Properties

Label 1575.4.a.bk.1.1
Level $1575$
Weight $4$
Character 1575.1
Self dual yes
Analytic conductor $92.928$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1575,4,Mod(1,1575)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1575.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1575, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1575.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,16,0,0,28,-9,0,0,-21] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.9280082590\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 24x^{2} - 3x + 46 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 525)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(4.75345\) of defining polynomial
Character \(\chi\) \(=\) 1575.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.75345 q^{2} +14.5953 q^{4} +7.00000 q^{7} -31.3504 q^{8} -7.31799 q^{11} -4.15422 q^{13} -33.2742 q^{14} +32.2604 q^{16} -53.5216 q^{17} +88.9019 q^{19} +34.7857 q^{22} -156.780 q^{23} +19.7469 q^{26} +102.167 q^{28} -42.2570 q^{29} -14.0248 q^{31} +97.4554 q^{32} +254.412 q^{34} -293.336 q^{37} -422.591 q^{38} +127.214 q^{41} -210.189 q^{43} -106.808 q^{44} +745.244 q^{46} +468.688 q^{47} +49.0000 q^{49} -60.6321 q^{52} -115.973 q^{53} -219.453 q^{56} +200.867 q^{58} +314.090 q^{59} +768.386 q^{61} +66.6662 q^{62} -721.332 q^{64} -717.081 q^{67} -781.164 q^{68} +737.783 q^{71} +477.618 q^{73} +1394.36 q^{74} +1297.55 q^{76} -51.2259 q^{77} -279.262 q^{79} -604.703 q^{82} -776.981 q^{83} +999.123 q^{86} +229.422 q^{88} +29.7626 q^{89} -29.0796 q^{91} -2288.24 q^{92} -2227.88 q^{94} -231.793 q^{97} -232.919 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{4} + 28 q^{7} - 9 q^{8} - 21 q^{11} + 5 q^{13} + 72 q^{16} - 99 q^{17} + 72 q^{19} + 221 q^{22} - 102 q^{23} - 129 q^{26} + 112 q^{28} + 240 q^{29} + 351 q^{31} - 72 q^{32} - 285 q^{34} + 399 q^{37}+ \cdots - 372 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.75345 −1.68060 −0.840299 0.542123i \(-0.817621\pi\)
−0.840299 + 0.542123i \(0.817621\pi\)
\(3\) 0 0
\(4\) 14.5953 1.82441
\(5\) 0 0
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) −31.3504 −1.38551
\(9\) 0 0
\(10\) 0 0
\(11\) −7.31799 −0.200587 −0.100293 0.994958i \(-0.531978\pi\)
−0.100293 + 0.994958i \(0.531978\pi\)
\(12\) 0 0
\(13\) −4.15422 −0.0886288 −0.0443144 0.999018i \(-0.514110\pi\)
−0.0443144 + 0.999018i \(0.514110\pi\)
\(14\) −33.2742 −0.635207
\(15\) 0 0
\(16\) 32.2604 0.504068
\(17\) −53.5216 −0.763582 −0.381791 0.924249i \(-0.624693\pi\)
−0.381791 + 0.924249i \(0.624693\pi\)
\(18\) 0 0
\(19\) 88.9019 1.07345 0.536724 0.843758i \(-0.319662\pi\)
0.536724 + 0.843758i \(0.319662\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 34.7857 0.337106
\(23\) −156.780 −1.42134 −0.710670 0.703526i \(-0.751608\pi\)
−0.710670 + 0.703526i \(0.751608\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 19.7469 0.148949
\(27\) 0 0
\(28\) 102.167 0.689563
\(29\) −42.2570 −0.270584 −0.135292 0.990806i \(-0.543197\pi\)
−0.135292 + 0.990806i \(0.543197\pi\)
\(30\) 0 0
\(31\) −14.0248 −0.0812557 −0.0406279 0.999174i \(-0.512936\pi\)
−0.0406279 + 0.999174i \(0.512936\pi\)
\(32\) 97.4554 0.538370
\(33\) 0 0
\(34\) 254.412 1.28328
\(35\) 0 0
\(36\) 0 0
\(37\) −293.336 −1.30335 −0.651677 0.758496i \(-0.725934\pi\)
−0.651677 + 0.758496i \(0.725934\pi\)
\(38\) −422.591 −1.80403
\(39\) 0 0
\(40\) 0 0
\(41\) 127.214 0.484571 0.242286 0.970205i \(-0.422103\pi\)
0.242286 + 0.970205i \(0.422103\pi\)
\(42\) 0 0
\(43\) −210.189 −0.745431 −0.372715 0.927946i \(-0.621573\pi\)
