 −0.694594 0.719402i \(-0.744416\pi\)
−0.694594 + 0.719402i \(0.744416\pi\)
\(132\) 0 0
\(133\) 5.54705 0.00361647
\(134\) −2739.93 −1.76637
\(135\) 0 0
\(136\) −1800.53 −1.13525
\(137\) 78.1709 0.0487488 0.0243744 0.999703i \(-0.492241\pi\)
0.0243744 + 0.999703i \(0.492241\pi\)
\(138\) 0 0
\(139\) 1393.67 0.850426 0.425213 0.905093i \(-0.360199\pi\)
0.425213 + 0.905093i \(0.360199\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2957.65 1.74789
\(143\) 1637.28 0.957454
\(144\) 0 0
\(145\) 0 0
\(146\) 920.556 0.521820
\(147\) 0 0
\(148\) 775.217 0.430557
\(149\) −32.5002 −0.0178693 −0.00893463 0.999960i \(-0.502844\pi\)
−0.00893463 + 0.999960i \(0.502844\pi\)
\(150\) 0 0
\(151\) 466.762 0.251553 0.125777 0.992059i \(-0.459858\pi\)
0.125777 + 0.992059i \(0.459858\pi\)
\(152\) −51.5181 −0.0274913
\(153\) 0 0
\(154\) 950.048 0.497124
\(155\) 0 0
\(156\) 0 0
\(157\) 1673.50 0.850701 0.425351 0.905029i \(-0.360151\pi\)
0.425351 + 0.905029i \(0.360151\pi\)
\(158\) −421.527 −0.212246
\(159\) 0 0
\(160\) 0 0
\(161\) −760.245 −0.372147
\(162\) 0 0
\(163\) 1869.36 0.898279 0.449139 0.893462i \(-0.351731\pi\)
0.449139 + 0.893462i \(0.351731\pi\)
\(164\) 8159.06 3.88485
\(165\) 0 0
\(166\) 5545.12 2.59268
\(167\) −46.5250 −0.0215581 −0.0107791 0.999942i \(-0.503431\pi\)
−0.0107791 + 0.999942i \(0.503431\pi\)
\(168\) 0 0
\(169\) 1911.99 0.870275
\(170\) 0 0
\(171\) 0 0
\(172\) 3498.52 1.55093
\(173\) −2496.28 −1.09704 −0.548521 0.836137i \(-0.684809\pi\)
−0.548521 + 0.836137i \(0.684809\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −4688.83 −2.00815
\(177\) 0 0
\(178\) 3464.82 1.45898
\(179\) −2975.70 −1.24254 −0.621269 0.783598i \(-0.713382\pi\)
−0.621269 + 0.783598i \(0.713382\pi\)
\(180\) 0 0
\(181\) 966.273 0.396809 0.198405 0.980120i \(-0.436424\pi\)
0.198405 + 0.980120i \(0.436424\pi\)
\(182\) 2384.29 0.971074
\(183\) 0 0
\(184\) 7060.76 2.82895
\(185\) 0 0
\(186\) 0 0
\(187\) −707.389 −0.276628
\(188\) −4187.48 −1.62449
\(189\) 0 0
\(190\) 0 0
\(191\) 1545.50 0.585488 0.292744 0.956191i \(-0.405432\pi\)
0.292744 + 0.956191i \(0.405432\pi\)
\(192\) 0 0
\(193\) −2304.05 −0.859322 −0.429661 0.902990i \(-0.641367\pi\)
−0.429661 + 0.902990i \(0.641367\pi\)
\(194\) −2740.33 −1.01415
\(195\) 0 0
\(196\) 991.513 0.361338
\(197\) 222.021 0.0802960 0.0401480 0.999194i \(-0.487217\pi\)
0.0401480 + 0.999194i \(0.487217\pi\)
\(198\) 0 0
\(199\) 3580.56 1.27547 0.637736 0.770255i \(-0.279871\pi\)
0.637736 + 0.770255i \(0.279871\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −2849.92 −0.992673
\(203\) 1638.00 0.566331
\(204\) 0 0
\(205\) 0 0
\(206\) −2028.19 −0.685973
\(207\) 0 0
\(208\) −11767.3 −3.92268
\(209\) −20.2404 −0.00669883
\(210\) 0 0
\(211\) −4181.04 −1.36415 −0.682073 0.731284i \(-0.738921\pi\)
−0.682073 + 0.731284i \(0.738921\pi\)
\(212\) −2914.46 −0.944180
\(213\) 0 0
\(214\) −7338.79 −2.34425
\(215\) 0 0
\(216\) 0 0
\(217\) 904.426 0.282933
\(218\) 2075.42 0.644794
\(219\) 0 0
\(220\) 0 0
\(221\) −1775.30 −0.540361
\(222\) 0 0
\(223\) 2361.52 0.709145 0.354573 0.935028i \(-0.384626\pi\)
0.354573 + 0.935028i \(0.384626\pi\)
\(224\) −3187.44 −0.950758
\(225\) 0 0
\(226\) 8731.14 2.56985
\(227\) −586.877 −0.171596 −0.0857982 0.996313i \(-0.527344\pi\)
−0.0857982 + 0.996313i \(0.527344\pi\)
\(228\) 0 0
\(229\) −4619.55 −1.33305 −0.666526 0.745482i \(-0.732219\pi\)
−0.666526 + 0.745482i \(0.732219\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −15212.9 −4.30507
\(233\) 5120.44 1.43971 0.719853 0.694127i \(-0.244209\pi\)
0.719853 + 0.694127i \(0.244209\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 13741.3 3.79017
\(237\) 0 0
