Properties

Label 1575.4.a.bl.1.3
Level $1575$
Weight $4$
Character 1575.1
Self dual yes
Analytic conductor $92.928$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,4,Mod(1,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.9280082590\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 32x^{2} - 35x + 120 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 175)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-3.53510\) of defining polynomial
Character \(\chi\) \(=\) 1575.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.53510 q^{2} +12.5671 q^{4} -7.00000 q^{7} +20.7124 q^{8} +O(q^{10})\) \(q+4.53510 q^{2} +12.5671 q^{4} -7.00000 q^{7} +20.7124 q^{8} +54.0684 q^{11} -75.2159 q^{13} -31.7457 q^{14} -6.60441 q^{16} -71.2538 q^{17} -65.5100 q^{19} +245.206 q^{22} +125.688 q^{23} -341.111 q^{26} -87.9699 q^{28} -190.405 q^{29} -193.105 q^{31} -195.650 q^{32} -323.143 q^{34} -114.673 q^{37} -297.094 q^{38} -216.896 q^{41} +413.032 q^{43} +679.484 q^{44} +570.007 q^{46} -113.555 q^{47} +49.0000 q^{49} -945.247 q^{52} +584.366 q^{53} -144.986 q^{56} -863.504 q^{58} -203.748 q^{59} -162.539 q^{61} -875.749 q^{62} -834.459 q^{64} -477.534 q^{67} -895.456 q^{68} -822.294 q^{71} +798.993 q^{73} -520.052 q^{74} -823.273 q^{76} -378.479 q^{77} -468.087 q^{79} -983.643 q^{82} -310.333 q^{83} +1873.14 q^{86} +1119.88 q^{88} -1314.90 q^{89} +526.511 q^{91} +1579.53 q^{92} -514.985 q^{94} +1314.66 q^{97} +222.220 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 36 q^{4} - 28 q^{7} + 27 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} + 36 q^{4} - 28 q^{7} + 27 q^{8} - 100 q^{11} - 44 q^{13} - 28 q^{14} + 160 q^{16} - 53 q^{17} - 29 q^{19} + 152 q^{22} + 295 q^{23} - 700 q^{26} - 252 q^{28} - 129 q^{29} + 114 q^{31} - 310 q^{32} + 203 q^{34} - 403 q^{37} + 555 q^{38} - 671 q^{41} + 411 q^{43} - 438 q^{44} - 997 q^{46} - 8 q^{47} + 196 q^{49} - 74 q^{52} + 90 q^{53} - 189 q^{56} - 673 q^{58} - 1018 q^{59} + 50 q^{61} - 1626 q^{62} - 2421 q^{64} - 424 q^{67} - 617 q^{68} - 215 q^{71} + 1207 q^{73} - 623 q^{74} - 3257 q^{76} + 700 q^{77} - 951 q^{79} - 1695 q^{82} - 3035 q^{83} + 99 q^{86} - 163 q^{88} - 2819 q^{89} + 308 q^{91} + 3073 q^{92} - 3056 q^{94} + 1100 q^{97} + 196 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.53510 1.60340 0.801700 0.597727i \(-0.203929\pi\)
0.801700 + 0.597727i \(0.203929\pi\)
\(3\) 0 0
\(4\) 12.5671 1.57089
\(5\) 0 0
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 20.7124 0.915365
\(9\) 0 0
\(10\) 0 0
\(11\) 54.0684 1.48202 0.741011 0.671493i \(-0.234347\pi\)
0.741011 + 0.671493i \(0.234347\pi\)
\(12\) 0 0
\(13\) −75.2159 −1.60470 −0.802351 0.596853i \(-0.796418\pi\)
−0.802351 + 0.596853i \(0.796418\pi\)
\(14\) −31.7457 −0.606028
\(15\) 0 0
\(16\) −6.60441 −0.103194
\(17\) −71.2538 −1.01656 −0.508282 0.861191i \(-0.669719\pi\)
−0.508282 + 0.861191i \(0.669719\pi\)
\(18\) 0 0
\(19\) −65.5100 −0.791002 −0.395501 0.918466i \(-0.629429\pi\)
−0.395501 + 0.918466i \(0.629429\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 245.206 2.37627
\(23\) 125.688 1.13947 0.569733 0.821830i \(-0.307047\pi\)
0.569733 + 0.821830i \(0.307047\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −341.111 −2.57298
\(27\) 0 0
\(28\) −87.9699 −0.593741
\(29\) −190.405 −1.21922 −0.609608 0.792703i \(-0.708673\pi\)
−0.609608 + 0.792703i \(0.708673\pi\)
\(30\) 0 0
\(31\) −193.105 −1.11879 −0.559397 0.828900i \(-0.688967\pi\)
−0.559397 + 0.828900i \(0.688967\pi\)
\(32\) −195.650 −1.08083
\(33\) 0 0
\(34\) −323.143 −1.62996
\(35\) 0 0
\(36\) 0 0
\(37\) −114.673 −0.509516 −0.254758 0.967005i \(-0.581996\pi\)
−0.254758 + 0.967005i \(0.581996\pi\)
\(38\) −297.094 −1.26829
\(39\) 0 0
\(40\) 0 0
\(41\) −216.896 −0.826180 −0.413090 0.910690i \(-0.635551\pi\)
−0.413090 + 0.910690i \(0.635551\pi\)
\(42\) 0 0
\(43\) 413.032 1.46481 0.732405 0.680870i \(-0.238398\pi\)
0.732405 + 0.680870i \(0.238398\pi\)
\(44\) 679.484 2.32809
\(45\) 0 0
\(46\) 570.007 1.82702
\(47\) −113.555 −0.352421 −0.176210 0.984353i \(-0.556384\pi\)
−0.176210 + 0.984353i \(0.556384\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) −945.247 −2.52081
\(53\) 584.366 1.51451 0.757253 0.653122i \(-0.226541\pi\)
0.757253 + 0.653122i \(0.226541\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −144.986 −0.345976
\(57\) 0 0
\(58\) −863.504 −1.95489
\(59\) −203.748 −0.449589 −0.224795 0.974406i \(-0.572171\pi\)