−0.372715 + 0.927946i \(0.621573\pi\)
\(44\) −106.808 −0.365953
\(45\) 0 0
\(46\) 745.244 2.38870
\(47\) 468.688 1.45458 0.727289 0.686332i \(-0.240780\pi\)
0.727289 + 0.686332i \(0.240780\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) −60.6321 −0.161696
\(53\) −115.973 −0.300569 −0.150285 0.988643i \(-0.548019\pi\)
−0.150285 + 0.988643i \(0.548019\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −219.453 −0.523672
\(57\) 0 0
\(58\) 200.867 0.454743
\(59\) 314.090 0.693069 0.346534 0.938037i \(-0.387358\pi\)
0.346534 + 0.938037i \(0.387358\pi\)
\(60\) 0 0
\(61\) 768.386 1.61281 0.806407 0.591361i \(-0.201409\pi\)
0.806407 + 0.591361i \(0.201409\pi\)
\(62\) 66.6662 0.136558
\(63\) 0 0
\(64\) −721.332 −1.40885
\(65\) 0 0
\(66\) 0 0
\(67\) −717.081 −1.30754 −0.653772 0.756692i \(-0.726814\pi\)
−0.653772 + 0.756692i \(0.726814\pi\)
\(68\) −781.164 −1.39309
\(69\) 0 0
\(70\) 0 0
\(71\) 737.783 1.23322 0.616611 0.787268i \(-0.288505\pi\)
0.616611 + 0.787268i \(0.288505\pi\)
\(72\) 0 0
\(73\) 477.618 0.765767 0.382884 0.923797i \(-0.374931\pi\)
0.382884 + 0.923797i \(0.374931\pi\)
\(74\) 1394.36 2.19042
\(75\) 0 0
\(76\) 1297.55 1.95841
\(77\) −51.2259 −0.0758147
\(78\) 0 0
\(79\) −279.262 −0.397714 −0.198857 0.980029i \(-0.563723\pi\)
−0.198857 + 0.980029i \(0.563723\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −604.703 −0.814370
\(83\) −776.981 −1.02753 −0.513764 0.857932i \(-0.671749\pi\)
−0.513764 + 0.857932i \(0.671749\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 999.123 1.25277
\(87\) 0 0
\(88\) 229.422 0.277914
\(89\) 29.7626 0.0354476 0.0177238 0.999843i \(-0.494358\pi\)
0.0177238 + 0.999843i \(0.494358\pi\)
\(90\) 0 0
\(91\) −29.0796 −0.0334985
\(92\) −2288.24 −2.59311
\(93\) 0 0
\(94\) −2227.88 −2.44456
\(95\) 0 0
\(96\) 0 0
\(97\) −231.793 −0.242629 −0.121314 0.992614i \(-0.538711\pi\)
−0.121314 + 0.992614i \(0.538711\pi\)
\(98\) −232.919 −0.240086
\(99\) 0 0
\(100\) 0 0
\(101\) 1898.26 1.87014 0.935069 0.354467i \(-0.115338\pi\)
0.935069 + 0.354467i \(0.115338\pi\)
\(102\) 0 0
\(103\) 1375.67 1.31601 0.658003 0.753015i \(-0.271401\pi\)
0.658003 + 0.753015i \(0.271401\pi\)
\(104\) 130.237 0.122796
\(105\) 0 0
\(106\) 551.274 0.505136
\(107\) −166.359 −0.150304 −0.0751521 0.997172i \(-0.523944\pi\)
−0.0751521 + 0.997172i \(0.523944\pi\)
\(108\) 0 0
\(109\) −1346.00 −1.18279 −0.591393 0.806383i \(-0.701422\pi\)
−0.591393 + 0.806383i \(0.701422\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 225.822 0.190520
\(113\) 1322.25 1.10077 0.550386 0.834911i \(-0.314481\pi\)
0.550386 + 0.834911i \(0.314481\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −616.754 −0.493657
\(117\) 0 0
\(118\) −1493.01 −1.16477
\(119\) −374.651 −0.288607
\(120\) 0 0
\(121\) −1277.45 −0.959765
\(122\) −3652.48 −2.71049
\(123\) 0 0
\(124\) −204.696 −0.148244
\(125\) 0 0
\(126\) 0 0
\(127\) 2111.85 1.47556 0.737781 0.675040i \(-0.235874\pi\)
0.737781 + 0.675040i \(0.235874\pi\)
\(128\) 2649.18 1.82935
\(129\) 0 0
\(130\) 0 0
\(131\) 209.773 0.139908 0.0699541 0.997550i \(-0.477715\pi\)
0.0699541 + 0.997550i \(0.477715\pi\)
\(132\) 0 0
\(133\) 622.313 0.405725
\(134\) 3408.61 2.19746
\(135\) 0 0
\(136\) 1677.93 1.05795
\(137\) −2386.27 −1.48812 −0.744062 0.668111i \(-0.767103\pi\)
−0.744062 + 0.668111i \(0.767103\pi\)
\(138\) 0 0
\(139\) 1215.45 0.741675 0.370838 0.928698i \(-0.379071\pi\)
0.370838 + 0.928698i \(0.379071\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −3507.01 −2.07255
\(143\) 30.4006 0.0177778
\(144\) 0 0
\(145\) 0 0
\(146\) −2270.34 −1.28695
