Properties

Label 1575.4.a.bl.1.4
Level $1575$
Weight $4$
Character 1575.1
Self dual yes
Analytic conductor $92.928$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,4,Mod(1,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.9280082590\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 32x^{2} - 35x + 120 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 175)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-3.84167\) of defining polynomial
Character \(\chi\) \(=\) 1575.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.84167 q^{2} +15.4418 q^{4} -7.00000 q^{7} +36.0308 q^{8} +O(q^{10})\) \(q+4.84167 q^{2} +15.4418 q^{4} -7.00000 q^{7} +36.0308 q^{8} -62.1962 q^{11} -14.0934 q^{13} -33.8917 q^{14} +50.9148 q^{16} +63.5104 q^{17} +48.7094 q^{19} -301.134 q^{22} -99.3784 q^{23} -68.2354 q^{26} -108.093 q^{28} +69.0571 q^{29} -9.68658 q^{31} -41.7334 q^{32} +307.497 q^{34} -240.290 q^{37} +235.835 q^{38} -335.306 q^{41} -51.2582 q^{43} -960.421 q^{44} -481.158 q^{46} -451.564 q^{47} +49.0000 q^{49} -217.627 q^{52} -180.014 q^{53} -252.215 q^{56} +334.352 q^{58} -268.600 q^{59} -323.925 q^{61} -46.8992 q^{62} -609.378 q^{64} +541.910 q^{67} +980.715 q^{68} +161.433 q^{71} -305.751 q^{73} -1163.40 q^{74} +752.161 q^{76} +435.373 q^{77} -504.722 q^{79} -1623.44 q^{82} -513.838 q^{83} -248.176 q^{86} -2240.98 q^{88} -543.158 q^{89} +98.6535 q^{91} -1534.58 q^{92} -2186.32 q^{94} -1863.06 q^{97} +237.242 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 36 q^{4} - 28 q^{7} + 27 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} + 36 q^{4} - 28 q^{7} + 27 q^{8} - 100 q^{11} - 44 q^{13} - 28 q^{14} + 160 q^{16} - 53 q^{17} - 29 q^{19} + 152 q^{22} + 295 q^{23} - 700 q^{26} - 252 q^{28} - 129 q^{29} + 114 q^{31} - 310 q^{32} + 203 q^{34} - 403 q^{37} + 555 q^{38} - 671 q^{41} + 411 q^{43} - 438 q^{44} - 997 q^{46} - 8 q^{47} + 196 q^{49} - 74 q^{52} + 90 q^{53} - 189 q^{56} - 673 q^{58} - 1018 q^{59} + 50 q^{61} - 1626 q^{62} - 2421 q^{64} - 424 q^{67} - 617 q^{68} - 215 q^{71} + 1207 q^{73} - 623 q^{74} - 3257 q^{76} + 700 q^{77} - 951 q^{79} - 1695 q^{82} - 3035 q^{83} + 99 q^{86} - 163 q^{88} - 2819 q^{89} + 308 q^{91} + 3073 q^{92} - 3056 q^{94} + 1100 q^{97} + 196 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.84167 1.71179 0.855895 0.517150i \(-0.173007\pi\)
0.855895 + 0.517150i \(0.173007\pi\)
\(3\) 0 0
\(4\) 15.4418 1.93022
\(5\) 0 0
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 36.0308 1.59235
\(9\) 0 0
\(10\) 0 0
\(11\) −62.1962 −1.70481 −0.852403 0.522886i \(-0.824855\pi\)
−0.852403 + 0.522886i \(0.824855\pi\)
\(12\) 0 0
\(13\) −14.0934 −0.300676 −0.150338 0.988635i \(-0.548036\pi\)
−0.150338 + 0.988635i \(0.548036\pi\)
\(14\) −33.8917 −0.646996
\(15\) 0 0
\(16\) 50.9148 0.795543
\(17\) 63.5104 0.906091 0.453045 0.891487i \(-0.350338\pi\)
0.453045 + 0.891487i \(0.350338\pi\)
\(18\) 0 0
\(19\) 48.7094 0.588143 0.294071 0.955783i \(-0.404990\pi\)
0.294071 + 0.955783i \(0.404990\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −301.134 −2.91827
\(23\) −99.3784 −0.900949 −0.450475 0.892789i \(-0.648745\pi\)
−0.450475 + 0.892789i \(0.648745\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −68.2354 −0.514695
\(27\) 0 0
\(28\) −108.093 −0.729556
\(29\) 69.0571 0.442193 0.221096 0.975252i \(-0.429036\pi\)
0.221096 + 0.975252i \(0.429036\pi\)
\(30\) 0 0
\(31\) −9.68658 −0.0561213 −0.0280607 0.999606i \(-0.508933\pi\)
−0.0280607 + 0.999606i \(0.508933\pi\)
\(32\) −41.7334 −0.230547
\(33\) 0 0
\(34\) 307.497 1.55104
\(35\) 0 0
\(36\) 0 0
\(37\) −240.290 −1.06766 −0.533829 0.845592i \(-0.679248\pi\)
−0.533829 + 0.845592i \(0.679248\pi\)
\(38\) 235.835 1.00678
\(39\) 0 0
\(40\) 0 0
\(41\) −335.306 −1.27722 −0.638610 0.769531i \(-0.720490\pi\)
−0.638610 + 0.769531i \(0.720490\pi\)
\(42\) 0 0
\(43\) −51.2582 −0.181786 −0.0908931 0.995861i \(-0.528972\pi\)
−0.0908931 + 0.995861i \(0.528972\pi\)
\(44\) −960.421 −3.29066
\(45\) 0 0
\(46\) −481.158 −1.54224
\(47\) −451.564 −1.40143 −0.700716 0.713440i \(-0.747136\pi\)
−0.700716 + 0.713440i \(0.747136\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) −217.627 −0.580373
\(53\) −180.014 −0.466545 −0.233273 0.972411i \(-0.574943\pi\)
−0.233273 + 0.972411i \(0.574943\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −252.215 −0.601852
\(57\) 0 0
\(58\) 334.352 0.756941