−0.224795 + 0.974406i \(0.572171\pi\)
\(60\) 0 0
\(61\) −162.539 −0.341163 −0.170581 0.985344i \(-0.554565\pi\)
−0.170581 + 0.985344i \(0.554565\pi\)
\(62\) −875.749 −1.79387
\(63\) 0 0
\(64\) −834.459 −1.62980
\(65\) 0 0
\(66\) 0 0
\(67\) −477.534 −0.870747 −0.435374 0.900250i \(-0.643384\pi\)
−0.435374 + 0.900250i \(0.643384\pi\)
\(68\) −895.456 −1.59691
\(69\) 0 0
\(70\) 0 0
\(71\) −822.294 −1.37448 −0.687242 0.726429i \(-0.741179\pi\)
−0.687242 + 0.726429i \(0.741179\pi\)
\(72\) 0 0
\(73\) 798.993 1.28103 0.640514 0.767947i \(-0.278721\pi\)
0.640514 + 0.767947i \(0.278721\pi\)
\(74\) −520.052 −0.816957
\(75\) 0 0
\(76\) −823.273 −1.24258
\(77\) −378.479 −0.560152
\(78\) 0 0
\(79\) −468.087 −0.666632 −0.333316 0.942815i \(-0.608168\pi\)
−0.333316 + 0.942815i \(0.608168\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −983.643 −1.32470
\(83\) −310.333 −0.410403 −0.205202 0.978720i \(-0.565785\pi\)
−0.205202 + 0.978720i \(0.565785\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1873.14 2.34867
\(87\) 0 0
\(88\) 1119.88 1.35659
\(89\) −1314.90 −1.56606 −0.783029 0.621985i \(-0.786326\pi\)
−0.783029 + 0.621985i \(0.786326\pi\)
\(90\) 0 0
\(91\) 526.511 0.606520
\(92\) 1579.53 1.78998
\(93\) 0 0
\(94\) −514.985 −0.565071
\(95\) 0 0
\(96\) 0 0
\(97\) 1314.66 1.37612 0.688058 0.725656i \(-0.258463\pi\)
0.688058 + 0.725656i \(0.258463\pi\)
\(98\) 222.220 0.229057
\(99\) 0 0
\(100\) 0 0
\(101\) 401.240 0.395296 0.197648 0.980273i \(-0.436670\pi\)
0.197648 + 0.980273i \(0.436670\pi\)
\(102\) 0 0
\(103\) −291.844 −0.279187 −0.139594 0.990209i \(-0.544580\pi\)
−0.139594 + 0.990209i \(0.544580\pi\)
\(104\) −1557.90 −1.46889
\(105\) 0 0
\(106\) 2650.16 2.42836
\(107\) −21.9594 −0.0198402 −0.00992009 0.999951i \(-0.503158\pi\)
−0.00992009 + 0.999951i \(0.503158\pi\)
\(108\) 0 0
\(109\) −17.3019 −0.0152039 −0.00760194 0.999971i \(-0.502420\pi\)
−0.00760194 + 0.999971i \(0.502420\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 46.2308 0.0390036
\(113\) 58.8182 0.0489660 0.0244830 0.999700i \(-0.492206\pi\)
0.0244830 + 0.999700i \(0.492206\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −2392.84 −1.91526
\(117\) 0 0
\(118\) −924.018 −0.720871
\(119\) 498.777 0.384225
\(120\) 0 0
\(121\) 1592.39 1.19639
\(122\) −737.129 −0.547020
\(123\) 0 0
\(124\) −2426.77 −1.75750
\(125\) 0 0
\(126\) 0 0
\(127\) −1862.03 −1.30101 −0.650507 0.759501i \(-0.725443\pi\)
−0.650507 + 0.759501i \(0.725443\pi\)
\(128\) −2219.15 −1.53240
\(129\) 0 0
\(130\) 0 0
\(131\) −775.161 −0.516994 −0.258497 0.966012i \(-0.583227\pi\)
−0.258497 + 0.966012i \(0.583227\pi\)
\(132\) 0 0
\(133\) 458.570 0.298971
\(134\) −2165.66 −1.39616
\(135\) 0 0
\(136\) −1475.83 −0.930528
\(137\) −1027.95 −0.641051 −0.320525 0.947240i \(-0.603859\pi\)
−0.320525 + 0.947240i \(0.603859\pi\)
\(138\) 0 0
\(139\) −1029.66 −0.628309 −0.314154 0.949372i \(-0.601721\pi\)
−0.314154 + 0.949372i \(0.601721\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −3729.18 −2.20385
\(143\) −4066.80 −2.37820
\(144\) 0 0
\(145\) 0 0
\(146\) 3623.51 2.05400
\(147\) 0 0
\(148\) −1441.11 −0.800393
\(149\) −1414.67 −0.777814 −0.388907 0.921277i \(-0.627147\pi\)
−0.388907 + 0.921277i \(0.627147\pi\)
\(150\) 0 0
\(151\) 2094.96 1.12904 0.564522 0.825418i \(-0.309060\pi\)
0.564522 + 0.825418i \(0.309060\pi\)
\(152\) −1356.87 −0.724056
\(153\) 0 0
\(154\) −1716.44 −0.898147
\(155\) 0 0
\(156\) 0 0
\(157\) 709.495 0.360662 0.180331 0.983606i \(-0.442283\pi\)
0.180331 + 0.983606i \(0.442283\pi\)
\(158\) −2122.82 −1.06888
\(159\) 0 0
\(160\) 0 0
\(161\) −879.815 −0.430678
\(162\) 0 0
\(163\) −3276.23 −1.57432 −0.787160 0.616749i \(-0.788449\pi\)
−0.787160 + 0.616749i \(0.788449\pi\)
\(164\) −2725.75 −1.29784
\(165\) 0 0
\(166\) −1407.39 −0.658040
\(167\) 2860.69 1.32555 0.662775 0.748819i \(-0.269379\pi\)
0.662775 + 0.748819i \(0.269379\pi\)
\(168\) 0 0
\(169\) 3460.42 1.57507
\(170\) 0 0
\(171\) 0 0
\(172\) 5190.62 2.30105
\(173\) 2803.44 1.23203 0.616015 0.787734i \(-0.288746\pi\)
0.616015 + 0.787734i \(0.288746\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −357.090 −0.152936
\(177\) 0 0
\(178\) −5963.20 −2.51102
\(179\) −248.617 −0.103813 −0.0519064 0.998652i \(-0.516530\pi\)
−0.0519064 + 0.998652i \(0.516530\pi\)
\(180\) 0 0
\(181\) 2075.56 0.852347 0.426174 0.904641i \(-0.359861\pi\)
0.426174 + 0.904641i \(0.359861\pi\)