\(238\) −1030.14 −0.280563
\(239\) −1127.51 −0.305158 −0.152579 0.988291i \(-0.548758\pi\)
−0.152579 + 0.988291i \(0.548758\pi\)
\(240\) 0 0
\(241\) −3549.53 −0.948736 −0.474368 0.880327i \(-0.657323\pi\)
−0.474368 + 0.880327i \(0.657323\pi\)
\(242\) 3605.89 0.957833
\(243\) 0 0
\(244\) −11629.4 −3.05120
\(245\) 0 0
\(246\) 0 0
\(247\) −50.7963 −0.0130854
\(248\) −8399.84 −2.15077
\(249\) 0 0
\(250\) 0 0
\(251\) −4717.19 −1.18624 −0.593120 0.805114i \(-0.702104\pi\)
−0.593120 + 0.805114i \(0.702104\pi\)
\(252\) 0 0
\(253\) 2774.02 0.689333
\(254\) 1020.39 0.252067
\(255\) 0 0
\(256\) −113.552 −0.0277227
\(257\) −6260.31 −1.51948 −0.759742 0.650224i \(-0.774675\pi\)
−0.759742 + 0.650224i \(0.774675\pi\)
\(258\) 0 0
\(259\) 268.176 0.0643383
\(260\) 0 0
\(261\) 0 0
\(262\) 11067.8 2.60981
\(263\) 5753.04 1.34885 0.674425 0.738344i \(-0.264392\pi\)
0.674425 + 0.738344i \(0.264392\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −29.4751 −0.00679412
\(267\) 0 0
\(268\) 10433.9 2.37819
\(269\) 7059.21 1.60003 0.800014 0.599982i \(-0.204826\pi\)
0.800014 + 0.599982i \(0.204826\pi\)
\(270\) 0 0
\(271\) −8534.52 −1.91305 −0.956523 0.291658i \(-0.905793\pi\)
−0.956523 + 0.291658i \(0.905793\pi\)
\(272\) 5084.11 1.13334
\(273\) 0 0
\(274\) −415.373 −0.0915826
\(275\) 0 0
\(276\) 0 0
\(277\) −1313.94 −0.285008 −0.142504 0.989794i \(-0.545515\pi\)
−0.142504 + 0.989794i \(0.545515\pi\)
\(278\) −7405.47 −1.59766
\(279\) 0 0
\(280\) 0 0
\(281\) 247.229 0.0524856 0.0262428 0.999656i \(-0.491646\pi\)
0.0262428 + 0.999656i \(0.491646\pi\)
\(282\) 0 0
\(283\) −9074.90 −1.90617 −0.953087 0.302697i \(-0.902113\pi\)
−0.953087 + 0.302697i \(0.902113\pi\)
\(284\) −11263.0 −2.35330
\(285\) 0 0
\(286\) −8699.92 −1.79873
\(287\) 2822.51 0.580515
\(288\) 0 0
\(289\) −4145.98 −0.843879
\(290\) 0 0
\(291\) 0 0
\(292\) −3505.57 −0.702562
\(293\) 2740.72 0.546466 0.273233 0.961948i \(-0.411907\pi\)
0.273233 + 0.961948i \(0.411907\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −2490.68 −0.489080
\(297\) 0 0
\(298\) 172.695 0.0335703
\(299\) 6961.83 1.34653
\(300\) 0 0
\(301\) 1210.26 0.231755
\(302\) −2480.21 −0.472584
\(303\) 0 0
\(304\) 145.470 0.0274451
\(305\) 0 0
\(306\) 0 0
\(307\) −6985.46 −1.29864 −0.649318 0.760517i \(-0.724946\pi\)
−0.649318 + 0.760517i \(0.724946\pi\)
\(308\) −3617.88 −0.669311
\(309\) 0 0
\(310\) 0 0
\(311\) 356.841 0.0650630 0.0325315 0.999471i \(-0.489643\pi\)
0.0325315 + 0.999471i \(0.489643\pi\)
\(312\) 0 0
\(313\) 6630.12 1.19731 0.598653 0.801009i \(-0.295703\pi\)
0.598653 + 0.801009i \(0.295703\pi\)
\(314\) −8892.42 −1.59818
\(315\) 0 0
\(316\) 1605.22 0.285762
\(317\) −2494.05 −0.441891 −0.220946 0.975286i \(-0.570914\pi\)
−0.220946 + 0.975286i \(0.570914\pi\)
\(318\) 0 0
\(319\) −5976.83 −1.04902
\(320\) 0 0
\(321\) 0 0
\(322\) 4039.68 0.699139
\(323\) 21.9467 0.00378063
\(324\) 0 0
\(325\) 0 0
\(326\) −9933.13 −1.68756
\(327\) 0 0
\(328\) −26214.0 −4.41289
\(329\) −1448.60 −0.242748
\(330\) 0 0
\(331\) −4682.47 −0.777558 −0.388779 0.921331i \(-0.627103\pi\)
−0.388779 + 0.921331i \(0.627103\pi\)
\(332\) −21116.4 −3.49070
\(333\) 0 0
\(334\) 247.218 0.0405005
\(335\) 0 0
\(336\) 0 0
\(337\) −3596.60 −0.581363 −0.290681 0.956820i \(-0.593882\pi\)
−0.290681 + 0.956820i \(0.593882\pi\)
\(338\) −10159.7 −1.63495
\(339\) 0 0
\(340\) 0 0
\(341\) −3300.12 −0.524080
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) −11240.3 −1.76173
\(345\) 0 0
\(346\) 13264.4 2.06097
\(347\) 1899.51 0.293865 0.146932 0.989147i \(-0.453060\pi\)
0.146932 + 0.989147i \(0.453060\pi\)
\(348\) 0 0
\(349\) −1037.55 −0.159137 −0.0795683 0.996829i \(-0.525354\pi\)