\(59\) −268.600 −0.592691 −0.296345 0.955081i \(-0.595768\pi\)
−0.296345 + 0.955081i \(0.595768\pi\)
\(60\) 0 0
\(61\) −323.925 −0.679906 −0.339953 0.940442i \(-0.610411\pi\)
−0.339953 + 0.940442i \(0.610411\pi\)
\(62\) −46.8992 −0.0960679
\(63\) 0 0
\(64\) −609.378 −1.19019
\(65\) 0 0
\(66\) 0 0
\(67\) 541.910 0.988132 0.494066 0.869424i \(-0.335510\pi\)
0.494066 + 0.869424i \(0.335510\pi\)
\(68\) 980.715 1.74896
\(69\) 0 0
\(70\) 0 0
\(71\) 161.433 0.269839 0.134919 0.990857i \(-0.456922\pi\)
0.134919 + 0.990857i \(0.456922\pi\)
\(72\) 0 0
\(73\) −305.751 −0.490212 −0.245106 0.969496i \(-0.578823\pi\)
−0.245106 + 0.969496i \(0.578823\pi\)
\(74\) −1163.40 −1.82761
\(75\) 0 0
\(76\) 752.161 1.13525
\(77\) 435.373 0.644356
\(78\) 0 0
\(79\) −504.722 −0.718805 −0.359403 0.933183i \(-0.617020\pi\)
−0.359403 + 0.933183i \(0.617020\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −1623.44 −2.18633
\(83\) −513.838 −0.679531 −0.339766 0.940510i \(-0.610348\pi\)
−0.339766 + 0.940510i \(0.610348\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −248.176 −0.311180
\(87\) 0 0
\(88\) −2240.98 −2.71465
\(89\) −543.158 −0.646907 −0.323453 0.946244i \(-0.604844\pi\)
−0.323453 + 0.946244i \(0.604844\pi\)
\(90\) 0 0
\(91\) 98.6535 0.113645
\(92\) −1534.58 −1.73903
\(93\) 0 0
\(94\) −2186.32 −2.39896
\(95\) 0 0
\(96\) 0 0
\(97\) −1863.06 −1.95016 −0.975079 0.221857i \(-0.928788\pi\)
−0.975079 + 0.221857i \(0.928788\pi\)
\(98\) 237.242 0.244541
\(99\) 0 0
\(100\) 0 0
\(101\) 1685.70 1.66073 0.830365 0.557221i \(-0.188132\pi\)
0.830365 + 0.557221i \(0.188132\pi\)
\(102\) 0 0
\(103\) 1014.19 0.970203 0.485102 0.874458i \(-0.338783\pi\)
0.485102 + 0.874458i \(0.338783\pi\)
\(104\) −507.794 −0.478782
\(105\) 0 0
\(106\) −871.571 −0.798627
\(107\) 913.161 0.825033 0.412517 0.910950i \(-0.364650\pi\)
0.412517 + 0.910950i \(0.364650\pi\)
\(108\) 0 0
\(109\) −1397.13 −1.22772 −0.613859 0.789416i \(-0.710383\pi\)
−0.613859 + 0.789416i \(0.710383\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −356.403 −0.300687
\(113\) 2082.49 1.73366 0.866831 0.498603i \(-0.166153\pi\)
0.866831 + 0.498603i \(0.166153\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1066.37 0.853531
\(117\) 0 0
\(118\) −1300.47 −1.01456
\(119\) −444.573 −0.342470
\(120\) 0 0
\(121\) 2537.37 1.90636
\(122\) −1568.34 −1.16386
\(123\) 0 0
\(124\) −149.578 −0.108327
\(125\) 0 0
\(126\) 0 0
\(127\) 230.691 0.161185 0.0805925 0.996747i \(-0.474319\pi\)
0.0805925 + 0.996747i \(0.474319\pi\)
\(128\) −2616.54 −1.80681
\(129\) 0 0
\(130\) 0 0
\(131\) 973.877 0.649527 0.324764 0.945795i \(-0.394715\pi\)
0.324764 + 0.945795i \(0.394715\pi\)
\(132\) 0 0
\(133\) −340.966 −0.222297
\(134\) 2623.75 1.69148
\(135\) 0 0
\(136\) 2288.33 1.44281
\(137\) 695.734 0.433873 0.216936 0.976186i \(-0.430394\pi\)
0.216936 + 0.976186i \(0.430394\pi\)
\(138\) 0 0
\(139\) −298.530 −0.182165 −0.0910826 0.995843i \(-0.529033\pi\)
−0.0910826 + 0.995843i \(0.529033\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 781.605 0.461908
\(143\) 876.553 0.512595
\(144\) 0 0
\(145\) 0 0
\(146\) −1480.35 −0.839140
\(147\) 0 0
\(148\) −3710.50 −2.06082
\(149\) 1792.02 0.985290 0.492645 0.870230i \(-0.336030\pi\)
0.492645 + 0.870230i \(0.336030\pi\)
\(150\) 0 0
\(151\) 1201.27 0.647403 0.323701 0.946159i \(-0.395073\pi\)
0.323701 + 0.946159i \(0.395073\pi\)
\(152\) 1755.04 0.936529
\(153\) 0 0
\(154\) 2107.94 1.10300
\(155\) 0 0
\(156\) 0 0
\(157\) −409.798 −0.208315 −0.104158 0.994561i \(-0.533215\pi\)
−0.104158 + 0.994561i \(0.533215\pi\)
\(158\) −2443.70 −1.23044
\(159\) 0 0
\(160\) 0 0
\(161\) 695.649 0.340527
\(162\) 0 0
\(163\) 2030.71 0.975811 0.487905 0.872896i \(-0.337761\pi\)
0.487905 + 0.872896i \(0.337761\pi\)
\(164\) −5177.73 −2.46532
\(165\) 0 0
\(166\) −2487.84 −1.16321
\(167\) 520.014 0.240958 0.120479 0.992716i \(-0.461557\pi\)
0.120479 + 0.992716i \(0.461557\pi\)
\(168\) 0 0
\(169\) −1998.38 −0.909594
\(170\) 0 0
\(171\) 0 0
\(172\) −791.520 −0.350888
\(173\) −2561.90 −1.12588 −0.562942 0.826497i \(-0.690331\pi\)
−0.562942 + 0.826497i \(0.690331\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −3166.71 −1.35625
\(177\) 0 0
\(178\) −2629.80 −1.10737
\(179\) 3042.08 1.27025 0.635127 0.772408i \(-0.280948\pi\)
0.635127 + 0.772408i \(0.280948\pi\)
\(180\) 0 0
\(181\) −3648.02 −1.49809 −0.749047 0.662516i \(-0.769488\pi\)
−0.749047 + 0.662516i \(0.769488\pi\)
\(182\) 477.648 0.194536
