Properties

Label 1575.4.a.bk.1.4
Level $1575$
Weight $4$
Character 1575.1
Self dual yes
Analytic conductor $92.928$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1575,4,Mod(1,1575)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1575.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1575, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1575.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,16,0,0,28,-9,0,0,-21] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.9280082590\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 24x^{2} - 3x + 46 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 525)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-4.60171\) of defining polynomial
Character \(\chi\) \(=\) 1575.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.60171 q^{2} +13.1758 q^{4} +7.00000 q^{7} +23.8174 q^{8} +52.9465 q^{11} +19.6024 q^{13} +32.2120 q^{14} +4.19486 q^{16} -61.5076 q^{17} +27.0928 q^{19} +243.645 q^{22} -19.2163 q^{23} +90.2046 q^{26} +92.2304 q^{28} +167.409 q^{29} +225.638 q^{31} -171.236 q^{32} -283.040 q^{34} +311.705 q^{37} +124.673 q^{38} -12.8071 q^{41} -114.311 q^{43} +697.611 q^{44} -88.4281 q^{46} +207.919 q^{47} +49.0000 q^{49} +258.277 q^{52} -227.402 q^{53} +166.722 q^{56} +770.369 q^{58} +605.531 q^{59} -315.981 q^{61} +1038.32 q^{62} -821.538 q^{64} +720.254 q^{67} -810.410 q^{68} +56.2766 q^{71} -1154.36 q^{73} +1434.38 q^{74} +356.969 q^{76} +370.625 q^{77} +1152.80 q^{79} -58.9347 q^{82} -692.581 q^{83} -526.029 q^{86} +1261.05 q^{88} -1417.70 q^{89} +137.217 q^{91} -253.190 q^{92} +956.783 q^{94} +661.229 q^{97} +225.484 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{4} + 28 q^{7} - 9 q^{8} - 21 q^{11} + 5 q^{13} + 72 q^{16} - 99 q^{17} + 72 q^{19} + 221 q^{22} - 102 q^{23} - 129 q^{26} + 112 q^{28} + 240 q^{29} + 351 q^{31} - 72 q^{32} - 285 q^{34} + 399 q^{37}+ \cdots - 372 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.60171 1.62695 0.813476 0.581599i \(-0.197573\pi\)
0.813476 + 0.581599i \(0.197573\pi\)
\(3\) 0 0
\(4\) 13.1758 1.64697
\(5\) 0 0
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 23.8174 1.05259
\(9\) 0 0
\(10\) 0 0
\(11\) 52.9465 1.45127 0.725635 0.688080i \(-0.241546\pi\)
0.725635 + 0.688080i \(0.241546\pi\)
\(12\) 0 0
\(13\) 19.6024 0.418209 0.209105 0.977893i \(-0.432945\pi\)
0.209105 + 0.977893i \(0.432945\pi\)
\(14\) 32.2120 0.614930
\(15\) 0 0
\(16\) 4.19486 0.0655446
\(17\) −61.5076 −0.877516 −0.438758 0.898605i \(-0.644582\pi\)
−0.438758 + 0.898605i \(0.644582\pi\)
\(18\) 0 0
\(19\) 27.0928 0.327133 0.163566 0.986532i \(-0.447700\pi\)
0.163566 + 0.986532i \(0.447700\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 243.645 2.36115
\(23\) −19.2163 −0.174212 −0.0871062 0.996199i \(-0.527762\pi\)
−0.0871062 + 0.996199i \(0.527762\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 90.2046 0.680407
\(27\) 0 0
\(28\) 92.2304 0.622497
\(29\) 167.409 1.07197 0.535984 0.844228i \(-0.319941\pi\)
0.535984 + 0.844228i \(0.319941\pi\)
\(30\) 0 0
\(31\) 225.638 1.30728 0.653642 0.756804i \(-0.273240\pi\)
0.653642 + 0.756804i \(0.273240\pi\)
\(32\) −171.236 −0.945954
\(33\) 0 0
\(34\) −283.040 −1.42768
\(35\) 0 0
\(36\) 0 0
\(37\) 311.705 1.38497 0.692485 0.721432i \(-0.256516\pi\)
0.692485 + 0.721432i \(0.256516\pi\)
\(38\) 124.673 0.532229
\(39\) 0 0
\(40\) 0 0
\(41\) −12.8071 −0.0487838 −0.0243919 0.999702i \(-0.507765\pi\)
−0.0243919 + 0.999702i \(0.507765\pi\)
\(42\) 0 0
\(43\) −114.311 −0.405403 −0.202702 0.979241i \(-0.564972\pi\)
−0.202702 + 0.979241i \(0.564972\pi\)
\(44\) 697.611 2.39020
\(45\) 0 0
\(46\) −88.4281 −0.283435
\(47\) 207.919 0.645278 0.322639 0.946522i \(-0.395430\pi\)
0.322639 + 0.946522i \(0.395430\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 258.277 0.688779
\(53\) −227.402 −0.589360 −0.294680 0.955596i \(-0.595213\pi\)
−0.294680 + 0.955596i \(0.595213\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 166.722 0.397842
\(57\) 0 0
\(58\) 770.369 1.74404
\(59\) 605.531 1.33616 0.668080 0.744090i \(-0.267116\pi\)
0.668080 + 0.744090i \(0.267116\pi\)
\(60\) 0 0
\(61\) −315.981 −0.663232 −0.331616 0.943414i \(-0.607594\pi\)
−0.331616 + 0.943414i \(0.607594\pi\)
\(62\) 1038.32 2.12689
\(63\) 0 0
\(64\) −821.538 −1.60457
\(65\) 0 0
\(66\) 0 0
\(67\) 720.254 1.31333 0.656664 0.754183i \(-0.271967\pi\)