−0.0795683 + 0.996829i \(0.525354\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 11630.5 1.76110
\(353\) −4087.08 −0.616242 −0.308121 0.951347i \(-0.599700\pi\)
−0.308121 + 0.951347i \(0.599700\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −13194.4 −1.96433
\(357\) 0 0
\(358\) 15811.8 2.33431
\(359\) −3472.67 −0.510530 −0.255265 0.966871i \(-0.582163\pi\)
−0.255265 + 0.966871i \(0.582163\pi\)
\(360\) 0 0
\(361\) −6858.37 −0.999908
\(362\) −5134.44 −0.745470
\(363\) 0 0
\(364\) −9079.63 −1.30742
\(365\) 0 0
\(366\) 0 0
\(367\) −8769.14 −1.24726 −0.623631 0.781719i \(-0.714343\pi\)
−0.623631 + 0.781719i \(0.714343\pi\)
\(368\) −19937.3 −2.82419
\(369\) 0 0
\(370\) 0 0
\(371\) −1008.22 −0.141089
\(372\) 0 0
\(373\) −11368.9 −1.57817 −0.789085 0.614284i \(-0.789445\pi\)
−0.789085 + 0.614284i \(0.789445\pi\)
\(374\) 3758.82 0.519690
\(375\) 0 0
\(376\) 13453.8 1.84529
\(377\) −14999.8 −2.04914
\(378\) 0 0
\(379\) −12137.4 −1.64500 −0.822501 0.568764i \(-0.807422\pi\)
−0.822501 + 0.568764i \(0.807422\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −8212.24 −1.09993
\(383\) −9869.61 −1.31675 −0.658373 0.752692i \(-0.728755\pi\)
−0.658373 + 0.752692i \(0.728755\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 12242.9 1.61438
\(387\) 0 0
\(388\) 10435.5 1.36541
\(389\) −57.1166 −0.00744454 −0.00372227 0.999993i \(-0.501185\pi\)
−0.00372227 + 0.999993i \(0.501185\pi\)
\(390\) 0 0
\(391\) −3007.88 −0.389041
\(392\) −3185.60 −0.410452
\(393\) 0 0
\(394\) −1179.74 −0.150849
\(395\) 0 0
\(396\) 0 0
\(397\) 7436.17 0.940078 0.470039 0.882646i \(-0.344240\pi\)
0.470039 + 0.882646i \(0.344240\pi\)
\(398\) −19025.8 −2.39618
\(399\) 0 0
\(400\) 0 0
\(401\) 12465.0 1.55230 0.776149 0.630550i \(-0.217171\pi\)
0.776149 + 0.630550i \(0.217171\pi\)
\(402\) 0 0
\(403\) −8282.15 −1.02373
\(404\) 10852.8 1.33650
\(405\) 0 0
\(406\) −8703.79 −1.06394
\(407\) −978.533 −0.119175
\(408\) 0 0
\(409\) −1708.72 −0.206578 −0.103289 0.994651i \(-0.532937\pi\)
−0.103289 + 0.994651i \(0.532937\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 7723.54 0.923571
\(413\) 4753.60 0.566366
\(414\) 0 0
\(415\) 0 0
\(416\) 29188.5 3.44011
\(417\) 0 0
\(418\) 107.550 0.0125848
\(419\) −10618.8 −1.23810 −0.619050 0.785352i \(-0.712482\pi\)
−0.619050 + 0.785352i \(0.712482\pi\)
\(420\) 0 0
\(421\) 13273.5 1.53661 0.768304 0.640085i \(-0.221101\pi\)
0.768304 + 0.640085i \(0.221101\pi\)
\(422\) 22216.6 2.56277
\(423\) 0 0
\(424\) 9363.80 1.07251
\(425\) 0 0
\(426\) 0 0
\(427\) −4023.02 −0.455943
\(428\) 27946.9 3.15622
\(429\) 0 0
\(430\) 0 0
\(431\) −7918.20 −0.884934 −0.442467 0.896785i \(-0.645897\pi\)
−0.442467 + 0.896785i \(0.645897\pi\)
\(432\) 0 0
\(433\) 4433.34 0.492038 0.246019 0.969265i \(-0.420877\pi\)
0.246019 + 0.969265i \(0.420877\pi\)
\(434\) −4805.81 −0.531535
\(435\) 0 0
\(436\) −7903.40 −0.868129
\(437\) −86.0637 −0.00942102
\(438\) 0 0
\(439\) 12958.4 1.40882 0.704408 0.709796i \(-0.251213\pi\)
0.704408 + 0.709796i \(0.251213\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 9433.34 1.01515
\(443\) 12040.4 1.29133 0.645664 0.763621i \(-0.276580\pi\)
0.645664 + 0.763621i \(0.276580\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −12548.3 −1.33224
\(447\) 0 0
\(448\) 6656.84 0.702023
\(449\) −11586.3 −1.21780 −0.608899 0.793247i \(-0.708389\pi\)
−0.608899 + 0.793247i \(0.708389\pi\)
\(450\) 0 0
\(451\) −10298.9 −1.07529
\(452\) −33249.1 −3.45997
\(453\) 0 0
\(454\) 3118.46 0.322371
\(455\) 0 0
\(456\) 0 0
\(457\) 9734.34 0.996396 0.498198 0.867063i \(-0.333995\pi\)
0.498198 + 0.867063i \(0.333995\pi\)
\(458\) 24546.7 2.50435
\(459\) 0 0
\(460\) 0 0