\(183\) 0 0
\(184\) −3580.68 −1.43463
\(185\) 0 0
\(186\) 0 0
\(187\) −3950.11 −1.54471
\(188\) −6972.95 −2.70508
\(189\) 0 0
\(190\) 0 0
\(191\) 4091.12 1.54986 0.774929 0.632049i \(-0.217786\pi\)
0.774929 + 0.632049i \(0.217786\pi\)
\(192\) 0 0
\(193\) −3051.70 −1.13817 −0.569084 0.822280i \(-0.692702\pi\)
−0.569084 + 0.822280i \(0.692702\pi\)
\(194\) −9020.34 −3.33826
\(195\) 0 0
\(196\) 756.648 0.275746
\(197\) 3011.44 1.08912 0.544560 0.838722i \(-0.316697\pi\)
0.544560 + 0.838722i \(0.316697\pi\)
\(198\) 0 0
\(199\) 199.943 0.0712239 0.0356119 0.999366i \(-0.488662\pi\)
0.0356119 + 0.999366i \(0.488662\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 8161.62 2.84282
\(203\) −483.400 −0.167133
\(204\) 0 0
\(205\) 0 0
\(206\) 4910.37 1.66078
\(207\) 0 0
\(208\) −717.560 −0.239201
\(209\) −3029.54 −1.00267
\(210\) 0 0
\(211\) −297.442 −0.0970461 −0.0485231 0.998822i \(-0.515451\pi\)
−0.0485231 + 0.998822i \(0.515451\pi\)
\(212\) −2779.75 −0.900537
\(213\) 0 0
\(214\) 4421.23 1.41228
\(215\) 0 0
\(216\) 0 0
\(217\) 67.8061 0.0212119
\(218\) −6764.47 −2.10159
\(219\) 0 0
\(220\) 0 0
\(221\) −895.075 −0.272440
\(222\) 0 0
\(223\) 6282.68 1.88663 0.943317 0.331894i \(-0.107688\pi\)
0.943317 + 0.331894i \(0.107688\pi\)
\(224\) 292.134 0.0871385
\(225\) 0 0
\(226\) 10082.7 2.96766
\(227\) −2357.28 −0.689243 −0.344621 0.938742i \(-0.611993\pi\)
−0.344621 + 0.938742i \(0.611993\pi\)
\(228\) 0 0
\(229\) −2476.81 −0.714727 −0.357363 0.933965i \(-0.616324\pi\)
−0.357363 + 0.933965i \(0.616324\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 2488.18 0.704125
\(233\) −5142.47 −1.44590 −0.722950 0.690900i \(-0.757214\pi\)
−0.722950 + 0.690900i \(0.757214\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −4147.67 −1.14403
\(237\) 0 0
\(238\) −2152.48 −0.586237
\(239\) 831.250 0.224975 0.112488 0.993653i \(-0.464118\pi\)
0.112488 + 0.993653i \(0.464118\pi\)
\(240\) 0 0
\(241\) 4538.85 1.21317 0.606584 0.795020i \(-0.292540\pi\)
0.606584 + 0.795020i \(0.292540\pi\)
\(242\) 12285.1 3.26329
\(243\) 0 0
\(244\) −5001.98 −1.31237
\(245\) 0 0
\(246\) 0 0
\(247\) −686.479 −0.176841
\(248\) −349.015 −0.0893648
\(249\) 0 0
\(250\) 0 0
\(251\) −7232.00 −1.81865 −0.909323 0.416091i \(-0.863400\pi\)
−0.909323 + 0.416091i \(0.863400\pi\)
\(252\) 0 0
\(253\) 6180.96 1.53594
\(254\) 1116.93 0.275915
\(255\) 0 0
\(256\) −7793.41 −1.90269
\(257\) 4242.66 1.02977 0.514883 0.857260i \(-0.327835\pi\)
0.514883 + 0.857260i \(0.327835\pi\)
\(258\) 0 0
\(259\) 1682.03 0.403537
\(260\) 0 0
\(261\) 0 0
\(262\) 4715.20 1.11185
\(263\) 6604.75 1.54854 0.774271 0.632855i \(-0.218117\pi\)
0.774271 + 0.632855i \(0.218117\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −1650.85 −0.380526
\(267\) 0 0
\(268\) 8368.07 1.90732
\(269\) −4612.29 −1.04541 −0.522707 0.852512i \(-0.675078\pi\)
−0.522707 + 0.852512i \(0.675078\pi\)
\(270\) 0 0
\(271\) −3542.29 −0.794018 −0.397009 0.917815i \(-0.629952\pi\)
−0.397009 + 0.917815i \(0.629952\pi\)
\(272\) 3233.62 0.720834
\(273\) 0 0
\(274\) 3368.52 0.742699
\(275\) 0 0
\(276\) 0 0
\(277\) −19.5351 −0.00423737 −0.00211868 0.999998i \(-0.500674\pi\)
−0.00211868 + 0.999998i \(0.500674\pi\)
\(278\) −1445.38 −0.311829
\(279\) 0 0
\(280\) 0 0
\(281\) −6769.20 −1.43707 −0.718535 0.695491i \(-0.755187\pi\)
−0.718535 + 0.695491i \(0.755187\pi\)
\(282\) 0 0
\(283\) −1269.89 −0.266740 −0.133370 0.991066i \(-0.542580\pi\)
−0.133370 + 0.991066i \(0.542580\pi\)
\(284\) 2492.81 0.520850
\(285\) 0 0
\(286\) 4243.98 0.877455
\(287\) 2347.14 0.482743
\(288\) 0 0
\(289\) −879.424 −0.178999
\(290\) 0 0
\(291\) 0 0
\(292\) −4721.35 −0.946220
\(293\) 6349.74 1.26606 0.633030 0.774127i \(-0.281811\pi\)
0.633030 + 0.774127i \(0.281811\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −8657.82 −1.70009
\(297\) 0 0
\(298\) 8676.39 1.68661
\(299\) 1400.58 0.270894
\(300\) 0 0
\(301\) 358.808 0.0687087
\(302\) 5816.15 1.10822
\(303\) 0 0
\(304\) 2480.03 0.467893
\(305\) 0 0
\(306\) 0 0
\(307\) 4772.37 0.887211 0.443605 0.896222i \(-0.353699\pi\)
0.443605 + 0.896222i \(0.353699\pi\)
\(308\) 6722.95 1.24375
\(309\) 0 0
\(310\) 0 0
\(311\) −740.703 −0.135053 −0.0675264 0.997717i \(-0.521511\pi\)
−0.0675264 + 0.997717i \(0.521511\pi\)
\(312\) 0 0
\(313\) 2279.68 0.411678 0.205839 0.978586i \(-0.434008\pi\)
0.205839 + 0.978586i \(0.434008\pi\)
\(314\) −1984.11 −0.356592
\(315\) 0 0
\(316\) −7793.81 −1.38746