0.656664 + 0.754183i \(0.271967\pi\)
\(68\) −810.410 −1.44524
\(69\) 0 0
\(70\) 0 0
\(71\) 56.2766 0.0940676 0.0470338 0.998893i \(-0.485023\pi\)
0.0470338 + 0.998893i \(0.485023\pi\)
\(72\) 0 0
\(73\) −1154.36 −1.85079 −0.925393 0.379010i \(-0.876265\pi\)
−0.925393 + 0.379010i \(0.876265\pi\)
\(74\) 1434.38 2.25328
\(75\) 0 0
\(76\) 356.969 0.538778
\(77\) 370.625 0.548528
\(78\) 0 0
\(79\) 1152.80 1.64177 0.820885 0.571093i \(-0.193480\pi\)
0.820885 + 0.571093i \(0.193480\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −58.9347 −0.0793689
\(83\) −692.581 −0.915911 −0.457956 0.888975i \(-0.651418\pi\)
−0.457956 + 0.888975i \(0.651418\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −526.029 −0.659571
\(87\) 0 0
\(88\) 1261.05 1.52759
\(89\) −1417.70 −1.68849 −0.844246 0.535956i \(-0.819951\pi\)
−0.844246 + 0.535956i \(0.819951\pi\)
\(90\) 0 0
\(91\) 137.217 0.158068
\(92\) −253.190 −0.286923
\(93\) 0 0
\(94\) 956.783 1.04984
\(95\) 0 0
\(96\) 0 0
\(97\) 661.229 0.692140 0.346070 0.938209i \(-0.387516\pi\)
0.346070 + 0.938209i \(0.387516\pi\)
\(98\) 225.484 0.232422
\(99\) 0 0
\(100\) 0 0
\(101\) −187.231 −0.184458 −0.0922289 0.995738i \(-0.529399\pi\)
−0.0922289 + 0.995738i \(0.529399\pi\)
\(102\) 0 0
\(103\) 1076.28 1.02961 0.514803 0.857308i \(-0.327865\pi\)
0.514803 + 0.857308i \(0.327865\pi\)
\(104\) 466.879 0.440204
\(105\) 0 0
\(106\) −1046.44 −0.958861
\(107\) −1591.65 −1.43805 −0.719024 0.694986i \(-0.755411\pi\)
−0.719024 + 0.694986i \(0.755411\pi\)
\(108\) 0 0
\(109\) 1706.29 1.49938 0.749692 0.661786i \(-0.230201\pi\)
0.749692 + 0.661786i \(0.230201\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 29.3640 0.0247735
\(113\) 560.000 0.466198 0.233099 0.972453i \(-0.425113\pi\)
0.233099 + 0.972453i \(0.425113\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2205.74 1.76550
\(117\) 0 0
\(118\) 2786.48 2.17387
\(119\) −430.553 −0.331670
\(120\) 0 0
\(121\) 1472.33 1.10618
\(122\) −1454.05 −1.07905
\(123\) 0 0
\(124\) 2972.96 2.15306
\(125\) 0 0
\(126\) 0 0
\(127\) 2098.96 1.46655 0.733276 0.679931i \(-0.237990\pi\)
0.733276 + 0.679931i \(0.237990\pi\)
\(128\) −2410.60 −1.66460
\(129\) 0 0
\(130\) 0 0
\(131\) −1675.28 −1.11733 −0.558664 0.829394i \(-0.688686\pi\)
−0.558664 + 0.829394i \(0.688686\pi\)
\(132\) 0 0
\(133\) 189.650 0.123644
\(134\) 3314.40 2.13672
\(135\) 0 0
\(136\) −1464.95 −0.923667
\(137\) 2678.78 1.67054 0.835269 0.549841i \(-0.185312\pi\)
0.835269 + 0.549841i \(0.185312\pi\)
\(138\) 0 0
\(139\) 1032.11 0.629800 0.314900 0.949125i \(-0.398029\pi\)
0.314900 + 0.949125i \(0.398029\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 258.969 0.153043
\(143\) 1037.88 0.606935
\(144\) 0 0
\(145\) 0 0
\(146\) −5312.02 −3.01114
\(147\) 0 0
\(148\) 4106.95 2.28101
\(149\) −1187.33 −0.652815 −0.326408 0.945229i \(-0.605838\pi\)
−0.326408 + 0.945229i \(0.605838\pi\)
\(150\) 0 0
\(151\) −138.484 −0.0746338 −0.0373169 0.999303i \(-0.511881\pi\)
−0.0373169 + 0.999303i \(0.511881\pi\)
\(152\) 645.282 0.344337
\(153\) 0 0
\(154\) 1705.51 0.892429
\(155\) 0 0
\(156\) 0 0
\(157\) 441.575 0.224469 0.112234 0.993682i \(-0.464199\pi\)
0.112234 + 0.993682i \(0.464199\pi\)
\(158\) 5304.85 2.67108
\(159\) 0 0
\(160\) 0 0
\(161\) −134.514 −0.0658461
\(162\) 0 0
\(163\) 2116.62 1.01710 0.508548 0.861034i \(-0.330183\pi\)
0.508548 + 0.861034i \(0.330183\pi\)
\(164\) −168.744 −0.0803455
\(165\) 0 0
\(166\) −3187.06 −1.49014
\(167\) −843.566 −0.390881 −0.195440 0.980716i \(-0.562614\pi\)
−0.195440 + 0.980716i \(0.562614\pi\)
\(168\) 0 0
\(169\) −1812.75 −0.825101
\(170\) 0 0
\(171\) 0 0
\(172\) −1506.14 −0.667687
\(173\) 4319.01 1.89808 0.949042 0.315150i \(-0.102055\pi\)
0.949042 + 0.315150i \(0.102055\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 222.103 0.0951229
\(177\) 0 0
\(178\) −6523.84 −2.74709
\(179\) 421.744 0.176104 0.0880520 0.996116i \(-0.471936\pi\)
0.0880520 + 0.996116i \(0.471936\pi\)
\(180\) 0 0
\(181\) 791.205 0.324916 0.162458 0.986715i \(-0.448058\pi\)
0.162458 + 0.986715i \(0.448058\pi\)
\(182\) 631.432 0.257170
\(183\) 0 0
\(184\) −457.684 −0.183375
\(185\) 0 0
\(186\) 0 0
\(187\) −3256.61 −1.27351
\(188\) 2739.49 1.06276
\(189\) 0 0
\(190\) 0 0
\(191\) −1790.22 −0.678199 −0.339100 0.940750i \(-0.610122\pi\)
−0.339100 + 0.940750i \(0.610122\pi\)
\(192\) 0 0