\(461\) 1343.41 0.135724 0.0678621 0.997695i \(-0.478382\pi\)
0.0678621 + 0.997695i \(0.478382\pi\)
\(462\) 0 0
\(463\) −6613.72 −0.663857 −0.331929 0.943305i \(-0.607699\pi\)
−0.331929 + 0.943305i \(0.607699\pi\)
\(464\) 42956.3 4.29784
\(465\) 0 0
\(466\) −27208.3 −2.70472
\(467\) 14688.9 1.45551 0.727755 0.685838i \(-0.240564\pi\)
0.727755 + 0.685838i \(0.240564\pi\)
\(468\) 0 0
\(469\) 3609.48 0.355374
\(470\) 0 0
\(471\) 0 0
\(472\) −44148.9 −4.30534
\(473\) −4416.07 −0.429283
\(474\) 0 0
\(475\) 0 0
\(476\) 3922.88 0.377741
\(477\) 0 0
\(478\) 5991.22 0.573288
\(479\) 15298.6 1.45931 0.729657 0.683813i \(-0.239680\pi\)
0.729657 + 0.683813i \(0.239680\pi\)
\(480\) 0 0
\(481\) −2455.78 −0.232794
\(482\) 18861.0 1.78235
\(483\) 0 0
\(484\) −13731.6 −1.28960
\(485\) 0 0
\(486\) 0 0
\(487\) −9653.80 −0.898266 −0.449133 0.893465i \(-0.648267\pi\)
−0.449133 + 0.893465i \(0.648267\pi\)
\(488\) 37363.7 3.46593
\(489\) 0 0
\(490\) 0 0
\(491\) −20142.6 −1.85137 −0.925684 0.378297i \(-0.876510\pi\)
−0.925684 + 0.378297i \(0.876510\pi\)
\(492\) 0 0
\(493\) 6480.69 0.592039
\(494\) 269.914 0.0245830
\(495\) 0 0
\(496\) 23718.4 2.14715
\(497\) −3896.29 −0.351655
\(498\) 0 0
\(499\) −1309.29 −0.117459 −0.0587293 0.998274i \(-0.518705\pi\)
−0.0587293 + 0.998274i \(0.518705\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 25065.5 2.22855
\(503\) −2186.17 −0.193791 −0.0968953 0.995295i \(-0.530891\pi\)
−0.0968953 + 0.995295i \(0.530891\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −14740.2 −1.29502
\(507\) 0 0
\(508\) −3885.76 −0.339375
\(509\) −3591.11 −0.312718 −0.156359 0.987700i \(-0.549976\pi\)
−0.156359 + 0.987700i \(0.549976\pi\)
\(510\) 0 0
\(511\) −1212.70 −0.104984
\(512\) 11886.4 1.02600
\(513\) 0 0
\(514\) 33265.2 2.85460
\(515\) 0 0
\(516\) 0 0
\(517\) 5285.73 0.449644
\(518\) −1424.99 −0.120870
\(519\) 0 0
\(520\) 0 0
\(521\) 8605.34 0.723621 0.361811 0.932252i \(-0.382159\pi\)
0.361811 + 0.932252i \(0.382159\pi\)
\(522\) 0 0
\(523\) 22536.4 1.88423 0.942113 0.335297i \(-0.108837\pi\)
0.942113 + 0.335297i \(0.108837\pi\)
\(524\) −42147.3 −3.51377
\(525\) 0 0
\(526\) −30569.7 −2.53403
\(527\) 3578.32 0.295776
\(528\) 0 0
\(529\) −371.637 −0.0305447
\(530\) 0 0
\(531\) 0 0
\(532\) 112.244 0.00914738
\(533\) −25846.7 −2.10046
\(534\) 0 0
\(535\) 0 0
\(536\) −33522.9 −2.70144
\(537\) 0 0
\(538\) −37510.2 −3.00591
\(539\) −1251.56 −0.100015
\(540\) 0 0
\(541\) 8782.44 0.697942 0.348971 0.937134i \(-0.386531\pi\)
0.348971 + 0.937134i \(0.386531\pi\)
\(542\) 45349.5 3.59396
\(543\) 0 0
\(544\) −12611.0 −0.993917
\(545\) 0 0
\(546\) 0 0
\(547\) 22593.0 1.76601 0.883004 0.469366i \(-0.155518\pi\)
0.883004 + 0.469366i \(0.155518\pi\)
\(548\) 1581.78 0.123304
\(549\) 0 0
\(550\) 0 0
\(551\) 185.430 0.0143368
\(552\) 0 0
\(553\) 555.303 0.0427014
\(554\) 6981.84 0.535433
\(555\) 0 0
\(556\) 28200.8 2.15104
\(557\) 7264.13 0.552587 0.276294 0.961073i \(-0.410894\pi\)
0.276294 + 0.961073i \(0.410894\pi\)
\(558\) 0 0
\(559\) −11082.8 −0.838555
\(560\) 0 0
\(561\) 0 0
\(562\) −1313.69 −0.0986027
\(563\) −3851.42 −0.288309 −0.144154 0.989555i \(-0.546046\pi\)
−0.144154 + 0.989555i \(0.546046\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 48220.9 3.58105
\(567\) 0 0
\(568\) 36186.7 2.67317
\(569\) −16580.3 −1.22158 −0.610792 0.791791i \(-0.709149\pi\)
−0.610792 + 0.791791i \(0.709149\pi\)
\(570\) 0 0
\(571\) 6385.86 0.468021 0.234010 0.972234i \(-0.424815\pi\)
0.234010 + 0.972234i \(0.424815\pi\)
\(572\) 33130.2 2.42175
\(573\) 0 0
\(574\) −14997.9 −1.09059
\(575\) 0 0
\(576\) 0 0
\(577\) −11059.1 −0.797912 −0.398956 0.916970i \(-0.630627\pi\)