\(317\) −10198.1 −1.80689 −0.903446 0.428702i \(-0.858971\pi\)
−0.903446 + 0.428702i \(0.858971\pi\)
\(318\) 0 0
\(319\) −4295.09 −0.753852
\(320\) 0 0
\(321\) 0 0
\(322\) 3368.10 0.582910
\(323\) 3093.56 0.532911
\(324\) 0 0
\(325\) 0 0
\(326\) 9832.01 1.67038
\(327\) 0 0
\(328\) −12081.3 −2.03378
\(329\) 3160.95 0.529692
\(330\) 0 0
\(331\) −78.0380 −0.0129588 −0.00647939 0.999979i \(-0.502062\pi\)
−0.00647939 + 0.999979i \(0.502062\pi\)
\(332\) −7934.59 −1.31165
\(333\) 0 0
\(334\) 2517.74 0.412469
\(335\) 0 0
\(336\) 0 0
\(337\) 4164.73 0.673196 0.336598 0.941648i \(-0.390724\pi\)
0.336598 + 0.941648i \(0.390724\pi\)
\(338\) −9675.49 −1.55703
\(339\) 0 0
\(340\) 0 0
\(341\) 602.468 0.0956759
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) −1846.87 −0.289467
\(345\) 0 0
\(346\) −12403.9 −1.92728
\(347\) 1795.19 0.277726 0.138863 0.990312i \(-0.455655\pi\)
0.138863 + 0.990312i \(0.455655\pi\)
\(348\) 0 0
\(349\) −11751.4 −1.80241 −0.901203 0.433398i \(-0.857314\pi\)
−0.901203 + 0.433398i \(0.857314\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2595.66 0.393038
\(353\) 2882.32 0.434590 0.217295 0.976106i \(-0.430277\pi\)
0.217295 + 0.976106i \(0.430277\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −8387.34 −1.24868
\(357\) 0 0
\(358\) 14728.7 2.17441
\(359\) 1193.78 0.175503 0.0877513 0.996142i \(-0.472032\pi\)
0.0877513 + 0.996142i \(0.472032\pi\)
\(360\) 0 0
\(361\) −4486.39 −0.654088
\(362\) −17662.5 −2.56442
\(363\) 0 0
\(364\) 1523.39 0.219360
\(365\) 0 0
\(366\) 0 0
\(367\) −8858.80 −1.26001 −0.630007 0.776589i \(-0.716948\pi\)
−0.630007 + 0.776589i \(0.716948\pi\)
\(368\) −5059.83 −0.716744
\(369\) 0 0
\(370\) 0 0
\(371\) 1260.10 0.176337
\(372\) 0 0
\(373\) 2287.78 0.317578 0.158789 0.987313i \(-0.449241\pi\)
0.158789 + 0.987313i \(0.449241\pi\)
\(374\) −19125.1 −2.64422
\(375\) 0 0
\(376\) −16270.2 −2.23157
\(377\) −973.246 −0.132957
\(378\) 0 0
\(379\) 8870.18 1.20219 0.601095 0.799177i \(-0.294731\pi\)
0.601095 + 0.799177i \(0.294731\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 19807.8 2.65303
\(383\) 13359.2 1.78231 0.891155 0.453700i \(-0.149896\pi\)
0.891155 + 0.453700i \(0.149896\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −14775.3 −1.94830
\(387\) 0 0
\(388\) −28769.0 −3.76424
\(389\) −11324.7 −1.47605 −0.738025 0.674773i \(-0.764241\pi\)
−0.738025 + 0.674773i \(0.764241\pi\)
\(390\) 0 0
\(391\) −6311.57 −0.816342
\(392\) 1765.51 0.227479
\(393\) 0 0
\(394\) 14580.4 1.86434
\(395\) 0 0
\(396\) 0 0
\(397\) 13242.8 1.67415 0.837076 0.547087i \(-0.184263\pi\)
0.837076 + 0.547087i \(0.184263\pi\)
\(398\) 968.056 0.121920
\(399\) 0 0
\(400\) 0 0
\(401\) −1952.96 −0.243207 −0.121604 0.992579i \(-0.538804\pi\)
−0.121604 + 0.992579i \(0.538804\pi\)
\(402\) 0 0
\(403\) 136.516 0.0168744
\(404\) 26030.3 3.20558
\(405\) 0 0
\(406\) −2340.46 −0.286097
\(407\) 14945.1 1.82015
\(408\) 0 0
\(409\) −10597.8 −1.28124 −0.640618 0.767860i \(-0.721322\pi\)
−0.640618 + 0.767860i \(0.721322\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 15660.9 1.87271
\(413\) 1880.20 0.224016
\(414\) 0 0
\(415\) 0 0
\(416\) 588.164 0.0693200
\(417\) 0 0
\(418\) −14668.1 −1.71636
\(419\) 1631.18 0.190187 0.0950935 0.995468i \(-0.469685\pi\)
0.0950935 + 0.995468i \(0.469685\pi\)
\(420\) 0 0
\(421\) 13181.2 1.52592 0.762961 0.646445i \(-0.223745\pi\)
0.762961 + 0.646445i \(0.223745\pi\)
\(422\) −1440.12 −0.166123
\(423\) 0 0
\(424\) −6486.06 −0.742903
\(425\) 0 0
\(426\) 0 0
\(427\) 2267.47 0.256980
\(428\) 14100.8 1.59250
\(429\) 0 0
\(430\) 0 0
\(431\) −9159.40 −1.02365 −0.511825 0.859090i \(-0.671030\pi\)
−0.511825 + 0.859090i \(0.671030\pi\)
\(432\) 0 0
\(433\) −270.519 −0.0300238 −0.0150119 0.999887i \(-0.504779\pi\)
−0.0150119 + 0.999887i \(0.504779\pi\)
\(434\) 328.295 0.0363103
\(435\) 0 0
\(436\) −21574.3 −2.36977
\(437\) −4840.67 −0.529887
\(438\) 0 0
\(439\) 17008.0 1.84908 0.924541 0.381082i \(-0.124448\pi\)
0.924541 + 0.381082i \(0.124448\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −4333.66 −0.466360
\(443\) 3968.12 0.425578 0.212789 0.977098i \(-0.431745\pi\)
0.212789 + 0.977098i \(0.431745\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 30418.7 3.22952
\(447\) 0 0
\(448\) 4265.64 0.449850
\(449\) 12480.3 1.31177 0.655884 0.754862i \(-0.272296\pi\)
0.655884 + 0.754862i \(0.272296\pi\)
\(450\) 0 0
\(451\) 20854.8 2.17741