\(182\) 2387.78 0.972494
\(183\) 0 0
\(184\) 2603.29 1.04303
\(185\) 0 0
\(186\) 0 0
\(187\) −3852.58 −1.50657
\(188\) −1427.07 −0.553614
\(189\) 0 0
\(190\) 0 0
\(191\) 1252.95 0.474663 0.237331 0.971429i \(-0.423727\pi\)
0.237331 + 0.971429i \(0.423727\pi\)
\(192\) 0 0
\(193\) −1602.12 −0.597527 −0.298764 0.954327i \(-0.596574\pi\)
−0.298764 + 0.954327i \(0.596574\pi\)
\(194\) 5962.10 2.20646
\(195\) 0 0
\(196\) 615.789 0.224413
\(197\) 2346.38 0.848593 0.424296 0.905523i \(-0.360521\pi\)
0.424296 + 0.905523i \(0.360521\pi\)
\(198\) 0 0
\(199\) −1993.53 −0.710140 −0.355070 0.934840i \(-0.615543\pi\)
−0.355070 + 0.934840i \(0.615543\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 1819.67 0.633818
\(203\) 1332.83 0.460820
\(204\) 0 0
\(205\) 0 0
\(206\) −1323.54 −0.447649
\(207\) 0 0
\(208\) 496.756 0.165595
\(209\) −3542.02 −1.17228
\(210\) 0 0
\(211\) −5852.55 −1.90951 −0.954754 0.297396i \(-0.903882\pi\)
−0.954754 + 0.297396i \(0.903882\pi\)
\(212\) 7343.80 2.37912
\(213\) 0 0
\(214\) −99.5883 −0.0318117
\(215\) 0 0
\(216\) 0 0
\(217\) 1351.73 0.422864
\(218\) −78.4659 −0.0243779
\(219\) 0 0
\(220\) 0 0
\(221\) 5359.42 1.63128
\(222\) 0 0
\(223\) 1719.58 0.516374 0.258187 0.966095i \(-0.416875\pi\)
0.258187 + 0.966095i \(0.416875\pi\)
\(224\) 1369.55 0.408514
\(225\) 0 0
\(226\) 266.747 0.0785120
\(227\) −5686.00 −1.66252 −0.831262 0.555881i \(-0.812381\pi\)
−0.831262 + 0.555881i \(0.812381\pi\)
\(228\) 0 0
\(229\) −3087.40 −0.890923 −0.445461 0.895301i \(-0.646960\pi\)
−0.445461 + 0.895301i \(0.646960\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −3943.73 −1.11603
\(233\) 3997.55 1.12398 0.561991 0.827143i \(-0.310035\pi\)
0.561991 + 0.827143i \(0.310035\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −2560.53 −0.706255
\(237\) 0 0
\(238\) 2262.00 0.616067
\(239\) 4499.79 1.21786 0.608928 0.793226i \(-0.291600\pi\)
0.608928 + 0.793226i \(0.291600\pi\)
\(240\) 0 0
\(241\) 3633.26 0.971115 0.485557 0.874205i \(-0.338617\pi\)
0.485557 + 0.874205i \(0.338617\pi\)
\(242\) 7221.66 1.91829
\(243\) 0 0
\(244\) −2042.64 −0.535929
\(245\) 0 0
\(246\) 0 0
\(247\) 4927.39 1.26932
\(248\) −3999.65 −1.02411
\(249\) 0 0
\(250\) 0 0
\(251\) 1211.21 0.304585 0.152292 0.988335i \(-0.451334\pi\)
0.152292 + 0.988335i \(0.451334\pi\)
\(252\) 0 0
\(253\) 6795.74 1.68871
\(254\) −8444.50 −2.08604
\(255\) 0 0
\(256\) −3388.39 −0.827245
\(257\) −6225.81 −1.51111 −0.755556 0.655085i \(-0.772633\pi\)
−0.755556 + 0.655085i \(0.772633\pi\)
\(258\) 0 0
\(259\) 802.709 0.192579
\(260\) 0 0
\(261\) 0 0
\(262\) −3515.43 −0.828947
\(263\) −757.377 −0.177574 −0.0887869 0.996051i \(-0.528299\pi\)
−0.0887869 + 0.996051i \(0.528299\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 2079.66 0.479369
\(267\) 0 0
\(268\) −6001.23 −1.36785
\(269\) −1750.59 −0.396786 −0.198393 0.980123i \(-0.563572\pi\)
−0.198393 + 0.980123i \(0.563572\pi\)
\(270\) 0 0
\(271\) 4451.86 0.997902 0.498951 0.866630i \(-0.333719\pi\)
0.498951 + 0.866630i \(0.333719\pi\)
\(272\) 470.589 0.104903
\(273\) 0 0
\(274\) −4661.87 −1.02786
\(275\) 0 0
\(276\) 0 0
\(277\) 7691.69 1.66841 0.834204 0.551456i \(-0.185928\pi\)
0.834204 + 0.551456i \(0.185928\pi\)
\(278\) −4669.62 −1.00743
\(279\) 0 0
\(280\) 0 0
\(281\) 199.034 0.0422540 0.0211270 0.999777i \(-0.493275\pi\)
0.0211270 + 0.999777i \(0.493275\pi\)
\(282\) 0 0
\(283\) 799.307 0.167893 0.0839467 0.996470i \(-0.473247\pi\)
0.0839467 + 0.996470i \(0.473247\pi\)
\(284\) −10333.9 −2.15916
\(285\) 0 0
\(286\) −18443.3 −3.81321
\(287\) 1518.27 0.312267
\(288\) 0 0
\(289\) 164.110 0.0334031
\(290\) 0 0
\(291\) 0 0
\(292\) 10041.0 2.01235
\(293\) 3302.75 0.658528 0.329264 0.944238i \(-0.393199\pi\)
0.329264 + 0.944238i \(0.393199\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −2375.14 −0.466393
\(297\) 0 0
\(298\) −6415.67 −1.24715
\(299\) −9453.72 −1.82850
\(300\) 0 0
\(301\) −2891.22 −0.553646
\(302\) 9500.87 1.81031
\(303\) 0 0
\(304\) 432.655 0.0816265
\(305\) 0 0
\(306\) 0 0
\(307\) 8628.17 1.60402 0.802012 0.597308i \(-0.203763\pi\)
0.802012 + 0.597308i \(0.203763\pi\)
\(308\) −4756.39 −0.879937
\(309\) 0 0
\(310\) 0 0
\(311\) 4900.60 0.893530 0.446765 0.894651i \(-0.352576\pi\)
0.446765 + 0.894651i \(0.352576\pi\)
\(312\) 0 0
\(313\) 9114.26 1.64590 0.822952 0.568110i \(-0.192325\pi\)
0.822952 + 0.568110i \(0.192325\pi\)
\(314\) 3217.63 0.578285
\(315\) 0 0