\(193\) −2301.10 −0.858221 −0.429111 0.903252i \(-0.641173\pi\)
−0.429111 + 0.903252i \(0.641173\pi\)
\(194\) 3042.79 1.12608
\(195\) 0 0
\(196\) 645.613 0.235282
\(197\) −3490.59 −1.26241 −0.631203 0.775617i \(-0.717439\pi\)
−0.631203 + 0.775617i \(0.717439\pi\)
\(198\) 0 0
\(199\) 822.357 0.292942 0.146471 0.989215i \(-0.453209\pi\)
0.146471 + 0.989215i \(0.453209\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −861.586 −0.300104
\(203\) 1171.86 0.405166
\(204\) 0 0
\(205\) 0 0
\(206\) 4952.75 1.67512
\(207\) 0 0
\(208\) 82.2292 0.0274114
\(209\) 1434.47 0.474757
\(210\) 0 0
\(211\) −2323.79 −0.758181 −0.379091 0.925360i \(-0.623763\pi\)
−0.379091 + 0.925360i \(0.623763\pi\)
\(212\) −2996.20 −0.970660
\(213\) 0 0
\(214\) −7324.34 −2.33963
\(215\) 0 0
\(216\) 0 0
\(217\) 1579.47 0.494107
\(218\) 7851.86 2.43943
\(219\) 0 0
\(220\) 0 0
\(221\) −1205.70 −0.366986
\(222\) 0 0
\(223\) −2526.13 −0.758574 −0.379287 0.925279i \(-0.623831\pi\)
−0.379287 + 0.925279i \(0.623831\pi\)
\(224\) −1198.65 −0.357537
\(225\) 0 0
\(226\) 2576.96 0.758482
\(227\) −3924.06 −1.14735 −0.573676 0.819082i \(-0.694483\pi\)
−0.573676 + 0.819082i \(0.694483\pi\)
\(228\) 0 0
\(229\) 3591.55 1.03640 0.518201 0.855259i \(-0.326602\pi\)
0.518201 + 0.855259i \(0.326602\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 3987.26 1.12835
\(233\) −4957.57 −1.39391 −0.696955 0.717115i \(-0.745462\pi\)
−0.696955 + 0.717115i \(0.745462\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 7978.34 2.20062
\(237\) 0 0
\(238\) −1981.28 −0.539611
\(239\) 5663.57 1.53283 0.766414 0.642347i \(-0.222039\pi\)
0.766414 + 0.642347i \(0.222039\pi\)
\(240\) 0 0
\(241\) −2246.64 −0.600493 −0.300246 0.953862i \(-0.597069\pi\)
−0.300246 + 0.953862i \(0.597069\pi\)
\(242\) 6775.24 1.79971
\(243\) 0 0
\(244\) −4163.29 −1.09232
\(245\) 0 0
\(246\) 0 0
\(247\) 531.084 0.136810
\(248\) 5374.12 1.37604
\(249\) 0 0
\(250\) 0 0
\(251\) 3382.51 0.850606 0.425303 0.905051i \(-0.360167\pi\)
0.425303 + 0.905051i \(0.360167\pi\)
\(252\) 0 0
\(253\) −1017.44 −0.252829
\(254\) 9658.79 2.38601
\(255\) 0 0
\(256\) −4520.57 −1.10365
\(257\) −8116.97 −1.97013 −0.985064 0.172190i \(-0.944916\pi\)
−0.985064 + 0.172190i \(0.944916\pi\)
\(258\) 0 0
\(259\) 2181.93 0.523470
\(260\) 0 0
\(261\) 0 0
\(262\) −7709.17 −1.81784
\(263\) −3643.53 −0.854257 −0.427129 0.904191i \(-0.640475\pi\)
−0.427129 + 0.904191i \(0.640475\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 872.714 0.201164
\(267\) 0 0
\(268\) 9489.90 2.16302
\(269\) −7509.24 −1.70203 −0.851015 0.525141i \(-0.824013\pi\)
−0.851015 + 0.525141i \(0.824013\pi\)
\(270\) 0 0
\(271\) −8350.12 −1.87171 −0.935855 0.352385i \(-0.885371\pi\)
−0.935855 + 0.352385i \(0.885371\pi\)
\(272\) −258.015 −0.0575165
\(273\) 0 0
\(274\) 12327.0 2.71788
\(275\) 0 0
\(276\) 0 0
\(277\) 3359.70 0.728753 0.364377 0.931252i \(-0.381282\pi\)
0.364377 + 0.931252i \(0.381282\pi\)
\(278\) 4749.47 1.02465
\(279\) 0 0
\(280\) 0 0
\(281\) −6403.33 −1.35940 −0.679699 0.733491i \(-0.737890\pi\)
−0.679699 + 0.733491i \(0.737890\pi\)
\(282\) 0 0
\(283\) −5862.59 −1.23143 −0.615715 0.787969i \(-0.711133\pi\)
−0.615715 + 0.787969i \(0.711133\pi\)
\(284\) 741.487 0.154927
\(285\) 0 0
\(286\) 4776.01 0.987453
\(287\) −89.6498 −0.0184385
\(288\) 0 0
\(289\) −1129.82 −0.229965
\(290\) 0 0
\(291\) 0 0
\(292\) −15209.6 −3.04819
\(293\) −3866.04 −0.770840 −0.385420 0.922741i \(-0.625944\pi\)
−0.385420 + 0.922741i \(0.625944\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 7424.01 1.45781
\(297\) 0 0
\(298\) −5463.73 −1.06210
\(299\) −376.686 −0.0728573
\(300\) 0 0
\(301\) −800.180 −0.153228
\(302\) −637.266 −0.121426
\(303\) 0 0
\(304\) 113.650 0.0214418
\(305\) 0 0
\(306\) 0 0
\(307\) 7084.81 1.31711 0.658553 0.752535i \(-0.271169\pi\)
0.658553 + 0.752535i \(0.271169\pi\)
\(308\) 4883.28 0.903411
\(309\) 0 0
\(310\) 0 0
\(311\) 10616.6 1.93572 0.967862 0.251483i \(-0.0809184\pi\)
0.967862 + 0.251483i \(0.0809184\pi\)
\(312\) 0 0
\(313\) −7247.78 −1.30885 −0.654423 0.756128i \(-0.727089\pi\)
−0.654423 + 0.756128i \(0.727089\pi\)
\(314\) 2032.00 0.365199
\(315\) 0 0
\(316\) 15189.0 2.70395
\(317\) −6308.24 −1.11768 −0.558842 0.829274i \(-0.688754\pi\)
−0.558842 + 0.829274i \(0.688754\pi\)
\(318\) 0 0
\(319\) 8863.72 1.55572
\(320\) 0 0
\(321\) 0 0
\(322\) −618.997 −0.107128