\(147\) 0 0
\(148\) −4281.33 −2.37786
\(149\) −2849.51 −1.56672 −0.783359 0.621570i \(-0.786495\pi\)
−0.783359 + 0.621570i \(0.786495\pi\)
\(150\) 0 0
\(151\) −2643.84 −1.42485 −0.712426 0.701747i \(-0.752403\pi\)
−0.712426 + 0.701747i \(0.752403\pi\)
\(152\) −2787.11 −1.48727
\(153\) 0 0
\(154\) 243.500 0.127414
\(155\) 0 0
\(156\) 0 0
\(157\) −2563.09 −1.30291 −0.651454 0.758688i \(-0.725841\pi\)
−0.651454 + 0.758688i \(0.725841\pi\)
\(158\) 1327.46 0.668398
\(159\) 0 0
\(160\) 0 0
\(161\) −1097.46 −0.537216
\(162\) 0 0
\(163\) −1403.46 −0.674400 −0.337200 0.941433i \(-0.609480\pi\)
−0.337200 + 0.941433i \(0.609480\pi\)
\(164\) 1856.72 0.884057
\(165\) 0 0
\(166\) 3693.34 1.72686
\(167\) 2658.97 1.23208 0.616040 0.787715i \(-0.288736\pi\)
0.616040 + 0.787715i \(0.288736\pi\)
\(168\) 0 0
\(169\) −2179.74 −0.992145
\(170\) 0 0
\(171\) 0 0
\(172\) −3067.77 −1.35997
\(173\) −3763.19 −1.65382 −0.826909 0.562336i \(-0.809903\pi\)
−0.826909 + 0.562336i \(0.809903\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −236.081 −0.101109
\(177\) 0 0
\(178\) −141.475 −0.0595731
\(179\) 1056.94 0.441336 0.220668 0.975349i \(-0.429176\pi\)
0.220668 + 0.975349i \(0.429176\pi\)
\(180\) 0 0
\(181\) 537.439 0.220705 0.110352 0.993893i \(-0.464802\pi\)
0.110352 + 0.993893i \(0.464802\pi\)
\(182\) 138.228 0.0562976
\(183\) 0 0
\(184\) 4915.11 1.96927
\(185\) 0 0
\(186\) 0 0
\(187\) 391.670 0.153165
\(188\) 6840.64 2.65375
\(189\) 0 0
\(190\) 0 0
\(191\) 3236.34 1.22604 0.613020 0.790068i \(-0.289955\pi\)
0.613020 + 0.790068i \(0.289955\pi\)
\(192\) 0 0
\(193\) 4620.71 1.72335 0.861673 0.507464i \(-0.169417\pi\)
0.861673 + 0.507464i \(0.169417\pi\)
\(194\) 1101.82 0.407762
\(195\) 0 0
\(196\) 715.170 0.260630
\(197\) 2519.57 0.911230 0.455615 0.890177i \(-0.349419\pi\)
0.455615 + 0.890177i \(0.349419\pi\)
\(198\) 0 0
\(199\) −2121.77 −0.755819 −0.377910 0.925842i \(-0.623357\pi\)
−0.377910 + 0.925842i \(0.623357\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −9023.28 −3.14295
\(203\) −295.799 −0.102271
\(204\) 0 0
\(205\) 0 0
\(206\) −6539.17 −2.21168
\(207\) 0 0
\(208\) −134.017 −0.0446750
\(209\) −650.583 −0.215319
\(210\) 0 0
\(211\) −1557.91 −0.508297 −0.254149 0.967165i \(-0.581795\pi\)
−0.254149 + 0.967165i \(0.581795\pi\)
\(212\) −1692.67 −0.548362
\(213\) 0 0
\(214\) 790.780 0.252601
\(215\) 0 0
\(216\) 0 0
\(217\) −98.1736 −0.0307118
\(218\) 6398.16 1.98779
\(219\) 0 0
\(220\) 0 0
\(221\) 222.341 0.0676754
\(222\) 0 0
\(223\) 1319.83 0.396333 0.198167 0.980168i \(-0.436501\pi\)
0.198167 + 0.980168i \(0.436501\pi\)
\(224\) 682.188 0.203485
\(225\) 0 0
\(226\) −6285.27 −1.84995
\(227\) −6442.42 −1.88369 −0.941847 0.336043i \(-0.890911\pi\)
−0.941847 + 0.336043i \(0.890911\pi\)
\(228\) 0 0
\(229\) 4654.11 1.34302 0.671511 0.740995i \(-0.265646\pi\)
0.671511 + 0.740995i \(0.265646\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1324.78 0.374896
\(233\) 2628.61 0.739080 0.369540 0.929215i \(-0.379515\pi\)
0.369540 + 0.929215i \(0.379515\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 4584.24 1.26444
\(237\) 0 0
\(238\) 1780.89 0.485033
\(239\) −586.369 −0.158699 −0.0793495 0.996847i \(-0.525284\pi\)
−0.0793495 + 0.996847i \(0.525284\pi\)
\(240\) 0 0
\(241\) 3141.71 0.839731 0.419865 0.907586i \(-0.362077\pi\)
0.419865 + 0.907586i \(0.362077\pi\)
\(242\) 6072.28 1.61298
\(243\) 0 0
\(244\) 11214.8 2.94244
\(245\) 0 0
\(246\) 0 0
\(247\) −369.318 −0.0951383
\(248\) 439.683 0.112580
\(249\) 0 0
\(250\) 0 0
\(251\) 2929.38 0.736656 0.368328 0.929696i \(-0.379930\pi\)