\(452\) 32157.3 3.34636
\(453\) 0 0
\(454\) −11413.2 −1.17984
\(455\) 0 0
\(456\) 0 0
\(457\) −5782.90 −0.591932 −0.295966 0.955199i \(-0.595641\pi\)
−0.295966 + 0.955199i \(0.595641\pi\)
\(458\) −11991.9 −1.22346
\(459\) 0 0
\(460\) 0 0
\(461\) −10049.6 −1.01531 −0.507653 0.861562i \(-0.669487\pi\)
−0.507653 + 0.861562i \(0.669487\pi\)
\(462\) 0 0
\(463\) 659.842 0.0662321 0.0331161 0.999452i \(-0.489457\pi\)
0.0331161 + 0.999452i \(0.489457\pi\)
\(464\) 3516.03 0.351783
\(465\) 0 0
\(466\) −24898.2 −2.47508
\(467\) −4467.60 −0.442690 −0.221345 0.975196i \(-0.571045\pi\)
−0.221345 + 0.975196i \(0.571045\pi\)
\(468\) 0 0
\(469\) −3793.37 −0.373479
\(470\) 0 0
\(471\) 0 0
\(472\) −9677.87 −0.943771
\(473\) 3188.07 0.309910
\(474\) 0 0
\(475\) 0 0
\(476\) −6865.01 −0.661044
\(477\) 0 0
\(478\) 4024.64 0.385110
\(479\) −7633.87 −0.728185 −0.364092 0.931363i \(-0.618621\pi\)
−0.364092 + 0.931363i \(0.618621\pi\)
\(480\) 0 0
\(481\) 3386.49 0.321020
\(482\) 21975.6 2.07669
\(483\) 0 0
\(484\) 39181.5 3.67971
\(485\) 0 0
\(486\) 0 0
\(487\) −6289.84 −0.585256 −0.292628 0.956226i \(-0.594530\pi\)
−0.292628 + 0.956226i \(0.594530\pi\)
\(488\) −11671.2 −1.08265
\(489\) 0 0
\(490\) 0 0
\(491\) −3562.54 −0.327445 −0.163722 0.986506i \(-0.552350\pi\)
−0.163722 + 0.986506i \(0.552350\pi\)
\(492\) 0 0
\(493\) 4385.85 0.400667
\(494\) −3323.71 −0.302714
\(495\) 0 0
\(496\) −493.190 −0.0446469
\(497\) −1130.03 −0.101990
\(498\) 0 0
\(499\) −18916.9 −1.69706 −0.848532 0.529144i \(-0.822513\pi\)
−0.848532 + 0.529144i \(0.822513\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −35015.0 −3.11314
\(503\) 2565.91 0.227452 0.113726 0.993512i \(-0.463721\pi\)
0.113726 + 0.993512i \(0.463721\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 29926.2 2.62921
\(507\) 0 0
\(508\) 3562.28 0.311123
\(509\) −5447.84 −0.474403 −0.237202 0.971460i \(-0.576230\pi\)
−0.237202 + 0.971460i \(0.576230\pi\)
\(510\) 0 0
\(511\) 2140.26 0.185283
\(512\) −16800.8 −1.45019
\(513\) 0 0
\(514\) 20541.6 1.76274
\(515\) 0 0
\(516\) 0 0
\(517\) 28085.5 2.38917
\(518\) 8143.83 0.690771
\(519\) 0 0
\(520\) 0 0
\(521\) 4732.95 0.397993 0.198997 0.980000i \(-0.436232\pi\)
0.198997 + 0.980000i \(0.436232\pi\)
\(522\) 0 0
\(523\) 9182.96 0.767769 0.383884 0.923381i \(-0.374586\pi\)
0.383884 + 0.923381i \(0.374586\pi\)
\(524\) 15038.4 1.25373
\(525\) 0 0
\(526\) 31978.0 2.65078
\(527\) −615.199 −0.0508510
\(528\) 0 0
\(529\) −2290.93 −0.188290
\(530\) 0 0
\(531\) 0 0
\(532\) −5265.13 −0.429083
\(533\) 4725.59 0.384030
\(534\) 0 0
\(535\) 0 0
\(536\) 19525.4 1.57345
\(537\) 0 0
\(538\) −22331.2 −1.78953
\(539\) −3047.61 −0.243544
\(540\) 0 0
\(541\) 14572.9 1.15811 0.579055 0.815288i \(-0.303422\pi\)
0.579055 + 0.815288i \(0.303422\pi\)
\(542\) −17150.6 −1.35919
\(543\) 0 0
\(544\) −2650.51 −0.208896
\(545\) 0 0
\(546\) 0 0
\(547\) −11290.3 −0.882519 −0.441260 0.897380i \(-0.645468\pi\)
−0.441260 + 0.897380i \(0.645468\pi\)
\(548\) 10743.4 0.837472
\(549\) 0 0
\(550\) 0 0
\(551\) 3363.73 0.260072
\(552\) 0 0
\(553\) 3533.05 0.271683
\(554\) −94.5826 −0.00725349
\(555\) 0 0
\(556\) −4609.84 −0.351620
\(557\) 3919.93 0.298191 0.149096 0.988823i \(-0.452364\pi\)
0.149096 + 0.988823i \(0.452364\pi\)
\(558\) 0 0
\(559\) 722.401 0.0546588
\(560\) 0 0
\(561\) 0 0
\(562\) −32774.2 −2.45996
\(563\) −7444.71 −0.557295 −0.278647 0.960393i \(-0.589886\pi\)
−0.278647 + 0.960393i \(0.589886\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −6148.41 −0.456602
\(567\) 0 0
\(568\) 5816.55 0.429678
\(569\) −8529.24 −0.628408 −0.314204 0.949355i \(-0.601738\pi\)
−0.314204 + 0.949355i \(0.601738\pi\)
\(570\) 0 0
\(571\) 10324.8 0.756706 0.378353 0.925661i \(-0.376491\pi\)
0.378353 + 0.925661i \(0.376491\pi\)
\(572\) 13535.6 0.989423
\(573\) 0 0
\(574\) 11364.1 0.826355
\(575\) 0 0
\(576\) 0 0
\(577\) −6467.10 −0.466601 −0.233301 0.972405i \(-0.574953\pi\)
−0.233301 + 0.972405i \(0.574953\pi\)
\(578\) −4257.88 −0.306409
\(579\) 0 0
\(580\) 0 0
\(581\) 3596.87 0.256839
\(582\) 0 0
\(583\) 11196.2 0.795369
\(584\) −11016.5 −0.780589
\(585\) 0 0
\(586\) 30743.4 2.16723
\(587\) 7114.68 0.500263 0.250131 0.968212i \(-0.419526\pi\)
0.250131 + 0.968212i \(0.419526\pi\)
\(588\) 0 0
\(589\) −471.828 −0.0330073
\(590\) 0 0
\(591\) 0 0
\(592\) −12234.3 −0.849369
\(593\) −21270.8 −1.47299 −0.736497 0.676441i \(-0.763522\pi\)