\(323\) −1666.41 −0.287064
\(324\) 0 0
\(325\) 0 0
\(326\) 9740.09 1.65477
\(327\) 0 0
\(328\) −305.033 −0.0513494
\(329\) 1455.43 0.243892
\(330\) 0 0
\(331\) 6656.25 1.10532 0.552660 0.833407i \(-0.313613\pi\)
0.552660 + 0.833407i \(0.313613\pi\)
\(332\) −9125.29 −1.50848
\(333\) 0 0
\(334\) −3881.85 −0.635944
\(335\) 0 0
\(336\) 0 0
\(337\) −11941.8 −1.93030 −0.965152 0.261691i \(-0.915720\pi\)
−0.965152 + 0.261691i \(0.915720\pi\)
\(338\) −8341.74 −1.34240
\(339\) 0 0
\(340\) 0 0
\(341\) 11946.7 1.89722
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) −2722.61 −0.426724
\(345\) 0 0
\(346\) 19874.9 3.08809
\(347\) 6390.65 0.988669 0.494335 0.869272i \(-0.335412\pi\)
0.494335 + 0.869272i \(0.335412\pi\)
\(348\) 0 0
\(349\) −7760.54 −1.19029 −0.595147 0.803617i \(-0.702906\pi\)
−0.595147 + 0.803617i \(0.702906\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −9066.34 −1.37283
\(353\) −5416.46 −0.816684 −0.408342 0.912829i \(-0.633893\pi\)
−0.408342 + 0.912829i \(0.633893\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −18679.3 −2.78090
\(357\) 0 0
\(358\) 1940.74 0.286513
\(359\) 2563.26 0.376834 0.188417 0.982089i \(-0.439664\pi\)
0.188417 + 0.982089i \(0.439664\pi\)
\(360\) 0 0
\(361\) −6124.98 −0.892984
\(362\) 3640.90 0.528623
\(363\) 0 0
\(364\) 1807.94 0.260334
\(365\) 0 0
\(366\) 0 0
\(367\) −10118.8 −1.43923 −0.719614 0.694374i \(-0.755681\pi\)
−0.719614 + 0.694374i \(0.755681\pi\)
\(368\) −80.6098 −0.0114187
\(369\) 0 0
\(370\) 0 0
\(371\) −1591.82 −0.222757
\(372\) 0 0
\(373\) 1870.64 0.259673 0.129837 0.991535i \(-0.458555\pi\)
0.129837 + 0.991535i \(0.458555\pi\)
\(374\) −14986.0 −2.07194
\(375\) 0 0
\(376\) 4952.09 0.679215
\(377\) 3281.62 0.448307
\(378\) 0 0
\(379\) 3804.87 0.515681 0.257841 0.966187i \(-0.416989\pi\)
0.257841 + 0.966187i \(0.416989\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −8238.10 −1.10340
\(383\) −11709.3 −1.56219 −0.781094 0.624414i \(-0.785338\pi\)
−0.781094 + 0.624414i \(0.785338\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −10589.0 −1.39628
\(387\) 0 0
\(388\) 8712.20 1.13994
\(389\) 1278.24 0.166605 0.0833023 0.996524i \(-0.473453\pi\)
0.0833023 + 0.996524i \(0.473453\pi\)
\(390\) 0 0
\(391\) 1181.95 0.152874
\(392\) 1167.05 0.150370
\(393\) 0 0
\(394\) −16062.7 −2.05387
\(395\) 0 0
\(396\) 0 0
\(397\) 2101.91 0.265723 0.132862 0.991135i \(-0.457583\pi\)
0.132862 + 0.991135i \(0.457583\pi\)
\(398\) 3784.25 0.476602
\(399\) 0 0
\(400\) 0 0
\(401\) 11239.5 1.39969 0.699846 0.714294i \(-0.253252\pi\)
0.699846 + 0.714294i \(0.253252\pi\)
\(402\) 0 0
\(403\) 4423.04 0.546718
\(404\) −2466.92 −0.303797
\(405\) 0 0
\(406\) 5392.58 0.659186
\(407\) 16503.7 2.00997
\(408\) 0 0
\(409\) 6751.66 0.816254 0.408127 0.912925i \(-0.366182\pi\)
0.408127 + 0.912925i \(0.366182\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 14180.9 1.69573
\(413\) 4238.72 0.505021
\(414\) 0 0
\(415\) 0 0
\(416\) −3356.63 −0.395607
\(417\) 0 0
\(418\) 6601.02 0.772408
\(419\) 8449.93 0.985218 0.492609 0.870251i \(-0.336043\pi\)
0.492609 + 0.870251i \(0.336043\pi\)
\(420\) 0 0
\(421\) 2267.58 0.262506 0.131253 0.991349i \(-0.458100\pi\)
0.131253 + 0.991349i \(0.458100\pi\)
\(422\) −10693.4 −1.23352
\(423\) 0 0
\(424\) −5416.14 −0.620356
\(425\) 0 0
\(426\) 0 0
\(427\) −2211.86 −0.250678
\(428\) −20971.3 −2.36842
\(429\) 0 0
\(430\) 0 0
\(431\) 3172.81 0.354591 0.177296 0.984158i \(-0.443265\pi\)
0.177296 + 0.984158i \(0.443265\pi\)
\(432\) 0 0
\(433\) −13569.4 −1.50601 −0.753006 0.658013i \(-0.771397\pi\)
−0.753006 + 0.658013i \(0.771397\pi\)
\(434\) 7268.25 0.803888
\(435\) 0 0
\(436\) 22481.7 2.46944
\(437\) −520.625 −0.0569905
\(438\) 0 0
\(439\) −12021.7 −1.30698 −0.653488 0.756936i \(-0.726695\pi\)
−0.653488 + 0.756936i \(0.726695\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −5548.26 −0.597068
\(443\) −2072.36 −0.222259 −0.111129 0.993806i \(-0.535447\pi\)
−0.111129 + 0.993806i \(0.535447\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −11624.5 −1.23416
\(447\) 0 0
\(448\) −5750.77 −0.606469
\(449\) −154.727 −0.0162628 −0.00813142 0.999967i \(-0.502588\pi\)
−0.00813142 + 0.999967i \(0.502588\pi\)
\(450\) 0 0
\(451\) −678.092 −0.0707984
\(452\) 7378.44 0.767815
\(453\) 0 0
\(454\) −18057.4 −1.86669
\(455\) 0 0
\(456\) 0 0