0.368328 + 0.929696i \(0.379930\pi\)
\(252\) 0 0
\(253\) 1147.31 0.285102
\(254\) −10038.6 −2.47983
\(255\) 0 0
\(256\) −6822.07 −1.66554
\(257\) 388.552 0.0943081 0.0471541 0.998888i \(-0.484985\pi\)
0.0471541 + 0.998888i \(0.484985\pi\)
\(258\) 0 0
\(259\) −2053.35 −0.492622
\(260\) 0 0
\(261\) 0 0
\(262\) −997.147 −0.235130
\(263\) −766.349 −0.179677 −0.0898387 0.995956i \(-0.528635\pi\)
−0.0898387 + 0.995956i \(0.528635\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −2958.14 −0.681861
\(267\) 0 0
\(268\) −10466.0 −2.38550
\(269\) −2842.03 −0.644170 −0.322085 0.946711i \(-0.604384\pi\)
−0.322085 + 0.946711i \(0.604384\pi\)
\(270\) 0 0
\(271\) 3512.72 0.787390 0.393695 0.919241i \(-0.371197\pi\)
0.393695 + 0.919241i \(0.371197\pi\)
\(272\) −1726.63 −0.384897
\(273\) 0 0
\(274\) 11343.0 2.50094
\(275\) 0 0
\(276\) 0 0
\(277\) 6388.71 1.38578 0.692889 0.721044i \(-0.256337\pi\)
0.692889 + 0.721044i \(0.256337\pi\)
\(278\) −5777.57 −1.24646
\(279\) 0 0
\(280\) 0 0
\(281\) 2126.77 0.451503 0.225752 0.974185i \(-0.427516\pi\)
0.225752 + 0.974185i \(0.427516\pi\)
\(282\) 0 0
\(283\) 8332.13 1.75015 0.875077 0.483983i \(-0.160810\pi\)
0.875077 + 0.483983i \(0.160810\pi\)
\(284\) 10768.2 2.24990
\(285\) 0 0
\(286\) −144.508 −0.0298773
\(287\) 890.495 0.183151
\(288\) 0 0
\(289\) −2048.44 −0.416942
\(290\) 0 0
\(291\) 0 0
\(292\) 6970.98 1.39707
\(293\) 8654.11 1.72552 0.862762 0.505610i \(-0.168733\pi\)
0.862762 + 0.505610i \(0.168733\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 9196.21 1.80581
\(297\) 0 0
\(298\) 13545.0 2.63302
\(299\) 651.297 0.125972
\(300\) 0 0
\(301\) −1471.32 −0.281746
\(302\) 12567.4 2.39460
\(303\) 0 0
\(304\) 2868.01 0.541090
\(305\) 0 0
\(306\) 0 0
\(307\) 5318.56 0.988749 0.494375 0.869249i \(-0.335397\pi\)
0.494375 + 0.869249i \(0.335397\pi\)
\(308\) −747.657 −0.138317
\(309\) 0 0
\(310\) 0 0
\(311\) 7097.87 1.29416 0.647079 0.762423i \(-0.275990\pi\)
0.647079 + 0.762423i \(0.275990\pi\)
\(312\) 0 0
\(313\) −2080.78 −0.375759 −0.187879 0.982192i \(-0.560161\pi\)
−0.187879 + 0.982192i \(0.560161\pi\)
\(314\) 12183.5 2.18967
\(315\) 0 0
\(316\) −4075.91 −0.725595
\(317\) −2644.61 −0.468568 −0.234284 0.972168i \(-0.575275\pi\)
−0.234284 + 0.972168i \(0.575275\pi\)
\(318\) 0 0
\(319\) 309.236 0.0542756
\(320\) 0 0
\(321\) 0 0
\(322\) 5216.71 0.902844
\(323\) −4758.17 −0.819665
\(324\) 0 0
\(325\) 0 0
\(326\) 6671.26 1.13340
\(327\) 0 0
\(328\) −3988.20 −0.671376
\(329\) 3280.81 0.549779
\(330\) 0 0
\(331\) −1831.16 −0.304077 −0.152039 0.988375i \(-0.548584\pi\)
−0.152039 + 0.988375i \(0.548584\pi\)
\(332\) −11340.3 −1.87463
\(333\) 0 0
\(334\) −12639.3 −2.07063
\(335\) 0 0
\(336\) 0 0
\(337\) 9307.67 1.50451 0.752257 0.658870i \(-0.228965\pi\)
0.752257 + 0.658870i \(0.228965\pi\)
\(338\) 10361.3 1.66740
\(339\) 0 0
\(340\) 0 0
\(341\) 102.633 0.0162988
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 6589.52 1.03280
\(345\) 0 0
\(346\) 17888.2 2.77940
\(347\) 10802.7 1.67124 0.835619 0.549310i \(-0.185109\pi\)
0.835619 + 0.549310i \(0.185109\pi\)
\(348\) 0 0
\(349\) 2242.94 0.344017 0.172009 0.985095i \(-0.444974\pi\)
0.172009 + 0.985095i \(0.444974\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −713.177 −0.107990
\(353\) −3295.68 −0.496916 −0.248458 0.968643i \(-0.579924\pi\)
−0.248458 + 0.968643i \(0.579924\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 434.395 0.0646710
\(357\) 0 0
\(358\) −5024.09 −0.741709
\(359\) 4634.55 0.681344 0.340672 0.940182i \(-0.389345\pi\)
0.340672 + 0.940182i \(0.389345\pi\)
\(360\) 0 0