\(316\) −5882.51 −1.04721
\(317\) −8022.82 −1.42147 −0.710736 0.703459i \(-0.751638\pi\)
−0.710736 + 0.703459i \(0.751638\pi\)
\(318\) 0 0
\(319\) −10294.9 −1.80691
\(320\) 0 0
\(321\) 0 0
\(322\) −3990.05 −0.690549
\(323\) 4667.84 0.804104
\(324\) 0 0
\(325\) 0 0
\(326\) −14858.0 −2.52426
\(327\) 0 0
\(328\) −4492.42 −0.756257
\(329\) 794.888 0.133202
\(330\) 0 0
\(331\) −1333.58 −0.221451 −0.110725 0.993851i \(-0.535317\pi\)
−0.110725 + 0.993851i \(0.535317\pi\)
\(332\) −3899.99 −0.644698
\(333\) 0 0
\(334\) 12973.5 2.12539
\(335\) 0 0
\(336\) 0 0
\(337\) 1687.33 0.272744 0.136372 0.990658i \(-0.456456\pi\)
0.136372 + 0.990658i \(0.456456\pi\)
\(338\) 15693.4 2.52546
\(339\) 0 0
\(340\) 0 0
\(341\) −10440.9 −1.65808
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 8554.87 1.34084
\(345\) 0 0
\(346\) 12713.9 1.97544
\(347\) 5955.18 0.921299 0.460649 0.887582i \(-0.347617\pi\)
0.460649 + 0.887582i \(0.347617\pi\)
\(348\) 0 0
\(349\) 6876.59 1.05471 0.527357 0.849644i \(-0.323183\pi\)
0.527357 + 0.849644i \(0.323183\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −10578.5 −1.60181
\(353\) 1395.95 0.210479 0.105239 0.994447i \(-0.466439\pi\)
0.105239 + 0.994447i \(0.466439\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −16524.5 −2.46011
\(357\) 0 0
\(358\) −1127.50 −0.166453
\(359\) 382.988 0.0563046 0.0281523 0.999604i \(-0.491038\pi\)
0.0281523 + 0.999604i \(0.491038\pi\)
\(360\) 0 0
\(361\) −2567.44 −0.374316
\(362\) 9412.85 1.36665
\(363\) 0 0
\(364\) 6616.73 0.952777
\(365\) 0 0
\(366\) 0 0
\(367\) 10178.4 1.44771 0.723856 0.689951i \(-0.242368\pi\)
0.723856 + 0.689951i \(0.242368\pi\)
\(368\) −830.094 −0.117586
\(369\) 0 0
\(370\) 0 0
\(371\) −4090.56 −0.572430
\(372\) 0 0
\(373\) 2991.00 0.415196 0.207598 0.978214i \(-0.433435\pi\)
0.207598 + 0.978214i \(0.433435\pi\)
\(374\) −17471.8 −2.41563
\(375\) 0 0
\(376\) −2352.00 −0.322594
\(377\) 14321.5 1.95648
\(378\) 0 0
\(379\) 7400.66 1.00302 0.501512 0.865150i \(-0.332777\pi\)
0.501512 + 0.865150i \(0.332777\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 5682.27 0.761074
\(383\) −10769.6 −1.43682 −0.718408 0.695622i \(-0.755129\pi\)
−0.718408 + 0.695622i \(0.755129\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −7265.75 −0.958075
\(387\) 0 0
\(388\) 16521.5 2.16173
\(389\) 11193.3 1.45893 0.729466 0.684017i \(-0.239769\pi\)
0.729466 + 0.684017i \(0.239769\pi\)
\(390\) 0 0
\(391\) −8955.74 −1.15834
\(392\) 1014.91 0.130766
\(393\) 0 0
\(394\) 10641.1 1.36063
\(395\) 0 0
\(396\) 0 0
\(397\) −10371.9 −1.31121 −0.655605 0.755104i \(-0.727586\pi\)
−0.655605 + 0.755104i \(0.727586\pi\)
\(398\) −9040.88 −1.13864
\(399\) 0 0
\(400\) 0 0
\(401\) −5402.20 −0.672751 −0.336375 0.941728i \(-0.609201\pi\)
−0.336375 + 0.941728i \(0.609201\pi\)
\(402\) 0 0
\(403\) 14524.5 1.79533
\(404\) 5042.44 0.620967
\(405\) 0 0
\(406\) 6044.53 0.738879
\(407\) −6200.17 −0.755113
\(408\) 0 0
\(409\) −12829.9 −1.55110 −0.775549 0.631288i \(-0.782527\pi\)
−0.775549 + 0.631288i \(0.782527\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −3667.64 −0.438572
\(413\) 1426.24 0.169929
\(414\) 0 0
\(415\) 0 0
\(416\) 14716.0 1.73440
\(417\) 0 0
\(418\) −16063.4 −1.87964
\(419\) −5620.85 −0.655362 −0.327681 0.944788i \(-0.606267\pi\)
−0.327681 + 0.944788i \(0.606267\pi\)
\(420\) 0 0
\(421\) −2177.11 −0.252033 −0.126017 0.992028i \(-0.540219\pi\)
−0.126017 + 0.992028i \(0.540219\pi\)
\(422\) −26541.9 −3.06171
\(423\) 0 0
\(424\) 12103.6 1.38633
\(425\) 0 0
\(426\) 0 0
\(427\) 1137.77 0.128947
\(428\) −275.967 −0.0311668
\(429\) 0 0
\(430\) 0 0
\(431\) −10396.4 −1.16190 −0.580950 0.813939i \(-0.697319\pi\)
−0.580950 + 0.813939i \(0.697319\pi\)
\(432\) 0 0
\(433\) −11875.6 −1.31803 −0.659015 0.752129i \(-0.729027\pi\)
−0.659015 + 0.752129i \(0.729027\pi\)
\(434\) 6130.24 0.678021
\(435\) 0 0
\(436\) −217.435 −0.0238836
\(437\) −8233.81 −0.901320
\(438\) 0 0
\(439\) 640.369 0.0696200 0.0348100 0.999394i \(-0.488917\pi\)
0.0348100 + 0.999394i \(0.488917\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 24305.5 2.61560
\(443\) −854.852 −0.0916823 −0.0458411 0.998949i \(-0.514597\pi\)
−0.0458411 + 0.998949i \(0.514597\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 7798.46 0.827954
\(447\) 0 0
\(448\) 5841.21 0.616008
\(449\) −3427.44 −0.360247 −0.180123 0.983644i \(-0.557650\pi\)
−0.180123 + 0.983644i \(0.557650\pi\)