\(457\) 4347.26 0.444981 0.222491 0.974935i \(-0.428581\pi\)
0.222491 + 0.974935i \(0.428581\pi\)
\(458\) 16527.3 1.68618
\(459\) 0 0
\(460\) 0 0
\(461\) 5510.76 0.556750 0.278375 0.960473i \(-0.410204\pi\)
0.278375 + 0.960473i \(0.410204\pi\)
\(462\) 0 0
\(463\) 9166.14 0.920058 0.460029 0.887904i \(-0.347839\pi\)
0.460029 + 0.887904i \(0.347839\pi\)
\(464\) 702.257 0.0702618
\(465\) 0 0
\(466\) −22813.3 −2.26783
\(467\) −9008.92 −0.892683 −0.446342 0.894863i \(-0.647273\pi\)
−0.446342 + 0.894863i \(0.647273\pi\)
\(468\) 0 0
\(469\) 5041.78 0.496392
\(470\) 0 0
\(471\) 0 0
\(472\) 14422.2 1.40643
\(473\) −6052.39 −0.588349
\(474\) 0 0
\(475\) 0 0
\(476\) −5672.87 −0.546251
\(477\) 0 0
\(478\) 26062.1 2.49384
\(479\) −10128.1 −0.966108 −0.483054 0.875590i \(-0.660473\pi\)
−0.483054 + 0.875590i \(0.660473\pi\)
\(480\) 0 0
\(481\) 6110.15 0.579208
\(482\) −10338.4 −0.976973
\(483\) 0 0
\(484\) 19399.1 1.82185
\(485\) 0 0
\(486\) 0 0
\(487\) −954.443 −0.0888089 −0.0444045 0.999014i \(-0.514139\pi\)
−0.0444045 + 0.999014i \(0.514139\pi\)
\(488\) −7525.85 −0.698113
\(489\) 0 0
\(490\) 0 0
\(491\) −7336.23 −0.674296 −0.337148 0.941452i \(-0.609462\pi\)
−0.337148 + 0.941452i \(0.609462\pi\)
\(492\) 0 0
\(493\) −10296.9 −0.940670
\(494\) 2443.90 0.222583
\(495\) 0 0
\(496\) 946.519 0.0856854
\(497\) 393.936 0.0355542
\(498\) 0 0
\(499\) 16572.9 1.48679 0.743393 0.668855i \(-0.233215\pi\)
0.743393 + 0.668855i \(0.233215\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 15565.3 1.38390
\(503\) −13628.8 −1.20811 −0.604053 0.796944i \(-0.706448\pi\)
−0.604053 + 0.796944i \(0.706448\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −4681.96 −0.411341
\(507\) 0 0
\(508\) 27655.4 2.41537
\(509\) 8370.77 0.728935 0.364467 0.931216i \(-0.381251\pi\)
0.364467 + 0.931216i \(0.381251\pi\)
\(510\) 0 0
\(511\) −8080.50 −0.699531
\(512\) −1517.60 −0.130994
\(513\) 0 0
\(514\) −37352.0 −3.20530
\(515\) 0 0
\(516\) 0 0
\(517\) 11008.6 0.936473
\(518\) 10040.6 0.851660
\(519\) 0 0
\(520\) 0 0
\(521\) 705.491 0.0593246 0.0296623 0.999560i \(-0.490557\pi\)
0.0296623 + 0.999560i \(0.490557\pi\)
\(522\) 0 0
\(523\) −4556.70 −0.380977 −0.190488 0.981689i \(-0.561007\pi\)
−0.190488 + 0.981689i \(0.561007\pi\)
\(524\) −22073.1 −1.84021
\(525\) 0 0
\(526\) −16766.5 −1.38984
\(527\) −13878.4 −1.14716
\(528\) 0 0
\(529\) −11797.7 −0.969650
\(530\) 0 0
\(531\) 0 0
\(532\) 2498.78 0.203639
\(533\) −251.050 −0.0204018
\(534\) 0 0
\(535\) 0 0
\(536\) 17154.6 1.38240
\(537\) 0 0
\(538\) −34555.4 −2.76912
\(539\) 2594.38 0.207324
\(540\) 0 0
\(541\) −21336.7 −1.69563 −0.847817 0.530289i \(-0.822084\pi\)
−0.847817 + 0.530289i \(0.822084\pi\)
\(542\) −38424.9 −3.04518
\(543\) 0 0
\(544\) 10532.3 0.830090
\(545\) 0 0
\(546\) 0 0
\(547\) −957.875 −0.0748734 −0.0374367 0.999299i \(-0.511919\pi\)
−0.0374367 + 0.999299i \(0.511919\pi\)
\(548\) 35295.0 2.75133
\(549\) 0 0
\(550\) 0 0
\(551\) 4535.58 0.350676
\(552\) 0 0
\(553\) 8069.58 0.620531
\(554\) 15460.4 1.18565
\(555\) 0 0
\(556\) 13598.8 1.03726
\(557\) 13357.8 1.01614 0.508069 0.861316i \(-0.330359\pi\)
0.508069 + 0.861316i \(0.330359\pi\)
\(558\) 0 0
\(559\) −2240.78 −0.169543
\(560\) 0 0
\(561\) 0 0
\(562\) −29466.3 −2.21167
\(563\) −14988.5 −1.12201 −0.561003 0.827814i \(-0.689584\pi\)
−0.561003 + 0.827814i \(0.689584\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −26978.0 −2.00348
\(567\) 0 0
\(568\) 1340.36 0.0990148
\(569\) 12901.9 0.950572 0.475286 0.879831i \(-0.342345\pi\)
0.475286 + 0.879831i \(0.342345\pi\)
\(570\) 0 0
\(571\) −19768.4 −1.44883 −0.724414 0.689365i \(-0.757890\pi\)
−0.724414 + 0.689365i \(0.757890\pi\)
\(572\) 13674.8 0.999604
\(573\) 0 0
\(574\) −412.543 −0.0299986
\(575\) 0 0
\(576\) 0 0
\(577\) −5598.68 −0.403945 −0.201972 0.979391i \(-0.564735\pi\)
−0.201972 + 0.979391i \(0.564735\pi\)
\(578\) −5199.10 −0.374142
\(579\) 0 0
\(580\) 0 0
\(581\) −4848.07 −0.346182
\(582\) 0 0
\(583\) −12040.2 −0.855321
\(584\) −27493.8 −1.94812
\(585\) 0 0
\(586\) −17790.4 −1.25412
\(587\) −2915.30 −0.204987 −0.102494 0.994734i \(-0.532682\pi\)
−0.102494 + 0.994734i \(0.532682\pi\)
\(588\) 0 0
\(589\) 6113.17 0.427655
\(590\) 0 0
\(591\) 0 0
\(592\) 1307.56 0.0907774
\(593\) 6126.89 0.424285 0.212143 0.977239i \(-0.431956\pi\)
0.212143 + 0.977239i \(0.431956\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −15643.9 −1.07517