−0.398956 + 0.916970i \(0.630627\pi\)
\(578\) 22030.3 1.58536
\(579\) 0 0
\(580\) 0 0
\(581\) −7304.92 −0.521617
\(582\) 0 0
\(583\) 3678.84 0.261341
\(584\) 11263.0 0.798055
\(585\) 0 0
\(586\) −14563.2 −1.02662
\(587\) 7871.25 0.553461 0.276730 0.960948i \(-0.410749\pi\)
0.276730 + 0.960948i \(0.410749\pi\)
\(588\) 0 0
\(589\) 102.386 0.00716253
\(590\) 0 0
\(591\) 0 0
\(592\) 7032.85 0.488258
\(593\) 2018.06 0.139750 0.0698750 0.997556i \(-0.477740\pi\)
0.0698750 + 0.997556i \(0.477740\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −657.640 −0.0451980
\(597\) 0 0
\(598\) −36992.8 −2.52968
\(599\) 1356.67 0.0925409 0.0462705 0.998929i \(-0.485266\pi\)
0.0462705 + 0.998929i \(0.485266\pi\)
\(600\) 0 0
\(601\) 11178.7 0.758715 0.379358 0.925250i \(-0.376145\pi\)
0.379358 + 0.925250i \(0.376145\pi\)
\(602\) −6430.92 −0.435390
\(603\) 0 0
\(604\) 9444.91 0.636272
\(605\) 0 0
\(606\) 0 0
\(607\) 9404.67 0.628870 0.314435 0.949279i \(-0.398185\pi\)
0.314435 + 0.949279i \(0.398185\pi\)
\(608\) −360.835 −0.0240687
\(609\) 0 0
\(610\) 0 0
\(611\) 13265.3 0.878328
\(612\) 0 0
\(613\) −18938.0 −1.24779 −0.623897 0.781507i \(-0.714452\pi\)
−0.623897 + 0.781507i \(0.714452\pi\)
\(614\) 37118.4 2.43970
\(615\) 0 0
\(616\) 11623.8 0.760286
\(617\) −17716.9 −1.15600 −0.578001 0.816036i \(-0.696167\pi\)
−0.578001 + 0.816036i \(0.696167\pi\)
\(618\) 0 0
\(619\) −6240.33 −0.405202 −0.202601 0.979261i \(-0.564939\pi\)
−0.202601 + 0.979261i \(0.564939\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −1896.13 −0.122231
\(623\) −4564.42 −0.293531
\(624\) 0 0
\(625\) 0 0
\(626\) −35230.2 −2.24933
\(627\) 0 0
\(628\) 33863.2 2.15174
\(629\) 1061.03 0.0672589
\(630\) 0 0
\(631\) −25887.7 −1.63323 −0.816617 0.577179i \(-0.804153\pi\)
−0.816617 + 0.577179i \(0.804153\pi\)
\(632\) −5157.37 −0.324603
\(633\) 0 0
\(634\) 13252.5 0.830165
\(635\) 0 0
\(636\) 0 0
\(637\) −3140.97 −0.195369
\(638\) 31758.8 1.97076
\(639\) 0 0
\(640\) 0 0
\(641\) −18798.4 −1.15834 −0.579168 0.815208i \(-0.696622\pi\)
−0.579168 + 0.815208i \(0.696622\pi\)
\(642\) 0 0
\(643\) −2287.70 −0.140308 −0.0701541 0.997536i \(-0.522349\pi\)
−0.0701541 + 0.997536i \(0.522349\pi\)
\(644\) −15383.5 −0.941298
\(645\) 0 0
\(646\) −116.617 −0.00710253
\(647\) −1769.31 −0.107510 −0.0537548 0.998554i \(-0.517119\pi\)
−0.0537548 + 0.998554i \(0.517119\pi\)
\(648\) 0 0
\(649\) −17345.2 −1.04909
\(650\) 0 0
\(651\) 0 0
\(652\) 37826.4 2.27208
\(653\) −3891.48 −0.233209 −0.116604 0.993178i \(-0.537201\pi\)
−0.116604 + 0.993178i \(0.537201\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 74019.8 4.40547
\(657\) 0 0
\(658\) 7697.37 0.456040
\(659\) −20097.6 −1.18800 −0.594001 0.804465i \(-0.702452\pi\)
−0.594001 + 0.804465i \(0.702452\pi\)
\(660\) 0 0
\(661\) −27167.9 −1.59865 −0.799326 0.600898i \(-0.794810\pi\)
−0.799326 + 0.600898i \(0.794810\pi\)
\(662\) 24881.0 1.46077
\(663\) 0 0
\(664\) 67844.3 3.96516
\(665\) 0 0
\(666\) 0 0
\(667\) −25414.0 −1.47531
\(668\) −941.430 −0.0545285
\(669\) 0 0
\(670\) 0 0
\(671\) 14679.4 0.844548
\(672\) 0 0
\(673\) 25909.7 1.48402 0.742010 0.670389i \(-0.233873\pi\)
0.742010 + 0.670389i \(0.233873\pi\)
\(674\) 19111.1 1.09218
\(675\) 0 0
\(676\) 38689.1 2.20125
\(677\) −4359.22 −0.247472 −0.123736 0.992315i \(-0.539488\pi\)
−0.123736 + 0.992315i \(0.539488\pi\)
\(678\) 0 0
\(679\) 3610.00 0.204034
\(680\) 0 0
\(681\) 0 0
\(682\) 17535.7 0.984569
\(683\) −29721.9 −1.66512 −0.832559 0.553937i \(-0.813125\pi\)
−0.832559 + 0.553937i \(0.813125\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1822.58 −0.101438
\(687\) 0 0
\(688\) 31738.9 1.75877
\(689\) 9232.60 0.510499
\(690\) 0 0