−0.736497 + 0.676441i \(0.763522\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 27672.1 1.90183
\(597\) 0 0
\(598\) 6781.13 0.463714
\(599\) 4697.43 0.320420 0.160210 0.987083i \(-0.448783\pi\)
0.160210 + 0.987083i \(0.448783\pi\)
\(600\) 0 0
\(601\) 8719.81 0.591828 0.295914 0.955215i \(-0.404376\pi\)
0.295914 + 0.955215i \(0.404376\pi\)
\(602\) 1737.23 0.117615
\(603\) 0 0
\(604\) 18549.7 1.24963
\(605\) 0 0
\(606\) 0 0
\(607\) 23097.1 1.54445 0.772227 0.635347i \(-0.219143\pi\)
0.772227 + 0.635347i \(0.219143\pi\)
\(608\) −2032.81 −0.135594
\(609\) 0 0
\(610\) 0 0
\(611\) 6364.05 0.421378
\(612\) 0 0
\(613\) 16846.2 1.10997 0.554986 0.831860i \(-0.312724\pi\)
0.554986 + 0.831860i \(0.312724\pi\)
\(614\) 23106.3 1.51872
\(615\) 0 0
\(616\) 15686.8 1.02604
\(617\) 3476.46 0.226834 0.113417 0.993547i \(-0.463820\pi\)
0.113417 + 0.993547i \(0.463820\pi\)
\(618\) 0 0
\(619\) −5407.16 −0.351102 −0.175551 0.984470i \(-0.556171\pi\)
−0.175551 + 0.984470i \(0.556171\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −3586.24 −0.231182
\(623\) 3802.11 0.244508
\(624\) 0 0
\(625\) 0 0
\(626\) 11037.5 0.704706
\(627\) 0 0
\(628\) −6328.02 −0.402095
\(629\) −15260.9 −0.967396
\(630\) 0 0
\(631\) −10498.7 −0.662358 −0.331179 0.943568i \(-0.607446\pi\)
−0.331179 + 0.943568i \(0.607446\pi\)
\(632\) −18185.5 −1.14459
\(633\) 0 0
\(634\) −49376.1 −3.09302
\(635\) 0 0
\(636\) 0 0
\(637\) −690.574 −0.0429538
\(638\) −20795.4 −1.29044
\(639\) 0 0
\(640\) 0 0
\(641\) −14363.3 −0.885050 −0.442525 0.896756i \(-0.645917\pi\)
−0.442525 + 0.896756i \(0.645917\pi\)
\(642\) 0 0
\(643\) −16883.3 −1.03548 −0.517739 0.855539i \(-0.673226\pi\)
−0.517739 + 0.855539i \(0.673226\pi\)
\(644\) 10742.1 0.657293
\(645\) 0 0
\(646\) 14978.0 0.912231
\(647\) −27365.2 −1.66281 −0.831404 0.555668i \(-0.812462\pi\)
−0.831404 + 0.555668i \(0.812462\pi\)
\(648\) 0 0
\(649\) 16705.9 1.01042
\(650\) 0 0
\(651\) 0 0
\(652\) 31357.8 1.88353
\(653\) 28643.3 1.71654 0.858269 0.513200i \(-0.171540\pi\)
0.858269 + 0.513200i \(0.171540\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −17072.0 −1.01608
\(657\) 0 0
\(658\) 15304.3 0.906721
\(659\) 4102.07 0.242480 0.121240 0.992623i \(-0.461313\pi\)
0.121240 + 0.992623i \(0.461313\pi\)
\(660\) 0 0
\(661\) −13784.0 −0.811098 −0.405549 0.914073i \(-0.632920\pi\)
−0.405549 + 0.914073i \(0.632920\pi\)
\(662\) −377.834 −0.0221827
\(663\) 0 0
\(664\) −18514.0 −1.08205
\(665\) 0 0
\(666\) 0 0
\(667\) −6862.79 −0.398393
\(668\) 8029.95 0.465102
\(669\) 0 0
\(670\) 0 0
\(671\) 20146.9 1.15911
\(672\) 0 0
\(673\) −4676.98 −0.267882 −0.133941 0.990989i \(-0.542763\pi\)
−0.133941 + 0.990989i \(0.542763\pi\)
\(674\) 20164.2 1.15237
\(675\) 0 0
\(676\) −30858.5 −1.75572
\(677\) 3849.54 0.218537 0.109269 0.994012i \(-0.465149\pi\)
0.109269 + 0.994012i \(0.465149\pi\)
\(678\) 0 0
\(679\) 13041.4 0.737091
\(680\) 0 0
\(681\) 0 0
\(682\) 2916.96 0.163777
\(683\) −10647.5 −0.596508 −0.298254 0.954487i \(-0.596404\pi\)
−0.298254 + 0.954487i \(0.596404\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1660.69 −0.0924280
\(687\) 0 0
\(688\) −2609.80 −0.144619
\(689\) 2537.01 0.140279
\(690\) 0 0
\(691\) 22410.8 1.23379 0.616894 0.787046i \(-0.288391\pi\)
0.616894 + 0.787046i \(0.288391\pi\)
\(692\) −39560.4 −2.17321
\(693\) 0 0
\(694\) 8691.72 0.475408
\(695\) 0 0
\(696\) 0 0
\(697\) −21295.4 −1.15728
\(698\) −56896.6 −3.08534
\(699\) 0 0
\(700\) 0 0
\(701\) −6040.55 −0.325461 −0.162731 0.986671i \(-0.552030\pi\)
−0.162731 + 0.986671i \(0.552030\pi\)
\(702\) 0 0
\(703\) −11704.4 −0.627936
\(704\) 37901.0 2.02904
\(705\) 0 0
\(706\) 13955.2 0.743926
\(707\) −11799.9 −0.627697
\(708\) 0 0
\(709\) 19582.2 1.03727 0.518634 0.854996i \(-0.326441\pi\)
0.518634 + 0.854996i \(0.326441\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −19570.4 −1.03010
\(713\) 962.637 0.0505625
\(714\) 0 0
\(715\) 0 0
\(716\) 46975.2 2.45188
\(717\) 0 0
\(718\) 5779.91 0.300424
\(719\) −9257.31 −0.480166 −0.240083 0.970752i \(-0.577175\pi\)
−0.240083 + 0.970752i \(0.577175\pi\)
\(720\) 0 0
\(721\) −7099.32 −0.366702
\(722\) −21721.6 −1.11966
\(723\) 0 0
\(724\) −56332.0 −2.89166
\(725\) 0 0
\(726\) 0 0
\(727\) −11915.5 −0.607870 −0.303935 0.952693i \(-0.598301\pi\)
−0.303935 + 0.952693i \(0.598301\pi\)
\(728\) 3554.56 0.180963
\(729\) 0 0
\(730\) 0 0
\(731\) −3255.43 −0.164715
\(732\) 0 0
\(733\) 15608.0 0.786486 0.393243 0.919435i \(-0.371353\pi\)