\(597\) 0 0
\(598\) −1733.40 −0.118535
\(599\) 13503.6 0.921104 0.460552 0.887633i \(-0.347652\pi\)
0.460552 + 0.887633i \(0.347652\pi\)
\(600\) 0 0
\(601\) −28199.1 −1.91392 −0.956960 0.290220i \(-0.906272\pi\)
−0.956960 + 0.290220i \(0.906272\pi\)
\(602\) −3682.20 −0.249294
\(603\) 0 0
\(604\) −1824.64 −0.122920
\(605\) 0 0
\(606\) 0 0
\(607\) −13557.2 −0.906543 −0.453272 0.891372i \(-0.649743\pi\)
−0.453272 + 0.891372i \(0.649743\pi\)
\(608\) −4639.27 −0.309452
\(609\) 0 0
\(610\) 0 0
\(611\) 4075.70 0.269861
\(612\) 0 0
\(613\) −10357.7 −0.682452 −0.341226 0.939981i \(-0.610842\pi\)
−0.341226 + 0.939981i \(0.610842\pi\)
\(614\) 32602.3 2.14287
\(615\) 0 0
\(616\) 8827.35 0.577377
\(617\) 9433.74 0.615540 0.307770 0.951461i \(-0.400417\pi\)
0.307770 + 0.951461i \(0.400417\pi\)
\(618\) 0 0
\(619\) −5686.15 −0.369217 −0.184609 0.982812i \(-0.559102\pi\)
−0.184609 + 0.982812i \(0.559102\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 48854.4 3.14933
\(623\) −9923.89 −0.638190
\(624\) 0 0
\(625\) 0 0
\(626\) −33352.2 −2.12943
\(627\) 0 0
\(628\) 5818.10 0.369693
\(629\) −19172.2 −1.21533
\(630\) 0 0
\(631\) 24059.8 1.51792 0.758959 0.651138i \(-0.225708\pi\)
0.758959 + 0.651138i \(0.225708\pi\)
\(632\) 27456.7 1.72811
\(633\) 0 0
\(634\) −29028.7 −1.81842
\(635\) 0 0
\(636\) 0 0
\(637\) 960.517 0.0597442
\(638\) 40788.3 2.53107
\(639\) 0 0
\(640\) 0 0
\(641\) −18543.7 −1.14264 −0.571319 0.820728i \(-0.693568\pi\)
−0.571319 + 0.820728i \(0.693568\pi\)
\(642\) 0 0
\(643\) 6491.72 0.398147 0.199073 0.979985i \(-0.436207\pi\)
0.199073 + 0.979985i \(0.436207\pi\)
\(644\) −1772.33 −0.108447
\(645\) 0 0
\(646\) −7668.36 −0.467040
\(647\) 12238.1 0.743630 0.371815 0.928307i \(-0.378736\pi\)
0.371815 + 0.928307i \(0.378736\pi\)
\(648\) 0 0
\(649\) 32060.7 1.93913
\(650\) 0 0
\(651\) 0 0
\(652\) 27888.1 1.67513
\(653\) 2507.00 0.150239 0.0751197 0.997175i \(-0.476066\pi\)
0.0751197 + 0.997175i \(0.476066\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −53.7240 −0.00319752
\(657\) 0 0
\(658\) 6697.48 0.396801
\(659\) 16501.0 0.975398 0.487699 0.873012i \(-0.337836\pi\)
0.487699 + 0.873012i \(0.337836\pi\)
\(660\) 0 0
\(661\) 19086.4 1.12311 0.561554 0.827440i \(-0.310204\pi\)
0.561554 + 0.827440i \(0.310204\pi\)
\(662\) 30630.2 1.79830
\(663\) 0 0
\(664\) −16495.5 −0.964081
\(665\) 0 0
\(666\) 0 0
\(667\) −3216.99 −0.186750
\(668\) −11114.6 −0.643770
\(669\) 0 0
\(670\) 0 0
\(671\) −16730.1 −0.962529
\(672\) 0 0
\(673\) −28326.1 −1.62242 −0.811211 0.584754i \(-0.801191\pi\)
−0.811211 + 0.584754i \(0.801191\pi\)
\(674\) −54952.8 −3.14051
\(675\) 0 0
\(676\) −23884.3 −1.35892
\(677\) −9012.99 −0.511665 −0.255833 0.966721i \(-0.582350\pi\)
−0.255833 + 0.966721i \(0.582350\pi\)
\(678\) 0 0
\(679\) 4628.60 0.261604
\(680\) 0 0
\(681\) 0 0
\(682\) 54975.5 3.08669
\(683\) 3111.96 0.174343 0.0871713 0.996193i \(-0.472217\pi\)
0.0871713 + 0.996193i \(0.472217\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1578.39 0.0878471
\(687\) 0 0
\(688\) −479.520 −0.0265720
\(689\) −4457.63 −0.246476
\(690\) 0 0
\(691\) 21905.5 1.20597 0.602984 0.797753i \(-0.293978\pi\)
0.602984 + 0.797753i \(0.293978\pi\)
\(692\) 56906.3 3.12609
\(693\) 0 0
\(694\) 29408.0 1.60852
\(695\) 0 0
\(696\) 0 0
\(697\) 787.735 0.0428086
\(698\) −35711.8 −1.93655
\(699\) 0 0
\(700\) 0 0
\(701\) 13337.0 0.718592 0.359296 0.933224i \(-0.383017\pi\)
0.359296 + 0.933224i \(0.383017\pi\)
\(702\) 0 0
\(703\) 8444.95 0.453069
\(704\) −43497.5 −2.32866
\(705\) 0 0
\(706\) −24925.0 −1.32870
\(707\) −1310.62 −0.0697185
\(708\) 0 0
\(709\) 31571.2 1.67233 0.836164 0.548480i \(-0.184793\pi\)
0.836164 + 0.548480i \(0.184793\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −33766.0 −1.77729
\(713\) −4335.94 −0.227745
\(714\) 0 0
\(715\) 0 0
\(716\) 5556.80 0.290038
\(717\) 0 0
\(718\) 11795.4 0.613091
\(719\) 1983.80 0.102897 0.0514486 0.998676i \(-0.483616\pi\)
0.0514486 + 0.998676i \(0.483616\pi\)
\(720\) 0 0
\(721\) 7533.99 0.389155
\(722\) −28185.4 −1.45284
\(723\) 0 0
\(724\) 10424.7 0.535127
\(725\) 0 0
\(726\) 0 0
\(727\) 28855.0 1.47204 0.736020 0.676960i \(-0.236703\pi\)
0.736020 + 0.676960i \(0.236703\pi\)
\(728\) 3268.15 0.166381
\(729\) 0 0
\(730\) 0 0
\(731\) 7031.02 0.355748
\(732\) 0 0
\(733\) 2709.63 0.136538 0.0682691 0.997667i \(-0.478252\pi\)