\(361\) 1044.55 0.152289
\(362\) −2554.69 −0.370916
\(363\) 0 0
\(364\) −424.425 −0.0611152
\(365\) 0 0
\(366\) 0 0
\(367\) 6316.17 0.898369 0.449185 0.893439i \(-0.351715\pi\)
0.449185 + 0.893439i \(0.351715\pi\)
\(368\) −5057.76 −0.716452
\(369\) 0 0
\(370\) 0 0
\(371\) −811.814 −0.113604
\(372\) 0 0
\(373\) −7880.83 −1.09398 −0.546989 0.837140i \(-0.684226\pi\)
−0.546989 + 0.837140i \(0.684226\pi\)
\(374\) −1861.79 −0.257408
\(375\) 0 0
\(376\) −14693.6 −2.01533
\(377\) 175.545 0.0239815
\(378\) 0 0
\(379\) 9853.13 1.33541 0.667706 0.744425i \(-0.267276\pi\)
0.667706 + 0.744425i \(0.267276\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −15383.8 −2.06048
\(383\) −1193.49 −0.159228 −0.0796141 0.996826i \(-0.525369\pi\)
−0.0796141 + 0.996826i \(0.525369\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −21964.3 −2.89625
\(387\) 0 0
\(388\) −3383.09 −0.442655
\(389\) 10425.7 1.35888 0.679442 0.733729i \(-0.262222\pi\)
0.679442 + 0.733729i \(0.262222\pi\)
\(390\) 0 0
\(391\) 8391.09 1.08531
\(392\) −1536.17 −0.197929
\(393\) 0 0
\(394\) −11976.7 −1.53141
\(395\) 0 0
\(396\) 0 0
\(397\) 3650.05 0.461437 0.230719 0.973021i \(-0.425892\pi\)
0.230719 + 0.973021i \(0.425892\pi\)
\(398\) 10085.7 1.27023
\(399\) 0 0
\(400\) 0 0
\(401\) 8202.17 1.02144 0.510719 0.859747i \(-0.329379\pi\)
0.510719 + 0.859747i \(0.329379\pi\)
\(402\) 0 0
\(403\) 58.2622 0.00720160
\(404\) 27705.7 3.41190
\(405\) 0 0
\(406\) 1406.07 0.171877
\(407\) 2146.63 0.261436
\(408\) 0 0
\(409\) 9097.72 1.09989 0.549943 0.835202i \(-0.314649\pi\)
0.549943 + 0.835202i \(0.314649\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 20078.3 2.40094
\(413\) 2198.63 0.261955
\(414\) 0 0
\(415\) 0 0
\(416\) −404.852 −0.0477151
\(417\) 0 0
\(418\) 3092.51 0.361866
\(419\) 4704.01 0.548462 0.274231 0.961664i \(-0.411577\pi\)
0.274231 + 0.961664i \(0.411577\pi\)
\(420\) 0 0
\(421\) 1596.95 0.184871 0.0924355 0.995719i \(-0.470535\pi\)
0.0924355 + 0.995719i \(0.470535\pi\)
\(422\) 7405.44 0.854244
\(423\) 0 0
\(424\) 3635.82 0.416441
\(425\) 0 0
\(426\) 0 0
\(427\) 5378.70 0.609587
\(428\) −2428.06 −0.274217
\(429\) 0 0
\(430\) 0 0
\(431\) −6235.23 −0.696845 −0.348423 0.937338i \(-0.613283\pi\)
−0.348423 + 0.937338i \(0.613283\pi\)
\(432\) 0 0
\(433\) 2363.94 0.262364 0.131182 0.991358i \(-0.458123\pi\)
0.131182 + 0.991358i \(0.458123\pi\)
\(434\) 466.663 0.0516142
\(435\) 0 0
\(436\) −19645.3 −2.15789
\(437\) −13938.0 −1.52573
\(438\) 0 0
\(439\) −17537.7 −1.90667 −0.953335 0.301916i \(-0.902374\pi\)
−0.953335 + 0.301916i \(0.902374\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −1056.89 −0.113735
\(443\) 4488.83 0.481424 0.240712 0.970597i \(-0.422619\pi\)
0.240712 + 0.970597i \(0.422619\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −6273.74 −0.666077
\(447\) 0 0
\(448\) −5049.33 −0.532496
\(449\) −13188.3 −1.38618 −0.693090 0.720851i \(-0.743751\pi\)
−0.693090 + 0.720851i \(0.743751\pi\)
\(450\) 0 0
\(451\) −930.947 −0.0971986
\(452\) 19298.7 2.00826
\(453\) 0 0
\(454\) 30623.7 3.16573
\(455\) 0 0
\(456\) 0 0
\(457\) 8085.04 0.827576 0.413788 0.910373i \(-0.364206\pi\)
0.413788 + 0.910373i \(0.364206\pi\)
\(458\) −22123.1 −2.25708
\(459\) 0 0
\(460\) 0 0
\(461\) 825.258 0.0833754 0.0416877 0.999131i \(-0.486727\pi\)
0.0416877 + 0.999131i \(0.486727\pi\)
\(462\) 0 0
\(463\) 16607.8 1.66702 0.833509 0.552505i \(-0.186328\pi\)
0.833509 + 0.552505i \(0.186328\pi\)
\(464\) −1363.23 −0.136393
\(465\) 0 0
\(466\) −12495.0 −1.24210
\(467\) −6003.84 −0.594914 −0.297457 0.954735i \(-0.596138\pi\)
−0.297457 + 0.954735i \(0.596138\pi\)