\(450\) 0 0
\(451\) −11727.2 −1.22442
\(452\) 739.176 0.0769202
\(453\) 0 0
\(454\) −25786.6 −2.66569
\(455\) 0 0
\(456\) 0 0
\(457\) −1709.31 −0.174963 −0.0874814 0.996166i \(-0.527882\pi\)
−0.0874814 + 0.996166i \(0.527882\pi\)
\(458\) −14001.7 −1.42851
\(459\) 0 0
\(460\) 0 0
\(461\) −2251.18 −0.227436 −0.113718 0.993513i \(-0.536276\pi\)
−0.113718 + 0.993513i \(0.536276\pi\)
\(462\) 0 0
\(463\) 3200.80 0.321282 0.160641 0.987013i \(-0.448644\pi\)
0.160641 + 0.987013i \(0.448644\pi\)
\(464\) 1257.51 0.125816
\(465\) 0 0
\(466\) 18129.3 1.80219
\(467\) 5477.39 0.542748 0.271374 0.962474i \(-0.412522\pi\)
0.271374 + 0.962474i \(0.412522\pi\)
\(468\) 0 0
\(469\) 3342.74 0.329112
\(470\) 0 0
\(471\) 0 0
\(472\) −4220.11 −0.411538
\(473\) 22332.0 2.17088
\(474\) 0 0
\(475\) 0 0
\(476\) 6268.19 0.603576
\(477\) 0 0
\(478\) 20407.0 1.95271
\(479\) 14182.0 1.35280 0.676399 0.736535i \(-0.263539\pi\)
0.676399 + 0.736535i \(0.263539\pi\)
\(480\) 0 0
\(481\) 8625.20 0.817620
\(482\) 16477.2 1.55709
\(483\) 0 0
\(484\) 20011.8 1.87940
\(485\) 0 0
\(486\) 0 0
\(487\) 5320.83 0.495092 0.247546 0.968876i \(-0.420376\pi\)
0.247546 + 0.968876i \(0.420376\pi\)
\(488\) −3366.56 −0.312289
\(489\) 0 0
\(490\) 0 0
\(491\) 6574.80 0.604311 0.302155 0.953259i \(-0.402294\pi\)
0.302155 + 0.953259i \(0.402294\pi\)
\(492\) 0 0
\(493\) 13567.1 1.23941
\(494\) 22346.2 2.03523
\(495\) 0 0
\(496\) 1275.34 0.115453
\(497\) 5756.06 0.519506
\(498\) 0 0
\(499\) −1507.68 −0.135256 −0.0676282 0.997711i \(-0.521543\pi\)
−0.0676282 + 0.997711i \(0.521543\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 5492.95 0.488371
\(503\) −8782.24 −0.778491 −0.389245 0.921134i \(-0.627264\pi\)
−0.389245 + 0.921134i \(0.627264\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 30819.4 2.70768
\(507\) 0 0
\(508\) −23400.4 −2.04375
\(509\) −12696.6 −1.10563 −0.552815 0.833304i \(-0.686447\pi\)
−0.552815 + 0.833304i \(0.686447\pi\)
\(510\) 0 0
\(511\) −5592.95 −0.484183
\(512\) 2386.50 0.205995
\(513\) 0 0
\(514\) −28234.7 −2.42291
\(515\) 0 0
\(516\) 0 0
\(517\) −6139.76 −0.522295
\(518\) 3640.36 0.308781
\(519\) 0 0
\(520\) 0 0
\(521\) 10434.7 0.877455 0.438727 0.898620i \(-0.355429\pi\)
0.438727 + 0.898620i \(0.355429\pi\)
\(522\) 0 0
\(523\) 8403.03 0.702560 0.351280 0.936270i \(-0.385746\pi\)
0.351280 + 0.936270i \(0.385746\pi\)
\(524\) −9741.55 −0.812140
\(525\) 0 0
\(526\) −3434.78 −0.284722
\(527\) 13759.4 1.13733
\(528\) 0 0
\(529\) 3630.43 0.298384
\(530\) 0 0
\(531\) 0 0
\(532\) 5762.91 0.469650
\(533\) 16314.0 1.32577
\(534\) 0 0
\(535\) 0 0
\(536\) −9890.85 −0.797052
\(537\) 0 0
\(538\) −7939.11 −0.636207
\(539\) 2649.35 0.211717
\(540\) 0 0
\(541\) 8349.66 0.663549 0.331775 0.943359i \(-0.392353\pi\)
0.331775 + 0.943359i \(0.392353\pi\)
\(542\) 20189.6 1.60004
\(543\) 0 0
\(544\) 13940.8 1.09873
\(545\) 0 0
\(546\) 0 0
\(547\) −12185.7 −0.952509 −0.476254 0.879308i \(-0.658006\pi\)
−0.476254 + 0.879308i \(0.658006\pi\)
\(548\) −12918.4 −1.00702
\(549\) 0 0
\(550\) 0 0
\(551\) 12473.4 0.964402
\(552\) 0 0
\(553\) 3276.61 0.251963
\(554\) 34882.6 2.67512
\(555\) 0 0
\(556\) −12939.9 −0.987004
\(557\) −540.209 −0.0410940 −0.0205470 0.999789i \(-0.506541\pi\)
−0.0205470 + 0.999789i \(0.506541\pi\)
\(558\) 0 0
\(559\) −31066.6 −2.35058
\(560\) 0 0
\(561\) 0 0
\(562\) 902.639 0.0677501
\(563\) −1949.26 −0.145917 −0.0729587 0.997335i \(-0.523244\pi\)
−0.0729587 + 0.997335i \(0.523244\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 3624.94 0.269200
\(567\) 0 0
\(568\) −17031.6 −1.25815
\(569\) −9487.28 −0.698994 −0.349497 0.936938i \(-0.613647\pi\)
−0.349497 + 0.936938i \(0.613647\pi\)
\(570\) 0 0
\(571\) −20172.3 −1.47843 −0.739215 0.673470i \(-0.764803\pi\)
−0.739215 + 0.673470i \(0.764803\pi\)
\(572\) −51108.0 −3.73590
\(573\) 0 0
\(574\) 6885.50 0.500689
\(575\) 0 0
\(576\) 0 0
\(577\) −12937.3 −0.933423 −0.466712 0.884410i \(-0.654561\pi\)
−0.466712 + 0.884410i \(0.654561\pi\)
\(578\) 744.254 0.0535586
\(579\) 0 0
\(580\) 0 0
\(581\) 2172.33 0.155118
\(582\) 0 0
\(583\) 31595.7 2.24453
\(584\) 16549.0 1.17261
\(585\) 0 0
\(586\) 14978.3 1.05588
\(587\) −6489.43 −0.456299 −0.228149 0.973626i \(-0.573267\pi\)
−0.228149 + 0.973626i \(0.573267\pi\)
\(588\) 0 0
\(589\) 12650.3 0.884968
\(590\) 0 0
\(591\) 0 0
\(592\) 757.345 0.0525789
\(593\) −16803.6 −1.16364 −0.581821 0.813317i \(-0.697660\pi\)