0.0682691 + 0.997667i \(0.478252\pi\)
\(734\) −46563.8 −2.34156
\(735\) 0 0
\(736\) 3290.53 0.164797
\(737\) 38134.9 1.90599
\(738\) 0 0
\(739\) −24900.6 −1.23949 −0.619746 0.784802i \(-0.712764\pi\)
−0.619746 + 0.784802i \(0.712764\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −7325.08 −0.362415
\(743\) 14522.6 0.717070 0.358535 0.933516i \(-0.383276\pi\)
0.358535 + 0.933516i \(0.383276\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 8608.16 0.422476
\(747\) 0 0
\(748\) −42908.4 −2.09744
\(749\) −11141.6 −0.543531
\(750\) 0 0
\(751\) −14360.6 −0.697768 −0.348884 0.937166i \(-0.613439\pi\)
−0.348884 + 0.937166i \(0.613439\pi\)
\(752\) 872.190 0.0422945
\(753\) 0 0
\(754\) 15101.1 0.729374
\(755\) 0 0
\(756\) 0 0
\(757\) −6200.35 −0.297695 −0.148848 0.988860i \(-0.547556\pi\)
−0.148848 + 0.988860i \(0.547556\pi\)
\(758\) 17508.9 0.838988
\(759\) 0 0
\(760\) 0 0
\(761\) 22218.6 1.05838 0.529188 0.848505i \(-0.322497\pi\)
0.529188 + 0.848505i \(0.322497\pi\)
\(762\) 0 0
\(763\) 11944.0 0.566714
\(764\) −23587.6 −1.11698
\(765\) 0 0
\(766\) −53882.9 −2.54160
\(767\) 11869.8 0.558795
\(768\) 0 0
\(769\) 9799.16 0.459515 0.229757 0.973248i \(-0.426207\pi\)
0.229757 + 0.973248i \(0.426207\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −30318.8 −1.41347
\(773\) 23174.1 1.07828 0.539141 0.842215i \(-0.318749\pi\)
0.539141 + 0.842215i \(0.318749\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 15748.8 0.728541
\(777\) 0 0
\(778\) 5882.08 0.271058
\(779\) −346.981 −0.0159588
\(780\) 0 0
\(781\) 2979.65 0.136517
\(782\) 5439.00 0.248719
\(783\) 0 0
\(784\) 205.548 0.00936352
\(785\) 0 0
\(786\) 0 0
\(787\) 13218.3 0.598707 0.299353 0.954142i \(-0.403229\pi\)
0.299353 + 0.954142i \(0.403229\pi\)
\(788\) −45991.2 −2.07915
\(789\) 0 0
\(790\) 0 0
\(791\) 3920.00 0.176206
\(792\) 0 0
\(793\) −6193.97 −0.277370
\(794\) 9672.41 0.432319
\(795\) 0 0
\(796\) 10835.2 0.482466
\(797\) −1421.60 −0.0631815 −0.0315908 0.999501i \(-0.510057\pi\)
−0.0315908 + 0.999501i \(0.510057\pi\)
\(798\) 0 0
\(799\) −12788.6 −0.566242
\(800\) 0 0
\(801\) 0 0
\(802\) 51721.2 2.27723
\(803\) −61119.2 −2.68599
\(804\) 0 0
\(805\) 0 0
\(806\) 20353.6 0.889484
\(807\) 0 0
\(808\) −4459.37 −0.194159
\(809\) −11669.3 −0.507131 −0.253566 0.967318i \(-0.581603\pi\)
−0.253566 + 0.967318i \(0.581603\pi\)
\(810\) 0 0
\(811\) 2165.42 0.0937587 0.0468793 0.998901i \(-0.485072\pi\)
0.0468793 + 0.998901i \(0.485072\pi\)
\(812\) 15440.2 0.667297
\(813\) 0 0
\(814\) 75945.1 3.27012
\(815\) 0 0
\(816\) 0 0
\(817\) −3097.02 −0.132621
\(818\) 31069.2 1.32801
\(819\) 0 0
\(820\) 0 0
\(821\) 37709.7 1.60302 0.801509 0.597982i \(-0.204031\pi\)
0.801509 + 0.597982i \(0.204031\pi\)
\(822\) 0 0
\(823\) 20883.1 0.884497 0.442248 0.896893i \(-0.354181\pi\)
0.442248 + 0.896893i \(0.354181\pi\)
\(824\) 25634.3 1.08376
\(825\) 0 0
\(826\) 19505.4 0.821645
\(827\) 13018.1 0.547379 0.273690 0.961818i \(-0.411756\pi\)
0.273690 + 0.961818i \(0.411756\pi\)
\(828\) 0 0
\(829\) 1309.94 0.0548807 0.0274404 0.999623i \(-0.491264\pi\)
0.0274404 + 0.999623i \(0.491264\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −16104.1 −0.671045
\(833\) −3013.87 −0.125359
\(834\) 0 0
\(835\) 0 0
\(836\) 18900.2 0.781912
\(837\) 0 0
\(838\) 38884.2 1.60290
\(839\) −35223.2 −1.44939 −0.724696 0.689069i \(-0.758020\pi\)
−0.724696 + 0.689069i \(0.758020\pi\)
\(840\) 0 0
\(841\) 3636.81 0.149117
\(842\) 10434.8 0.427085
\(843\) 0 0
\(844\) −30617.7 −1.24870
\(845\) 0 0
\(846\) 0 0
\(847\) 10306.3 0.418098
\(848\) −953.920 −0.0386294
\(849\) 0 0
\(850\) 0 0
\(851\) −5989.82 −0.241279
\(852\) 0 0
\(853\) −14907.6 −0.598390 −0.299195 0.954192i \(-0.596718\pi\)
−0.299195 + 0.954192i \(0.596718\pi\)
\(854\) −10178.4 −0.407841
\(855\) 0 0
\(856\) −37909.1 −1.51368
\(857\) 30377.1 1.21081 0.605404 0.795919i \(-0.293012\pi\)
0.605404 + 0.795919i \(0.293012\pi\)
\(858\) 0 0
\(859\) 24031.5 0.954535 0.477267 0.878758i \(-0.341627\pi\)
0.477267 + 0.878758i \(0.341627\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 14600.4 0.576903
\(863\) 33363.7 1.31601 0.658004 0.753015i \(-0.271401\pi\)
0.658004 + 0.753015i \(0.271401\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −62442.5 −2.45021
\(867\) 0 0
\(868\) 20810.7 0.813780
\(869\) 61036.6 2.38265
\(870\) 0 0
\(871\) 14118.7 0.549246