0.393243 + 0.919435i \(0.371353\pi\)
\(734\) −42891.4 −2.15688
\(735\) 0 0
\(736\) 4147.40 0.207711
\(737\) −33704.8 −1.68457
\(738\) 0 0
\(739\) −26189.9 −1.30367 −0.651835 0.758361i \(-0.726000\pi\)
−0.651835 + 0.758361i \(0.726000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 6101.00 0.301853
\(743\) 37914.9 1.87209 0.936044 0.351882i \(-0.114458\pi\)
0.936044 + 0.351882i \(0.114458\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 11076.7 0.543627
\(747\) 0 0
\(748\) −60996.8 −2.98164
\(749\) −6392.12 −0.311833
\(750\) 0 0
\(751\) −21401.6 −1.03989 −0.519944 0.854200i \(-0.674047\pi\)
−0.519944 + 0.854200i \(0.674047\pi\)
\(752\) −22991.3 −1.11490
\(753\) 0 0
\(754\) −4712.14 −0.227594
\(755\) 0 0
\(756\) 0 0
\(757\) −24094.8 −1.15686 −0.578428 0.815734i \(-0.696333\pi\)
−0.578428 + 0.815734i \(0.696333\pi\)
\(758\) 42946.5 2.05790
\(759\) 0 0
\(760\) 0 0
\(761\) −19101.1 −0.909872 −0.454936 0.890524i \(-0.650338\pi\)
−0.454936 + 0.890524i \(0.650338\pi\)
\(762\) 0 0
\(763\) 9779.94 0.464033
\(764\) 63174.2 2.99157
\(765\) 0 0
\(766\) 64681.0 3.05094
\(767\) 3785.48 0.178208
\(768\) 0 0
\(769\) −32718.1 −1.53426 −0.767129 0.641493i \(-0.778315\pi\)
−0.767129 + 0.641493i \(0.778315\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −47123.8 −2.19692
\(773\) −4707.97 −0.219061 −0.109530 0.993983i \(-0.534935\pi\)
−0.109530 + 0.993983i \(0.534935\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −67127.6 −3.10533
\(777\) 0 0
\(778\) −54830.3 −2.52669
\(779\) −16332.6 −0.751187
\(780\) 0 0
\(781\) −10040.5 −0.460023
\(782\) −30558.5 −1.39741
\(783\) 0 0
\(784\) 2494.82 0.113649
\(785\) 0 0
\(786\) 0 0
\(787\) −3218.47 −0.145776 −0.0728882 0.997340i \(-0.523222\pi\)
−0.0728882 + 0.997340i \(0.523222\pi\)
\(788\) 46502.1 2.10224
\(789\) 0 0
\(790\) 0 0
\(791\) −14577.4 −0.655262
\(792\) 0 0
\(793\) 4565.18 0.204432
\(794\) 64117.4 2.86580
\(795\) 0 0
\(796\) 3087.47 0.137478
\(797\) −15548.9 −0.691054 −0.345527 0.938409i \(-0.612300\pi\)
−0.345527 + 0.938409i \(0.612300\pi\)
\(798\) 0 0
\(799\) −28679.0 −1.26982
\(800\) 0 0
\(801\) 0 0
\(802\) −9455.58 −0.416319
\(803\) 19016.6 0.835717
\(804\) 0 0
\(805\) 0 0
\(806\) 660.968 0.0288854
\(807\) 0 0
\(808\) 60737.1 2.64446
\(809\) 3106.83 0.135019 0.0675095 0.997719i \(-0.478495\pi\)
0.0675095 + 0.997719i \(0.478495\pi\)
\(810\) 0 0
\(811\) −44061.1 −1.90776 −0.953882 0.300183i \(-0.902952\pi\)
−0.953882 + 0.300183i \(0.902952\pi\)
\(812\) −7464.56 −0.322604
\(813\) 0 0
\(814\) 72359.3 3.11572
\(815\) 0 0
\(816\) 0 0
\(817\) −2496.76 −0.106916
\(818\) −51310.9 −2.19321
\(819\) 0 0
\(820\) 0 0
\(821\) −13977.3 −0.594169 −0.297084 0.954851i \(-0.596014\pi\)
−0.297084 + 0.954851i \(0.596014\pi\)
\(822\) 0 0
\(823\) −3287.14 −0.139225 −0.0696127 0.997574i \(-0.522176\pi\)
−0.0696127 + 0.997574i \(0.522176\pi\)
\(824\) 36542.0 1.54490
\(825\) 0 0
\(826\) 9103.32 0.383469
\(827\) −2454.69 −0.103214 −0.0516069 0.998667i \(-0.516434\pi\)
−0.0516069 + 0.998667i \(0.516434\pi\)
\(828\) 0 0
\(829\) −38510.6 −1.61342 −0.806711 0.590946i \(-0.798755\pi\)
−0.806711 + 0.590946i \(0.798755\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 8588.18 0.357862
\(833\) 3112.01 0.129442
\(834\) 0 0
\(835\) 0 0
\(836\) −46781.6 −1.93538
\(837\) 0 0
\(838\) 7897.64 0.325560
\(839\) −32983.5 −1.35723 −0.678616 0.734493i \(-0.737420\pi\)
−0.678616 + 0.734493i \(0.737420\pi\)
\(840\) 0 0
\(841\) −19620.1 −0.804466
\(842\) 63819.1 2.61206
\(843\) 0 0
\(844\) −4593.04 −0.187321
\(845\) 0 0
\(846\) 0 0
\(847\) −17761.6 −0.720537
\(848\) −9165.39 −0.371157
\(849\) 0 0
\(850\) 0 0
\(851\) 23879.6 0.961906
\(852\) 0 0
\(853\) 13620.1 0.546710 0.273355 0.961913i \(-0.411867\pi\)
0.273355 + 0.961913i \(0.411867\pi\)
\(854\) 10978.4 0.439897
\(855\) 0 0
\(856\) 32901.9 1.31374
\(857\) 24493.2 0.976279 0.488139 0.872766i \(-0.337676\pi\)
0.488139 + 0.872766i \(0.337676\pi\)
\(858\) 0 0
\(859\) 3742.34 0.148646 0.0743231 0.997234i \(-0.476320\pi\)
0.0743231 + 0.997234i \(0.476320\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −44346.8 −1.75227
\(863\) 165.238 0.00651770 0.00325885 0.999995i \(-0.498963\pi\)
0.00325885 + 0.999995i \(0.498963\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −1309.77 −0.0513945
\(867\) 0 0
\(868\) 1047.05 0.0409437
\(869\) 31391.8 1.22542
\(870\) 0 0
\(871\) −7637.33 −0.297108
\(872\) −50339.8 −1.95495
\(873\) 0 0
\(874\) −23436.9 −0.907055