−0.581821 + 0.813317i \(0.697660\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −17778.3 −1.22186
\(597\) 0 0
\(598\) −42873.5 −2.93182
\(599\) −19139.6 −1.30554 −0.652772 0.757554i \(-0.726394\pi\)
−0.652772 + 0.757554i \(0.726394\pi\)
\(600\) 0 0
\(601\) 14304.0 0.970838 0.485419 0.874282i \(-0.338667\pi\)
0.485419 + 0.874282i \(0.338667\pi\)
\(602\) −13112.0 −0.887715
\(603\) 0 0
\(604\) 26327.7 1.77361
\(605\) 0 0
\(606\) 0 0
\(607\) 2018.10 0.134946 0.0674730 0.997721i \(-0.478506\pi\)
0.0674730 + 0.997721i \(0.478506\pi\)
\(608\) 12817.1 0.854935
\(609\) 0 0
\(610\) 0 0
\(611\) 8541.17 0.565530
\(612\) 0 0
\(613\) −21479.4 −1.41524 −0.707621 0.706592i \(-0.750232\pi\)
−0.707621 + 0.706592i \(0.750232\pi\)
\(614\) 39129.6 2.57189
\(615\) 0 0
\(616\) −7839.19 −0.512743
\(617\) −5856.83 −0.382151 −0.191075 0.981575i \(-0.561197\pi\)
−0.191075 + 0.981575i \(0.561197\pi\)
\(618\) 0 0
\(619\) −17619.3 −1.14407 −0.572035 0.820229i \(-0.693846\pi\)
−0.572035 + 0.820229i \(0.693846\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 22224.7 1.43269
\(623\) 9204.30 0.591914
\(624\) 0 0
\(625\) 0 0
\(626\) 41334.1 2.63904
\(627\) 0 0
\(628\) 8916.31 0.566560
\(629\) 8170.87 0.517955
\(630\) 0 0
\(631\) 26395.7 1.66529 0.832643 0.553810i \(-0.186827\pi\)
0.832643 + 0.553810i \(0.186827\pi\)
\(632\) −9695.19 −0.610212
\(633\) 0 0
\(634\) −36384.3 −2.27919
\(635\) 0 0
\(636\) 0 0
\(637\) −3685.58 −0.229243
\(638\) −46688.3 −2.89719
\(639\) 0 0
\(640\) 0 0
\(641\) −3209.30 −0.197753 −0.0988764 0.995100i \(-0.531525\pi\)
−0.0988764 + 0.995100i \(0.531525\pi\)
\(642\) 0 0
\(643\) 1762.48 0.108096 0.0540478 0.998538i \(-0.482788\pi\)
0.0540478 + 0.998538i \(0.482788\pi\)
\(644\) −11056.7 −0.676548
\(645\) 0 0
\(646\) 21169.1 1.28930
\(647\) −24372.7 −1.48098 −0.740488 0.672070i \(-0.765405\pi\)
−0.740488 + 0.672070i \(0.765405\pi\)
\(648\) 0 0
\(649\) −11016.3 −0.666301
\(650\) 0 0
\(651\) 0 0
\(652\) −41172.8 −2.47308
\(653\) 6389.97 0.382938 0.191469 0.981499i \(-0.438675\pi\)
0.191469 + 0.981499i \(0.438675\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1432.47 0.0852567
\(657\) 0 0
\(658\) 3604.90 0.213577
\(659\) 6111.68 0.361270 0.180635 0.983550i \(-0.442185\pi\)
0.180635 + 0.983550i \(0.442185\pi\)
\(660\) 0 0
\(661\) 16391.1 0.964510 0.482255 0.876031i \(-0.339818\pi\)
0.482255 + 0.876031i \(0.339818\pi\)
\(662\) −6047.92 −0.355074
\(663\) 0 0
\(664\) −6427.72 −0.375669
\(665\) 0 0
\(666\) 0 0
\(667\) −23931.6 −1.38926
\(668\) 35950.6 2.08229
\(669\) 0 0
\(670\) 0 0
\(671\) −8788.20 −0.505611
\(672\) 0 0
\(673\) 13055.9 0.747799 0.373900 0.927469i \(-0.378020\pi\)
0.373900 + 0.927469i \(0.378020\pi\)
\(674\) 7652.20 0.437317
\(675\) 0 0
\(676\) 43487.6 2.47426
\(677\) −3154.53 −0.179082 −0.0895410 0.995983i \(-0.528540\pi\)
−0.0895410 + 0.995983i \(0.528540\pi\)
\(678\) 0 0
\(679\) −9202.60 −0.520123
\(680\) 0 0
\(681\) 0 0
\(682\) −47350.4 −2.65856
\(683\) 17282.7 0.968233 0.484117 0.875004i \(-0.339141\pi\)
0.484117 + 0.875004i \(0.339141\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1555.54 −0.0865754
\(687\) 0 0
\(688\) −2727.83 −0.151159
\(689\) −43953.6 −2.43033
\(690\) 0 0
\(691\) 26838.3 1.47753 0.738766 0.673961i \(-0.235409\pi\)
0.738766 + 0.673961i \(0.235409\pi\)
\(692\) 35231.1 1.93538
\(693\) 0 0
\(694\) 27007.3 1.47721
\(695\) 0 0
\(696\) 0 0
\(697\) 15454.6 0.839866
\(698\) 31186.0 1.69113
\(699\) 0 0
\(700\) 0 0
\(701\) 8374.52 0.451214 0.225607 0.974218i \(-0.427563\pi\)
0.225607 + 0.974218i \(0.427563\pi\)
\(702\) 0 0
\(703\) 7512.21 0.403028
\(704\) −45117.9 −2.41540
\(705\) 0 0
\(706\) 6330.79 0.337482
\(707\) −2808.68 −0.149408
\(708\) 0 0
\(709\) 11929.4 0.631902 0.315951 0.948775i \(-0.397676\pi\)
0.315951 + 0.948775i \(0.397676\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −27234.7 −1.43352
\(713\) −24270.9 −1.27483
\(714\) 0 0
\(715\) 0 0
\(716\) −3124.40 −0.163078
\(717\) 0 0
\(718\) 1736.89 0.0902788
\(719\) 23392.3 1.21333 0.606666 0.794957i \(-0.292507\pi\)
0.606666 + 0.794957i \(0.292507\pi\)
\(720\) 0 0
\(721\) 2042.91 0.105523
\(722\) −11643.6 −0.600179
\(723\) 0 0
\(724\) 26083.8 1.33894
\(725\) 0 0
\(726\) 0 0
\(727\) −10659.8 −0.543810 −0.271905 0.962324i \(-0.587654\pi\)
−0.271905 + 0.962324i \(0.587654\pi\)
\(728\) 10905.3 0.555188
\(729\) 0 0
\(730\) 0 0
\(731\) −29430.1 −1.48907
\(732\) 0 0
\(733\) −23919.1 −1.20528 −0.602642 0.798011i \(-0.705885\pi\)