\(468\) 0 0
\(469\) −5019.57 −0.494205
\(470\) 0 0
\(471\) 0 0
\(472\) −9846.86 −0.960251
\(473\) 1538.16 0.149524
\(474\) 0 0
\(475\) 0 0
\(476\) −5468.15 −0.526538
\(477\) 0 0
\(478\) 2787.28 0.266709
\(479\) −20386.0 −1.94459 −0.972295 0.233759i \(-0.924897\pi\)
−0.972295 + 0.233759i \(0.924897\pi\)
\(480\) 0 0
\(481\) 1218.58 0.115515
\(482\) −14933.9 −1.41125
\(483\) 0 0
\(484\) −18644.7 −1.75101
\(485\) 0 0
\(486\) 0 0
\(487\) 9422.61 0.876754 0.438377 0.898791i \(-0.355553\pi\)
0.438377 + 0.898791i \(0.355553\pi\)
\(488\) −24089.2 −2.23456
\(489\) 0 0
\(490\) 0 0
\(491\) −5908.30 −0.543051 −0.271525 0.962431i \(-0.587528\pi\)
−0.271525 + 0.962431i \(0.587528\pi\)
\(492\) 0 0
\(493\) 2261.66 0.206613
\(494\) 1755.54 0.159889
\(495\) 0 0
\(496\) −452.445 −0.0409584
\(497\) 5164.48 0.466114
\(498\) 0 0
\(499\) −3237.65 −0.290455 −0.145227 0.989398i \(-0.546391\pi\)
−0.145227 + 0.989398i \(0.546391\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −13924.7 −1.23802
\(503\) −1112.05 −0.0985760 −0.0492880 0.998785i \(-0.515695\pi\)
−0.0492880 + 0.998785i \(0.515695\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −5453.68 −0.479142
\(507\) 0 0
\(508\) 30823.1 2.69203
\(509\) −15737.5 −1.37044 −0.685220 0.728336i \(-0.740294\pi\)
−0.685220 + 0.728336i \(0.740294\pi\)
\(510\) 0 0
\(511\) 3343.33 0.289433
\(512\) 11235.0 0.969765
\(513\) 0 0
\(514\) −1846.96 −0.158494
\(515\) 0 0
\(516\) 0 0
\(517\) −3429.85 −0.291769
\(518\) 9760.51 0.827900
\(519\) 0 0
\(520\) 0 0
\(521\) 5009.73 0.421267 0.210633 0.977565i \(-0.432447\pi\)
0.210633 + 0.977565i \(0.432447\pi\)
\(522\) 0 0
\(523\) 14162.2 1.18407 0.592035 0.805912i \(-0.298325\pi\)
0.592035 + 0.805912i \(0.298325\pi\)
\(524\) 3061.70 0.255250
\(525\) 0 0
\(526\) 3642.80 0.301965
\(527\) 750.630 0.0620454
\(528\) 0 0
\(529\) 12412.8 1.02020
\(530\) 0 0
\(531\) 0 0
\(532\) 9082.85 0.740209
\(533\) −528.474 −0.0429470
\(534\) 0 0
\(535\) 0 0
\(536\) 22480.8 1.81161
\(537\) 0 0
\(538\) 13509.5 1.08259
\(539\) −358.581 −0.0286553
\(540\) 0 0
\(541\) 14815.3 1.17738 0.588689 0.808360i \(-0.299644\pi\)
0.588689 + 0.808360i \(0.299644\pi\)
\(542\) −16697.5 −1.32329
\(543\) 0 0
\(544\) −5215.97 −0.411090
\(545\) 0 0
\(546\) 0 0
\(547\) 14248.3 1.11373 0.556867 0.830601i \(-0.312003\pi\)
0.556867 + 0.830601i \(0.312003\pi\)
\(548\) −34828.3 −2.71495
\(549\) 0 0
\(550\) 0 0
\(551\) −3756.73 −0.290458
\(552\) 0 0
\(553\) −1954.83 −0.150322
\(554\) −30368.4 −2.32894
\(555\) 0 0
\(556\) 17739.8 1.35312
\(557\) −9394.37 −0.714636 −0.357318 0.933983i \(-0.616309\pi\)
−0.357318 + 0.933983i \(0.616309\pi\)
\(558\) 0 0
\(559\) 873.173 0.0660667
\(560\) 0 0
\(561\) 0 0
\(562\) −10109.5 −0.758796
\(563\) 8572.89 0.641748 0.320874 0.947122i \(-0.396023\pi\)
0.320874 + 0.947122i \(0.396023\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −39606.4 −2.94131
\(567\) 0 0
\(568\) −23129.8 −1.70864
\(569\) −8954.65 −0.659751 −0.329876 0.944024i \(-0.607007\pi\)
−0.329876 + 0.944024i \(0.607007\pi\)
\(570\) 0 0
\(571\) 21592.5 1.58252 0.791260 0.611479i \(-0.209425\pi\)
0.791260 + 0.611479i \(0.209425\pi\)
\(572\) 443.705 0.0324340
\(573\) 0 0
\(574\) −4232.92 −0.307803
\(575\) 0 0
\(576\) 0 0
\(577\) −17587.5 −1.26894 −0.634470 0.772947i \(-0.718782\pi\)
−0.634470 + 0.772947i \(0.718782\pi\)
\(578\) 9737.14 0.700712
\(579\) 0 0
\(580\) 0 0
\(581\) −5438.87 −0.388369
\(582\) 0 0
\(583\) 848.692 0.0602903
\(584\) −14973.5 −1.06098
\(585\) 0 0
\(586\) −41136.9 −2.89991
\(587\) 4613.88 0.324421 0.162210 0.986756i \(-0.448138\pi\)