\(691\) −4929.13 −0.271365 −0.135682 0.990752i \(-0.543323\pi\)
−0.135682 + 0.990752i \(0.543323\pi\)
\(692\) −50512.0 −2.77482
\(693\) 0 0
\(694\) −10093.4 −0.552073
\(695\) 0 0
\(696\) 0 0
\(697\) 11167.1 0.606866
\(698\) 5513.18 0.298964
\(699\) 0 0
\(700\) 0 0
\(701\) 19358.8 1.04304 0.521520 0.853239i \(-0.325365\pi\)
0.521520 + 0.853239i \(0.325365\pi\)
\(702\) 0 0
\(703\) 30.3589 0.00162874
\(704\) −24289.8 −1.30036
\(705\) 0 0
\(706\) 21717.3 1.15771
\(707\) 3754.38 0.199714
\(708\) 0 0
\(709\) −17186.3 −0.910359 −0.455180 0.890400i \(-0.650425\pi\)
−0.455180 + 0.890400i \(0.650425\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 42391.9 2.23133
\(713\) −14032.4 −0.737049
\(714\) 0 0
\(715\) 0 0
\(716\) −60213.1 −3.14284
\(717\) 0 0
\(718\) 18452.6 0.959113
\(719\) 15107.3 0.783598 0.391799 0.920051i \(-0.371853\pi\)
0.391799 + 0.920051i \(0.371853\pi\)
\(720\) 0 0
\(721\) 2671.85 0.138010
\(722\) 36443.0 1.87849
\(723\) 0 0
\(724\) 19552.5 1.00368
\(725\) 0 0
\(726\) 0 0
\(727\) −15840.9 −0.808124 −0.404062 0.914732i \(-0.632402\pi\)
−0.404062 + 0.914732i \(0.632402\pi\)
\(728\) 29171.7 1.48513
\(729\) 0 0
\(730\) 0 0
\(731\) 4788.35 0.242276
\(732\) 0 0
\(733\) −27639.7 −1.39276 −0.696382 0.717671i \(-0.745208\pi\)
−0.696382 + 0.717671i \(0.745208\pi\)
\(734\) 46596.2 2.34318
\(735\) 0 0
\(736\) 49453.8 2.47675
\(737\) −13170.4 −0.658263
\(738\) 0 0
\(739\) 34874.4 1.73596 0.867982 0.496597i \(-0.165417\pi\)
0.867982 + 0.496597i \(0.165417\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 5357.32 0.265059
\(743\) 27686.7 1.36706 0.683530 0.729922i \(-0.260444\pi\)
0.683530 + 0.729922i \(0.260444\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 60410.2 2.96485
\(747\) 0 0
\(748\) −14314.0 −0.699694
\(749\) 9667.83 0.471635
\(750\) 0 0
\(751\) 4806.85 0.233561 0.116781 0.993158i \(-0.462743\pi\)
0.116781 + 0.993158i \(0.462743\pi\)
\(752\) −37989.3 −1.84219
\(753\) 0 0
\(754\) 79703.6 3.84965
\(755\) 0 0
\(756\) 0 0
\(757\) −40166.6 −1.92851 −0.964253 0.264983i \(-0.914634\pi\)
−0.964253 + 0.264983i \(0.914634\pi\)
\(758\) 64493.9 3.09040
\(759\) 0 0
\(760\) 0 0
\(761\) −25912.3 −1.23432 −0.617162 0.786836i \(-0.711718\pi\)
−0.617162 + 0.786836i \(0.711718\pi\)
\(762\) 0 0
\(763\) −2734.07 −0.129725
\(764\) 31273.1 1.48092
\(765\) 0 0
\(766\) 52443.7 2.47372
\(767\) −43530.4 −2.04927
\(768\) 0 0
\(769\) −23231.3 −1.08939 −0.544697 0.838633i \(-0.683355\pi\)
−0.544697 + 0.838633i \(0.683355\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −46622.4 −2.17354
\(773\) −836.306 −0.0389131 −0.0194566 0.999811i \(-0.506194\pi\)
−0.0194566 + 0.999811i \(0.506194\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −33527.8 −1.55100
\(777\) 0 0
\(778\) 303.498 0.0139858
\(779\) 319.523 0.0146959
\(780\) 0 0
\(781\) 14217.0 0.651374
\(782\) 15982.8 0.730875
\(783\) 0 0
\(784\) 8995.11 0.409763
\(785\) 0 0
\(786\) 0 0
\(787\) 31945.6 1.44693 0.723467 0.690359i \(-0.242547\pi\)
0.723467 + 0.690359i \(0.242547\pi\)
\(788\) 4492.58 0.203098
\(789\) 0 0
\(790\) 0 0
\(791\) −11502.1 −0.517024
\(792\) 0 0
\(793\) 36840.2 1.64973
\(794\) −39513.3 −1.76609
\(795\) 0 0
\(796\) 72452.4 3.22614
\(797\) −5628.83 −0.250168 −0.125084 0.992146i \(-0.539920\pi\)
−0.125084 + 0.992146i \(0.539920\pi\)
\(798\) 0 0
\(799\) −5731.32 −0.253767
\(800\) 0 0
\(801\) 0 0
\(802\) −66234.6 −2.91624
\(803\) 4424.97 0.194463
\(804\) 0 0
\(805\) 0 0
\(806\) 44008.5 1.92324
\(807\) 0 0
\(808\) −34868.7 −1.51816
\(809\) 27890.7 1.21210 0.606048 0.795428i \(-0.292754\pi\)
0.606048 + 0.795428i \(0.292754\pi\)
\(810\) 0 0
\(811\) −12170.3 −0.526949 −0.263474 0.964666i \(-0.584868\pi\)