−0.602642 + 0.798011i \(0.705885\pi\)
\(734\) 46160.2 2.32126
\(735\) 0 0
\(736\) −24590.9 −1.23157
\(737\) −25819.5 −1.29047
\(738\) 0 0
\(739\) 34535.1 1.71907 0.859536 0.511074i \(-0.170752\pi\)
0.859536 + 0.511074i \(0.170752\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −18551.1 −0.917833
\(743\) 17526.8 0.865403 0.432702 0.901537i \(-0.357560\pi\)
0.432702 + 0.901537i \(0.357560\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 13564.5 0.665725
\(747\) 0 0
\(748\) −48415.9 −2.36666
\(749\) 153.716 0.00749889
\(750\) 0 0
\(751\) 18534.3 0.900565 0.450283 0.892886i \(-0.351323\pi\)
0.450283 + 0.892886i \(0.351323\pi\)
\(752\) 749.966 0.0363676
\(753\) 0 0
\(754\) 64949.2 3.13702
\(755\) 0 0
\(756\) 0 0
\(757\) 9309.64 0.446981 0.223491 0.974706i \(-0.428255\pi\)
0.223491 + 0.974706i \(0.428255\pi\)
\(758\) 33562.7 1.60825
\(759\) 0 0
\(760\) 0 0
\(761\) 2968.41 0.141399 0.0706996 0.997498i \(-0.477477\pi\)
0.0706996 + 0.997498i \(0.477477\pi\)
\(762\) 0 0
\(763\) 121.113 0.00574653
\(764\) 15746.0 0.745643
\(765\) 0 0
\(766\) −48841.1 −2.30379
\(767\) 15325.1 0.721457
\(768\) 0 0
\(769\) −34932.9 −1.63812 −0.819060 0.573708i \(-0.805505\pi\)
−0.819060 + 0.573708i \(0.805505\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −20134.0 −0.938650
\(773\) −13595.4 −0.632591 −0.316295 0.948661i \(-0.602439\pi\)
−0.316295 + 0.948661i \(0.602439\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 27229.7 1.25965
\(777\) 0 0
\(778\) 50762.9 2.33925
\(779\) 14208.8 0.653510
\(780\) 0 0
\(781\) −44460.1 −2.03701
\(782\) −40615.2 −1.85728
\(783\) 0 0
\(784\) −323.616 −0.0147420
\(785\) 0 0
\(786\) 0 0
\(787\) 14228.1 0.644444 0.322222 0.946664i \(-0.395570\pi\)
0.322222 + 0.946664i \(0.395570\pi\)
\(788\) 29487.3 1.33305
\(789\) 0 0
\(790\) 0 0
\(791\) −411.728 −0.0185074
\(792\) 0 0
\(793\) 12225.5 0.547465
\(794\) −47037.5 −2.10239
\(795\) 0 0
\(796\) −25053.0 −1.11555
\(797\) 11442.3 0.508539 0.254270 0.967133i \(-0.418165\pi\)
0.254270 + 0.967133i \(0.418165\pi\)
\(798\) 0 0
\(799\) 8091.26 0.358258
\(800\) 0 0
\(801\) 0 0
\(802\) −24499.5 −1.07869
\(803\) 43200.3 1.89851
\(804\) 0 0
\(805\) 0 0
\(806\) 65870.2 2.87863
\(807\) 0 0
\(808\) 8310.63 0.361840
\(809\) −22732.9 −0.987944 −0.493972 0.869478i \(-0.664455\pi\)
−0.493972 + 0.869478i \(0.664455\pi\)
\(810\) 0 0
\(811\) −29768.2 −1.28890 −0.644452 0.764644i \(-0.722915\pi\)
−0.644452 + 0.764644i \(0.722915\pi\)
\(812\) 16749.9 0.723898
\(813\) 0 0
\(814\) −28118.4 −1.21075
\(815\) 0 0
\(816\) 0 0
\(817\) −27057.7 −1.15867
\(818\) −58185.0 −2.48703
\(819\) 0 0
\(820\) 0 0
\(821\) −6408.35 −0.272416 −0.136208 0.990680i \(-0.543491\pi\)
−0.136208 + 0.990680i \(0.543491\pi\)
\(822\) 0 0
\(823\) 20876.0 0.884194 0.442097 0.896967i \(-0.354235\pi\)
0.442097 + 0.896967i \(0.354235\pi\)
\(824\) −6044.78 −0.255558
\(825\) 0 0
\(826\) 6468.13 0.272464
\(827\) −41650.1 −1.75129 −0.875645 0.482955i \(-0.839563\pi\)
−0.875645 + 0.482955i \(0.839563\pi\)
\(828\) 0 0
\(829\) 17194.7 0.720380 0.360190 0.932879i \(-0.382712\pi\)
0.360190 + 0.932879i \(0.382712\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 62764.5 2.61535
\(833\) −3491.44 −0.145223
\(834\) 0 0
\(835\) 0 0
\(836\) −44513.0 −1.84153
\(837\) 0 0
\(838\) −25491.1 −1.05081
\(839\) −40583.7 −1.66997 −0.834985 0.550273i \(-0.814524\pi\)
−0.834985 + 0.550273i \(0.814524\pi\)
\(840\) 0 0
\(841\) 11865.0 0.486489
\(842\) −9873.42 −0.404110
\(843\) 0 0
\(844\) −73549.7 −2.99963
\(845\) 0 0
\(846\) 0 0
\(847\) −11146.8 −0.452192
\(848\) −3859.39 −0.156288
\(849\) 0 0
\(850\) 0 0
\(851\) −14413.0 −0.580576
\(852\) 0 0
\(853\) −23020.1 −0.924023 −0.462012 0.886874i \(-0.652872\pi\)
−0.462012 + 0.886874i \(0.652872\pi\)
\(854\) 5159.90 0.206754
\(855\) 0 0
\(856\) −454.832 −0.0181610
\(857\) −18075.5 −0.720476 −0.360238 0.932861i \(-0.617304\pi\)
−0.360238 + 0.932861i \(0.617304\pi\)
\(858\) 0 0
\(859\) 20308.2 0.806643 0.403321 0.915058i \(-0.367856\pi\)
0.403321 + 0.915058i \(0.367856\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −47148.9 −1.86299
\(863\) −31023.5 −1.22370 −0.611849 0.790975i \(-0.709574\pi\)
−0.611849 + 0.790975i \(0.709574\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −53857.2 −2.11333
\(867\) 0 0
\(868\) 16987.4 0.664274
\(869\) −25308.7 −0.987963
\(870\) 0 0
\(871\) 35918.1 1.39729
\(872\) −358.363 −0.0139171