0.162210 + 0.986756i \(0.448138\pi\)
\(588\) 0 0
\(589\) −1246.83 −0.0872237
\(590\) 0 0
\(591\) 0 0
\(592\) −9463.12 −0.656980
\(593\) 8688.07 0.601647 0.300823 0.953680i \(-0.402739\pi\)
0.300823 + 0.953680i \(0.402739\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −41589.4 −2.85834
\(597\) 0 0
\(598\) −3095.91 −0.211708
\(599\) −7361.43 −0.502137 −0.251068 0.967969i \(-0.580782\pi\)
−0.251068 + 0.967969i \(0.580782\pi\)
\(600\) 0 0
\(601\) 16441.9 1.11594 0.557971 0.829861i \(-0.311580\pi\)
0.557971 + 0.829861i \(0.311580\pi\)
\(602\) 6993.86 0.473503
\(603\) 0 0
\(604\) −38587.6 −2.59952
\(605\) 0 0
\(606\) 0 0
\(607\) −21024.5 −1.40586 −0.702931 0.711258i \(-0.748126\pi\)
−0.702931 + 0.711258i \(0.748126\pi\)
\(608\) 8663.97 0.577912
\(609\) 0 0
\(610\) 0 0
\(611\) −1947.03 −0.128917
\(612\) 0 0
\(613\) 3278.79 0.216034 0.108017 0.994149i \(-0.465550\pi\)
0.108017 + 0.994149i \(0.465550\pi\)
\(614\) −25281.5 −1.66169
\(615\) 0 0
\(616\) 1605.95 0.105042
\(617\) −136.641 −0.00891567 −0.00445783 0.999990i \(-0.501419\pi\)
−0.00445783 + 0.999990i \(0.501419\pi\)
\(618\) 0 0
\(619\) −13109.0 −0.851205 −0.425603 0.904910i \(-0.639938\pi\)
−0.425603 + 0.904910i \(0.639938\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −33739.4 −2.17496
\(623\) 208.338 0.0133979
\(624\) 0 0
\(625\) 0 0
\(626\) 9890.87 0.631500
\(627\) 0 0
\(628\) −37409.0 −2.37704
\(629\) 15699.8 0.995219
\(630\) 0 0
\(631\) −351.608 −0.0221827 −0.0110913 0.999938i \(-0.503531\pi\)
−0.0110913 + 0.999938i \(0.503531\pi\)
\(632\) 8754.98 0.551035
\(633\) 0 0
\(634\) 12571.0 0.787474
\(635\) 0 0
\(636\) 0 0
\(637\) −203.557 −0.0126613
\(638\) −1469.94 −0.0912155
\(639\) 0 0
\(640\) 0 0
\(641\) 17551.0 1.08147 0.540736 0.841192i \(-0.318146\pi\)
0.540736 + 0.841192i \(0.318146\pi\)
\(642\) 0 0
\(643\) 20683.7 1.26856 0.634281 0.773103i \(-0.281296\pi\)
0.634281 + 0.773103i \(0.281296\pi\)
\(644\) −16017.7 −0.980103
\(645\) 0 0
\(646\) 22617.7 1.37753
\(647\) −1782.40 −0.108305 −0.0541526 0.998533i \(-0.517246\pi\)
−0.0541526 + 0.998533i \(0.517246\pi\)
\(648\) 0 0
\(649\) −2298.51 −0.139020
\(650\) 0 0
\(651\) 0 0
\(652\) −20483.9 −1.23038
\(653\) 3642.28 0.218275 0.109137 0.994027i \(-0.465191\pi\)
0.109137 + 0.994027i \(0.465191\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 4103.95 0.244257
\(657\) 0 0
\(658\) −15595.2 −0.923957
\(659\) 14883.2 0.879768 0.439884 0.898055i \(-0.355020\pi\)
0.439884 + 0.898055i \(0.355020\pi\)
\(660\) 0 0
\(661\) −1871.82 −0.110145 −0.0550723 0.998482i \(-0.517539\pi\)
−0.0550723 + 0.998482i \(0.517539\pi\)
\(662\) 8704.33 0.511032
\(663\) 0 0
\(664\) 24358.7 1.42365
\(665\) 0 0
\(666\) 0 0
\(667\) 6625.04 0.384592
\(668\) 38808.5 2.24782
\(669\) 0 0
\(670\) 0 0
\(671\) −5623.03 −0.323509
\(672\) 0 0
\(673\) −22208.8 −1.27205 −0.636023 0.771670i \(-0.719422\pi\)
−0.636023 + 0.771670i \(0.719422\pi\)
\(674\) −44243.6 −2.52848
\(675\) 0 0
\(676\) −31814.0 −1.81008
\(677\) 31340.2 1.77918 0.889589 0.456762i \(-0.150991\pi\)
0.889589 + 0.456762i \(0.150991\pi\)
\(678\) 0 0
\(679\) −1622.55 −0.0917051
\(680\) 0 0
\(681\) 0 0
\(682\) −487.862 −0.0273918
\(683\) −27666.5 −1.54997 −0.774985 0.631979i \(-0.782243\pi\)
−0.774985 + 0.631979i \(0.782243\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1630.43 −0.0907438
\(687\) 0 0
\(688\) −6780.77 −0.375748
\(689\) 481.780 0.0266391
\(690\) 0 0
\(691\) −7978.64 −0.439250 −0.219625 0.975584i \(-0.570483\pi\)
−0.219625 + 0.975584i \(0.570483\pi\)
\(692\) −54925.0 −3.01724
\(693\) 0 0
\(694\) −51350.1 −2.80868
\(695\) 0 0