−0.263474 + 0.964666i \(0.584868\pi\)
\(812\) 33144.9 1.43246
\(813\) 0 0
\(814\) 5199.59 0.223889
\(815\) 0 0
\(816\) 0 0
\(817\) 137.008 0.00586696
\(818\) 9079.53 0.388091
\(819\) 0 0
\(820\) 0 0
\(821\) 30932.3 1.31491 0.657457 0.753492i \(-0.271632\pi\)
0.657457 + 0.753492i \(0.271632\pi\)
\(822\) 0 0
\(823\) −25949.0 −1.09906 −0.549528 0.835475i \(-0.685193\pi\)
−0.549528 + 0.835475i \(0.685193\pi\)
\(824\) −24814.7 −1.04911
\(825\) 0 0
\(826\) −25259.0 −1.06401
\(827\) −27728.5 −1.16592 −0.582959 0.812502i \(-0.698105\pi\)
−0.582959 + 0.812502i \(0.698105\pi\)
\(828\) 0 0
\(829\) −10650.1 −0.446194 −0.223097 0.974796i \(-0.571617\pi\)
−0.223097 + 0.974796i \(0.571617\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −60959.0 −2.54011
\(833\) 1357.06 0.0564460
\(834\) 0 0
\(835\) 0 0
\(836\) −409.563 −0.0169438
\(837\) 0 0
\(838\) 56424.8 2.32597
\(839\) −29761.9 −1.22466 −0.612332 0.790601i \(-0.709768\pi\)
−0.612332 + 0.790601i \(0.709768\pi\)
\(840\) 0 0
\(841\) 30367.2 1.24512
\(842\) −70531.0 −2.88677
\(843\) 0 0
\(844\) −84603.2 −3.45043
\(845\) 0 0
\(846\) 0 0
\(847\) −4750.26 −0.192705
\(848\) −26440.3 −1.07071
\(849\) 0 0
\(850\) 0 0
\(851\) −4160.80 −0.167603
\(852\) 0 0
\(853\) −24410.2 −0.979824 −0.489912 0.871772i \(-0.662971\pi\)
−0.489912 + 0.871772i \(0.662971\pi\)
\(854\) 21376.9 0.856562
\(855\) 0 0
\(856\) −89789.8 −3.58522
\(857\) −15189.3 −0.605433 −0.302717 0.953081i \(-0.597894\pi\)
−0.302717 + 0.953081i \(0.597894\pi\)
\(858\) 0 0
\(859\) −10339.1 −0.410668 −0.205334 0.978692i \(-0.565828\pi\)
−0.205334 + 0.978692i \(0.565828\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 42074.6 1.66249
\(863\) −27566.6 −1.08734 −0.543671 0.839298i \(-0.682966\pi\)
−0.543671 + 0.839298i \(0.682966\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −23557.2 −0.924373
\(867\) 0 0
\(868\) 18301.0 0.715642
\(869\) −2026.22 −0.0790964
\(870\) 0 0
\(871\) −33053.2 −1.28584
\(872\) 25392.6 0.986127
\(873\) 0 0
\(874\) 457.313 0.0176989
\(875\) 0 0
\(876\) 0 0
\(877\) −6032.49 −0.232272 −0.116136 0.993233i \(-0.537051\pi\)
−0.116136 + 0.993233i \(0.537051\pi\)
\(878\) −68856.4 −2.64669
\(879\) 0 0
\(880\) 0 0
\(881\) −44253.2 −1.69231 −0.846156 0.532935i \(-0.821089\pi\)
−0.846156 + 0.532935i \(0.821089\pi\)
\(882\) 0 0
\(883\) −7744.13 −0.295142 −0.147571 0.989051i \(-0.547146\pi\)
−0.147571 + 0.989051i \(0.547146\pi\)
\(884\) −35923.1 −1.36677
\(885\) 0 0
\(886\) −63978.8 −2.42597
\(887\) −18632.5 −0.705318 −0.352659 0.935752i \(-0.614722\pi\)
−0.352659 + 0.935752i \(0.614722\pi\)
\(888\) 0 0
\(889\) −1344.22 −0.0507130
\(890\) 0 0
\(891\) 0 0
\(892\) 47785.3 1.79369
\(893\) −163.989 −0.00614522
\(894\) 0 0
\(895\) 0 0
\(896\) −9872.65 −0.368105
\(897\) 0 0
\(898\) 61565.7 2.28783
\(899\) 30233.7 1.12164
\(900\) 0 0
\(901\) −3988.97 −0.147494
\(902\) 54725.0 2.02011
\(903\) 0 0
\(904\) 106825. 3.93025
\(905\) 0 0
\(906\) 0 0
\(907\) 1258.19 0.0460612 0.0230306 0.999735i \(-0.492668\pi\)
0.0230306 + 0.999735i \(0.492668\pi\)
\(908\) −11875.4 −0.434030
\(909\) 0 0
\(910\) 0 0
\(911\) −27133.6 −0.986800 −0.493400 0.869802i \(-0.664246\pi\)
−0.493400 + 0.869802i \(0.664246\pi\)
\(912\) 0 0
\(913\) 26654.6 0.966197
\(914\) −51724.9 −1.87189
\(915\) 0 0
\(916\) −93476.5 −3.37178
\(917\) −14580.3 −0.525064
\(918\) 0 0
\(919\) 42534.1 1.52673 0.763367 0.645965i \(-0.223545\pi\)
0.763367 + 0.645965i \(0.223545\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −7138.42 −0.254980
\(923\) 35679.7 1.27238
\(924\) 0 0
\(925\) 0 0
\(926\) 35143.1 1.24716
\(927\) 0 0
\(928\) −106552. −3.76911
\(929\) −41849.0 −1.47795 −0.738977 0.673730i \(-0.764691\pi\)