\(873\) 0 0
\(874\) −37341.2 −1.44518
\(875\) 0 0
\(876\) 0 0
\(877\) 28344.1 1.09135 0.545674 0.837997i \(-0.316274\pi\)
0.545674 + 0.837997i \(0.316274\pi\)
\(878\) 2904.14 0.111629
\(879\) 0 0
\(880\) 0 0
\(881\) −41264.5 −1.57802 −0.789010 0.614380i \(-0.789406\pi\)
−0.789010 + 0.614380i \(0.789406\pi\)
\(882\) 0 0
\(883\) 7995.59 0.304726 0.152363 0.988325i \(-0.451312\pi\)
0.152363 + 0.988325i \(0.451312\pi\)
\(884\) 67352.5 2.56257
\(885\) 0 0
\(886\) −3876.84 −0.147003
\(887\) 24438.3 0.925093 0.462547 0.886595i \(-0.346936\pi\)
0.462547 + 0.886595i \(0.346936\pi\)
\(888\) 0 0
\(889\) 13034.2 0.491737
\(890\) 0 0
\(891\) 0 0
\(892\) 21610.1 0.811167
\(893\) 7439.02 0.278765
\(894\) 0 0
\(895\) 0 0
\(896\) 15534.1 0.579192
\(897\) 0 0
\(898\) −15543.8 −0.577620
\(899\) 36768.0 1.36405
\(900\) 0 0
\(901\) −41638.3 −1.53959
\(902\) −53184.0 −1.96323
\(903\) 0 0
\(904\) 1218.26 0.0448218
\(905\) 0 0
\(906\) 0 0
\(907\) −17241.6 −0.631201 −0.315601 0.948892i \(-0.602206\pi\)
−0.315601 + 0.948892i \(0.602206\pi\)
\(908\) −71456.6 −2.61164
\(909\) 0 0
\(910\) 0 0
\(911\) −17407.8 −0.633092 −0.316546 0.948577i \(-0.602523\pi\)
−0.316546 + 0.948577i \(0.602523\pi\)
\(912\) 0 0
\(913\) −16779.2 −0.608226
\(914\) −7751.87 −0.280535
\(915\) 0 0
\(916\) −38799.8 −1.39954
\(917\) 5426.13 0.195405
\(918\) 0 0
\(919\) 7704.64 0.276553 0.138277 0.990394i \(-0.455844\pi\)
0.138277 + 0.990394i \(0.455844\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −10209.3 −0.364671
\(923\) 61849.5 2.20564
\(924\) 0 0
\(925\) 0 0
\(926\) 14515.9 0.515144
\(927\) 0 0
\(928\) 37252.8 1.31776
\(929\) 48184.3 1.70170 0.850849 0.525411i \(-0.176088\pi\)
0.850849 + 0.525411i \(0.176088\pi\)
\(930\) 0 0
\(931\) −3209.99 −0.113000
\(932\) 50237.7 1.76565
\(933\) 0 0
\(934\) 24840.5 0.870242
\(935\) 0 0
\(936\) 0 0
\(937\) −23371.6 −0.814853 −0.407427 0.913238i \(-0.633574\pi\)
−0.407427 + 0.913238i \(0.633574\pi\)
\(938\) 15159.7 0.527697
\(939\) 0 0
\(940\) 0 0
\(941\) −18048.6 −0.625258 −0.312629 0.949875i \(-0.601210\pi\)
−0.312629 + 0.949875i \(0.601210\pi\)
\(942\) 0 0
\(943\) −27261.1 −0.941405
\(944\) 1345.64 0.0463948
\(945\) 0 0
\(946\) 101278. 3.48079
\(947\) 10346.2 0.355022 0.177511 0.984119i \(-0.443195\pi\)
0.177511 + 0.984119i \(0.443195\pi\)
\(948\) 0 0
\(949\) −60096.9 −2.05567
\(950\) 0 0
\(951\) 0 0
\(952\) 10330.8 0.351706
\(953\) 8691.77 0.295440 0.147720 0.989029i \(-0.452807\pi\)
0.147720 + 0.989029i \(0.452807\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 56549.5 1.91312
\(957\) 0 0
\(958\) 64316.6 2.16908
\(959\) 7195.67 0.242294
\(960\) 0 0
\(961\) 7498.41 0.251701
\(962\) 39116.2 1.31097
\(963\) 0 0
\(964\) 45659.6 1.52552
\(965\) 0 0
\(966\) 0 0
\(967\) −8971.58 −0.298352 −0.149176 0.988811i \(-0.547662\pi\)
−0.149176 + 0.988811i \(0.547662\pi\)
\(968\) 32982.2 1.09513
\(969\) 0 0
\(970\) 0 0
\(971\) −29275.1 −0.967541 −0.483771 0.875195i \(-0.660733\pi\)
−0.483771 + 0.875195i \(0.660733\pi\)
\(972\) 0 0
\(973\) 7207.64 0.237478
\(974\) 24130.5 0.793831
\(975\) 0 0
\(976\) 1073.47 0.0352059
\(977\) −16477.5 −0.539572 −0.269786 0.962920i \(-0.586953\pi\)
−0.269786 + 0.962920i \(0.586953\pi\)
\(978\) 0 0
\(979\) −71094.6 −2.32093
\(980\) 0 0
\(981\) 0 0
\(982\) 29817.4 0.968952
\(983\) 45912.9 1.48972 0.744859 0.667222i \(-0.232517\pi\)
0.744859 + 0.667222i \(0.232517\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 61528.0 1.98727
\(987\) 0 0
\(988\) 61923.2 1.99397
\(989\) 51913.1 1.66910
\(990\) 0 0
\(991\) 46124.8 1.47851 0.739255 0.673426i \(-0.235178\pi\)
0.739255 + 0.673426i \(0.235178\pi\)
\(992\) 37781.0 1.20922
\(993\) 0 0
\(994\) 26104.3 0.832975
\(995\) 0 0
\(996\) 0 0
\(997\) 30984.5 0.984240 0.492120 0.870527i \(-0.336222\pi\)
0.492120 + 0.870527i \(0.336222\pi\)
\(998\) −6837.47 −0.216870
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.4.a.bl.1.3 4
3.2 odd 2 175.4.a.g.1.2 4
5.4 even 2 1575.4.a.bg.1.2 4
15.2 even 4 175.4.b.f.99.3 8
15.8 even 4 175.4.b.f.99.6 8
15.14 odd 2 175.4.a.h.1.3 yes 4
21.20 even 2 1225.4.a.z.1.2 4
105.104 even 2 1225.4.a.bd.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.4.a.g.1.2 4 3.2 odd 2
175.4.a.h.1.3 yes 4 15.14 odd 2
175.4.b.f.99.3 8 15.2 even 4
175.4.b.f.99.6 8 15.8 even 4
1225.4.a.z.1.2 4 21.20 even 2
1225.4.a.bd.1.3 4 105.104 even 2
1575.4.a.bg.1.2 4 5.4 even 2
1575.4.a.bl.1.3 4 1.1 even 1 trivial