\(872\) 40639.5 1.57824
\(873\) 0 0
\(874\) −2395.77 −0.0927208
\(875\) 0 0
\(876\) 0 0
\(877\) 4392.19 0.169115 0.0845574 0.996419i \(-0.473052\pi\)
0.0845574 + 0.996419i \(0.473052\pi\)
\(878\) −55320.3 −2.12639
\(879\) 0 0
\(880\) 0 0
\(881\) 8132.72 0.311008 0.155504 0.987835i \(-0.450300\pi\)
0.155504 + 0.987835i \(0.450300\pi\)
\(882\) 0 0
\(883\) −16582.9 −0.632003 −0.316002 0.948759i \(-0.602341\pi\)
−0.316002 + 0.948759i \(0.602341\pi\)
\(884\) −15886.0 −0.604415
\(885\) 0 0
\(886\) −9536.40 −0.361605
\(887\) 9140.65 0.346012 0.173006 0.984921i \(-0.444652\pi\)
0.173006 + 0.984921i \(0.444652\pi\)
\(888\) 0 0
\(889\) 14692.7 0.554305
\(890\) 0 0
\(891\) 0 0
\(892\) −33283.7 −1.24935
\(893\) 5633.11 0.211092
\(894\) 0 0
\(895\) 0 0
\(896\) −16874.2 −0.629159
\(897\) 0 0
\(898\) −712.009 −0.0264589
\(899\) 37773.9 1.40137
\(900\) 0 0
\(901\) 13987.0 0.517173
\(902\) −3120.38 −0.115186
\(903\) 0 0
\(904\) 13337.8 0.490717
\(905\) 0 0
\(906\) 0 0
\(907\) 25359.3 0.928382 0.464191 0.885735i \(-0.346345\pi\)
0.464191 + 0.885735i \(0.346345\pi\)
\(908\) −51702.5 −1.88966
\(909\) 0 0
\(910\) 0 0
\(911\) −33308.6 −1.21138 −0.605688 0.795702i \(-0.707102\pi\)
−0.605688 + 0.795702i \(0.707102\pi\)
\(912\) 0 0
\(913\) −36669.7 −1.32923
\(914\) 20004.9 0.723963
\(915\) 0 0
\(916\) 47321.4 1.70692
\(917\) −11727.0 −0.422311
\(918\) 0 0
\(919\) −5827.47 −0.209174 −0.104587 0.994516i \(-0.533352\pi\)
−0.104587 + 0.994516i \(0.533352\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 25358.9 0.905805
\(923\) 1103.15 0.0393400
\(924\) 0 0
\(925\) 0 0
\(926\) 42180.0 1.49689
\(927\) 0 0
\(928\) −28666.5 −1.01403
\(929\) −19224.3 −0.678934 −0.339467 0.940618i \(-0.610247\pi\)
−0.339467 + 0.940618i \(0.610247\pi\)
\(930\) 0 0
\(931\) 1327.55 0.0467332
\(932\) −65319.8 −2.29573
\(933\) 0 0
\(934\) −41456.5 −1.45235
\(935\) 0 0
\(936\) 0 0
\(937\) −37202.8 −1.29708 −0.648539 0.761181i \(-0.724620\pi\)
−0.648539 + 0.761181i \(0.724620\pi\)
\(938\) 23200.8 0.807605
\(939\) 0 0
\(940\) 0 0
\(941\) −43155.8 −1.49505 −0.747523 0.664236i \(-0.768757\pi\)
−0.747523 + 0.664236i \(0.768757\pi\)
\(942\) 0 0
\(943\) 246.106 0.00849874
\(944\) 2540.12 0.0875781
\(945\) 0 0
\(946\) −27851.4 −0.957215
\(947\) 1442.59 0.0495014 0.0247507 0.999694i \(-0.492121\pi\)
0.0247507 + 0.999694i \(0.492121\pi\)
\(948\) 0 0
\(949\) −22628.2 −0.774016
\(950\) 0 0
\(951\) 0 0
\(952\) −10254.7 −0.349113
\(953\) −2964.70 −0.100773 −0.0503863 0.998730i \(-0.516045\pi\)
−0.0503863 + 0.998730i \(0.516045\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 74621.9 2.52452
\(957\) 0 0
\(958\) −46606.7 −1.57181
\(959\) 18751.5 0.631404
\(960\) 0 0
\(961\) 21121.5 0.708990
\(962\) 28117.2 0.942343
\(963\) 0 0
\(964\) −29601.2 −0.988994
\(965\) 0 0
\(966\) 0 0
\(967\) −59088.1 −1.96499 −0.982494 0.186292i \(-0.940353\pi\)
−0.982494 + 0.186292i \(0.940353\pi\)
\(968\) 35067.1 1.16436
\(969\) 0 0
\(970\) 0 0
\(971\) 6678.75 0.220732 0.110366 0.993891i \(-0.464798\pi\)
0.110366 + 0.993891i \(0.464798\pi\)
\(972\) 0 0
\(973\) 7224.76 0.238042
\(974\) −4392.07 −0.144488
\(975\) 0 0
\(976\) −1325.49 −0.0434713
\(977\) −46454.6 −1.52120 −0.760600 0.649220i \(-0.775095\pi\)
−0.760600 + 0.649220i \(0.775095\pi\)
\(978\) 0 0
\(979\) −75062.2 −2.45046
\(980\) 0 0
\(981\) 0 0
\(982\) −33759.2 −1.09705
\(983\) 3154.80 0.102363 0.0511814 0.998689i \(-0.483701\pi\)
0.0511814 + 0.998689i \(0.483701\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −47383.5 −1.53042
\(987\) 0 0
\(988\) 6997.44 0.225322
\(989\) 2196.65 0.0706262
\(990\) 0 0
\(991\) 36207.7 1.16062 0.580311 0.814395i \(-0.302931\pi\)
0.580311 + 0.814395i \(0.302931\pi\)
\(992\) −38637.3 −1.23663
\(993\) 0 0
\(994\) 1812.78 0.0578450
\(995\) 0 0
\(996\) 0 0
\(997\) 18452.9 0.586166 0.293083 0.956087i \(-0.405319\pi\)
0.293083 + 0.956087i \(0.405319\pi\)
\(998\) 76263.9 2.41893
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.4.a.bk.1.4 4
3.2 odd 2 525.4.a.u.1.1 yes 4
5.4 even 2 1575.4.a.bj.1.1 4
15.2 even 4 525.4.d.n.274.2 8
15.8 even 4 525.4.d.n.274.7 8
15.14 odd 2 525.4.a.t.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
525.4.a.t.1.4 4 15.14 odd 2
525.4.a.u.1.1 yes 4 3.2 odd 2
525.4.d.n.274.2 8 15.2 even 4
525.4.d.n.274.7 8 15.8 even 4
1575.4.a.bj.1.1 4 5.4 even 2
1575.4.a.bk.1.4 4 1.1 even 1 trivial