−0.738977 + 0.673730i \(0.764691\pi\)
\(930\) 0 0
\(931\) 38.8294 0.00136690
\(932\) 103612. 3.64155
\(933\) 0 0
\(934\) −78051.9 −2.73441
\(935\) 0 0
\(936\) 0 0
\(937\) −33281.9 −1.16038 −0.580188 0.814482i \(-0.697021\pi\)
−0.580188 + 0.814482i \(0.697021\pi\)
\(938\) −19179.5 −0.667627
\(939\) 0 0
\(940\) 0 0
\(941\) −12740.6 −0.441373 −0.220687 0.975345i \(-0.570830\pi\)
−0.220687 + 0.975345i \(0.570830\pi\)
\(942\) 0 0
\(943\) −43791.9 −1.51226
\(944\) 124662. 4.29810
\(945\) 0 0
\(946\) 23465.5 0.806478
\(947\) −20681.5 −0.709670 −0.354835 0.934929i \(-0.615463\pi\)
−0.354835 + 0.934929i \(0.615463\pi\)
\(948\) 0 0
\(949\) 11105.1 0.379861
\(950\) 0 0
\(951\) 0 0
\(952\) −12603.7 −0.429084
\(953\) −6702.50 −0.227823 −0.113912 0.993491i \(-0.536338\pi\)
−0.113912 + 0.993491i \(0.536338\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −22815.2 −0.771857
\(957\) 0 0
\(958\) −81291.6 −2.74156
\(959\) 547.196 0.0184253
\(960\) 0 0
\(961\) −13097.4 −0.439643
\(962\) 13049.2 0.437341
\(963\) 0 0
\(964\) −71824.6 −2.39970
\(965\) 0 0
\(966\) 0 0
\(967\) −36459.9 −1.21248 −0.606242 0.795280i \(-0.707324\pi\)
−0.606242 + 0.795280i \(0.707324\pi\)
\(968\) 44117.9 1.46488
\(969\) 0 0
\(970\) 0 0
\(971\) 15789.7 0.521850 0.260925 0.965359i \(-0.415973\pi\)
0.260925 + 0.965359i \(0.415973\pi\)
\(972\) 0 0
\(973\) 9755.67 0.321431
\(974\) 51297.0 1.68754
\(975\) 0 0
\(976\) −105503. −3.46011
\(977\) 34429.2 1.12742 0.563709 0.825974i \(-0.309374\pi\)
0.563709 + 0.825974i \(0.309374\pi\)
\(978\) 0 0
\(979\) 16654.9 0.543710
\(980\) 0 0
\(981\) 0 0
\(982\) 107031. 3.47809
\(983\) 21047.5 0.682922 0.341461 0.939896i \(-0.389078\pi\)
0.341461 + 0.939896i \(0.389078\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −34436.1 −1.11224
\(987\) 0 0
\(988\) −1027.86 −0.0330978
\(989\) −18777.5 −0.603730
\(990\) 0 0
\(991\) 23839.1 0.764150 0.382075 0.924131i \(-0.375210\pi\)
0.382075 + 0.924131i \(0.375210\pi\)
\(992\) −58832.7 −1.88301
\(993\) 0 0
\(994\) 20703.5 0.660640
\(995\) 0 0
\(996\) 0 0
\(997\) 7853.62 0.249475 0.124738 0.992190i \(-0.460191\pi\)
0.124738 + 0.992190i \(0.460191\pi\)
\(998\) 6957.12 0.220665
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.4.a.bn.1.1 5
3.2 odd 2 175.4.a.j.1.5 5
5.2 odd 4 315.4.d.c.64.1 10
5.3 odd 4 315.4.d.c.64.10 10
5.4 even 2 1575.4.a.bq.1.5 5
15.2 even 4 35.4.b.a.29.10 yes 10
15.8 even 4 35.4.b.a.29.1 10
15.14 odd 2 175.4.a.i.1.1 5
21.20 even 2 1225.4.a.bh.1.5 5
60.23 odd 4 560.4.g.f.449.5 10
60.47 odd 4 560.4.g.f.449.6 10
105.2 even 12 245.4.j.e.214.10 20
105.17 odd 12 245.4.j.f.79.1 20
105.23 even 12 245.4.j.e.214.1 20
105.32 even 12 245.4.j.e.79.1 20
105.38 odd 12 245.4.j.f.79.10 20
105.47 odd 12 245.4.j.f.214.10 20
105.53 even 12 245.4.j.e.79.10 20
105.62 odd 4 245.4.b.d.99.10 10
105.68 odd 12 245.4.j.f.214.1 20
105.83 odd 4 245.4.b.d.99.1 10
105.104 even 2 1225.4.a.be.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.b.a.29.1 10 15.8 even 4
35.4.b.a.29.10 yes 10 15.2 even 4
175.4.a.i.1.1 5 15.14 odd 2
175.4.a.j.1.5 5 3.2 odd 2
245.4.b.d.99.1 10 105.83 odd 4
245.4.b.d.99.10 10 105.62 odd 4
245.4.j.e.79.1 20 105.32 even 12
245.4.j.e.79.10 20 105.53 even 12
245.4.j.e.214.1 20 105.23 even 12
245.4.j.e.214.10 20 105.2 even 12
245.4.j.f.79.1 20 105.17 odd 12
245.4.j.f.79.10 20 105.38 odd 12
245.4.j.f.214.1 20 105.68 odd 12
245.4.j.f.214.10 20 105.47 odd 12
315.4.d.c.64.1 10 5.2 odd 4
315.4.d.c.64.10 10 5.3 odd 4
560.4.g.f.449.5 10 60.23 odd 4
560.4.g.f.449.6 10 60.47 odd 4
1225.4.a.be.1.1 5 105.104 even 2
1225.4.a.bh.1.5 5 21.20 even 2
1575.4.a.bn.1.1 5 1.1 even 1 trivial
1575.4.a.bq.1.5 5 5.4 even 2