\(875\) 0 0
\(876\) 0 0
\(877\) −7230.06 −0.278383 −0.139192 0.990265i \(-0.544450\pi\)
−0.139192 + 0.990265i \(0.544450\pi\)
\(878\) 82347.2 3.16524
\(879\) 0 0
\(880\) 0 0
\(881\) 18707.9 0.715422 0.357711 0.933832i \(-0.383557\pi\)
0.357711 + 0.933832i \(0.383557\pi\)
\(882\) 0 0
\(883\) 28766.9 1.09636 0.548179 0.836361i \(-0.315321\pi\)
0.548179 + 0.836361i \(0.315321\pi\)
\(884\) −13821.6 −0.525871
\(885\) 0 0
\(886\) 19212.3 0.728500
\(887\) −33980.4 −1.28630 −0.643152 0.765738i \(-0.722374\pi\)
−0.643152 + 0.765738i \(0.722374\pi\)
\(888\) 0 0
\(889\) −1614.84 −0.0609222
\(890\) 0 0
\(891\) 0 0
\(892\) 97015.8 3.64163
\(893\) −21995.4 −0.824242
\(894\) 0 0
\(895\) 0 0
\(896\) 18315.8 0.682910
\(897\) 0 0
\(898\) 60425.7 2.24547
\(899\) −668.927 −0.0248164
\(900\) 0 0
\(901\) −11432.8 −0.422732
\(902\) 100972. 3.72727
\(903\) 0 0
\(904\) 75033.5 2.76059
\(905\) 0 0
\(906\) 0 0
\(907\) 35753.2 1.30889 0.654446 0.756109i \(-0.272902\pi\)
0.654446 + 0.756109i \(0.272902\pi\)
\(908\) −36400.6 −1.33039
\(909\) 0 0
\(910\) 0 0
\(911\) −16039.7 −0.583334 −0.291667 0.956520i \(-0.594210\pi\)
−0.291667 + 0.956520i \(0.594210\pi\)
\(912\) 0 0
\(913\) 31958.8 1.15847
\(914\) −27998.9 −1.01326
\(915\) 0 0
\(916\) −38246.5 −1.37958
\(917\) −6817.14 −0.245498
\(918\) 0 0
\(919\) 22104.9 0.793441 0.396720 0.917940i \(-0.370148\pi\)
0.396720 + 0.917940i \(0.370148\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −48656.8 −1.73799
\(923\) −2275.13 −0.0811342
\(924\) 0 0
\(925\) 0 0
\(926\) 3194.74 0.113376
\(927\) 0 0
\(928\) −2881.99 −0.101946
\(929\) −20234.8 −0.714621 −0.357310 0.933986i \(-0.616306\pi\)
−0.357310 + 0.933986i \(0.616306\pi\)
\(930\) 0 0
\(931\) 2386.76 0.0840204
\(932\) −79409.1 −2.79091
\(933\) 0 0
\(934\) −21630.7 −0.757792
\(935\) 0 0
\(936\) 0 0
\(937\) 37551.2 1.30923 0.654614 0.755964i \(-0.272831\pi\)
0.654614 + 0.755964i \(0.272831\pi\)
\(938\) −18366.3 −0.639318
\(939\) 0 0
\(940\) 0 0
\(941\) −19093.3 −0.661449 −0.330725 0.943727i \(-0.607293\pi\)
−0.330725 + 0.943727i \(0.607293\pi\)
\(942\) 0 0
\(943\) 33322.2 1.15071
\(944\) −13675.7 −0.471511
\(945\) 0 0
\(946\) 15435.6 0.530501
\(947\) −10117.0 −0.347158 −0.173579 0.984820i \(-0.555533\pi\)
−0.173579 + 0.984820i \(0.555533\pi\)
\(948\) 0 0
\(949\) 4309.06 0.147395
\(950\) 0 0
\(951\) 0 0
\(952\) −16018.3 −0.545332
\(953\) 6272.48 0.213206 0.106603 0.994302i \(-0.466003\pi\)
0.106603 + 0.994302i \(0.466003\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 12836.0 0.434253
\(957\) 0 0
\(958\) −36960.7 −1.24650
\(959\) −4870.14 −0.163988
\(960\) 0 0
\(961\) −29697.2 −0.996850
\(962\) 16396.3 0.549519
\(963\) 0 0
\(964\) 70088.1 2.34169
\(965\) 0 0
\(966\) 0 0
\(967\) −26660.8 −0.886613 −0.443307 0.896370i \(-0.646195\pi\)
−0.443307 + 0.896370i \(0.646195\pi\)
\(968\) 91423.3 3.03560
\(969\) 0 0
\(970\) 0 0
\(971\) 461.190 0.0152423 0.00762116 0.999971i \(-0.497574\pi\)
0.00762116 + 0.999971i \(0.497574\pi\)
\(972\) 0 0
\(973\) 2089.71 0.0688520
\(974\) −30453.3 −1.00184
\(975\) 0 0
\(976\) −16492.5 −0.540895
\(977\) −4058.08 −0.132886 −0.0664429 0.997790i \(-0.521165\pi\)
−0.0664429 + 0.997790i \(0.521165\pi\)
\(978\) 0 0
\(979\) 33782.4 1.10285
\(980\) 0 0
\(981\) 0 0
\(982\) −17248.7 −0.560517
\(983\) 3259.92 0.105773 0.0528867 0.998601i \(-0.483158\pi\)
0.0528867 + 0.998601i \(0.483158\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 21234.8 0.685857
\(987\) 0 0
\(988\) −10600.5 −0.341342
\(989\) 5093.96 0.163780
\(990\) 0 0
\(991\) −21398.9 −0.685933 −0.342967 0.939348i \(-0.611432\pi\)
−0.342967 + 0.939348i \(0.611432\pi\)
\(992\) 404.254 0.0129386
\(993\) 0 0
\(994\) −5471.24 −0.174585
\(995\) 0 0
\(996\) 0 0
\(997\) 28609.5 0.908798 0.454399 0.890798i \(-0.349854\pi\)
0.454399 + 0.890798i \(0.349854\pi\)
\(998\) −91589.2 −2.90502
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.4.a.bl.1.4 4
3.2 odd 2 175.4.a.g.1.1 4
5.4 even 2 1575.4.a.bg.1.1 4
15.2 even 4 175.4.b.f.99.2 8
15.8 even 4 175.4.b.f.99.7 8
15.14 odd 2 175.4.a.h.1.4 yes 4
21.20 even 2 1225.4.a.z.1.1 4
105.104 even 2 1225.4.a.bd.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.4.a.g.1.1 4 3.2 odd 2
175.4.a.h.1.4 yes 4 15.14 odd 2
175.4.b.f.99.2 8 15.2 even 4
175.4.b.f.99.7 8 15.8 even 4
1225.4.a.z.1.1 4 21.20 even 2
1225.4.a.bd.1.4 4 105.104 even 2
1575.4.a.bg.1.1 4 5.4 even 2
1575.4.a.bl.1.4 4 1.1 even 1 trivial