\(696\) 0 0
\(697\) −6808.67 −0.370010
\(698\) −10661.7 −0.578155
\(699\) 0 0
\(700\) 0 0
\(701\) 16299.3 0.878197 0.439099 0.898439i \(-0.355298\pi\)
0.439099 + 0.898439i \(0.355298\pi\)
\(702\) 0 0
\(703\) −26078.1 −1.39908
\(704\) 5278.70 0.282597
\(705\) 0 0
\(706\) 15665.8 0.835116
\(707\) 13287.8 0.706845
\(708\) 0 0
\(709\) −36223.4 −1.91876 −0.959379 0.282122i \(-0.908962\pi\)
−0.959379 + 0.282122i \(0.908962\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −933.071 −0.0491128
\(713\) 2198.80 0.115492
\(714\) 0 0
\(715\) 0 0
\(716\) 15426.3 0.805179
\(717\) 0 0
\(718\) −22030.1 −1.14507
\(719\) 636.264 0.0330023 0.0165011 0.999864i \(-0.494747\pi\)
0.0165011 + 0.999864i \(0.494747\pi\)
\(720\) 0 0
\(721\) 9629.67 0.497403
\(722\) −4965.21 −0.255936
\(723\) 0 0
\(724\) 7844.08 0.402656
\(725\) 0 0
\(726\) 0 0
\(727\) −33098.8 −1.68854 −0.844270 0.535918i \(-0.819965\pi\)
−0.844270 + 0.535918i \(0.819965\pi\)
\(728\) 911.657 0.0464124
\(729\) 0 0
\(730\) 0 0
\(731\) 11249.7 0.569198
\(732\) 0 0
\(733\) −12019.8 −0.605678 −0.302839 0.953042i \(-0.597934\pi\)
−0.302839 + 0.953042i \(0.597934\pi\)
\(734\) −30023.6 −1.50980
\(735\) 0 0
\(736\) −15279.0 −0.765207
\(737\) 5247.59 0.262276
\(738\) 0 0
\(739\) 5332.38 0.265433 0.132716 0.991154i \(-0.457630\pi\)
0.132716 + 0.991154i \(0.457630\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 3858.92 0.190924
\(743\) −6547.51 −0.323290 −0.161645 0.986849i \(-0.551680\pi\)
−0.161645 + 0.986849i \(0.551680\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 37461.1 1.83854
\(747\) 0 0
\(748\) 5716.55 0.279435
\(749\) −1164.51 −0.0568097
\(750\) 0 0
\(751\) 19316.3 0.938565 0.469282 0.883048i \(-0.344513\pi\)
0.469282 + 0.883048i \(0.344513\pi\)
\(752\) 15120.0 0.733206
\(753\) 0 0
\(754\) −834.446 −0.0403033
\(755\) 0 0
\(756\) 0 0
\(757\) 40483.3 1.94371 0.971857 0.235573i \(-0.0756967\pi\)
0.971857 + 0.235573i \(0.0756967\pi\)
\(758\) −46836.3 −2.24429
\(759\) 0 0
\(760\) 0 0
\(761\) 5470.00 0.260561 0.130281 0.991477i \(-0.458412\pi\)
0.130281 + 0.991477i \(0.458412\pi\)
\(762\) 0 0
\(763\) −9422.02 −0.447051
\(764\) 47235.4 2.23680
\(765\) 0 0
\(766\) 5673.19 0.267599
\(767\) −1304.80 −0.0614258
\(768\) 0 0
\(769\) 17692.4 0.829653 0.414826 0.909901i \(-0.363842\pi\)
0.414826 + 0.909901i \(0.363842\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 67440.6 3.14409
\(773\) 3338.50 0.155340 0.0776699 0.996979i \(-0.475252\pi\)
0.0776699 + 0.996979i \(0.475252\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 7266.81 0.336164
\(777\) 0 0
\(778\) −49558.2 −2.28374
\(779\) 11309.5 0.520161
\(780\) 0 0
\(781\) −5399.08 −0.247368
\(782\) −39886.7 −1.82397
\(783\) 0 0
\(784\) 1580.76 0.0720097
\(785\) 0 0
\(786\) 0 0
\(787\) 11738.0 0.531657 0.265829 0.964020i \(-0.414354\pi\)
0.265829 + 0.964020i \(0.414354\pi\)
\(788\) 36773.9 1.66246
\(789\) 0 0
\(790\) 0 0
\(791\) 9255.77 0.416052
\(792\) 0 0
\(793\) −3192.05 −0.142942
\(794\) −17350.3 −0.775491
\(795\) 0 0
\(796\) −30967.8 −1.37893
\(797\) 20150.5 0.895568 0.447784 0.894142i \(-0.352213\pi\)
0.447784 + 0.894142i \(0.352213\pi\)
\(798\) 0 0
\(799\) −25084.9 −1.11069
\(800\) 0 0
\(801\) 0 0
\(802\) −38988.6 −1.71663
\(803\) −3495.20 −0.153603
\(804\) 0 0
\(805\) 0 0
\(806\) −276.946 −0.0121030
\(807\) 0 0
\(808\) −59511.3 −2.59109
\(809\) 3381.53 0.146957 0.0734785 0.997297i \(-0.476590\pi\)
0.0734785 + 0.997297i \(0.476590\pi\)
\(810\) 0 0
\(811\) 11375.3 0.492528 0.246264 0.969203i \(-0.420797\pi\)
0.246264 + 0.969203i \(0.420797\pi\)
\(812\) −4317.28 −0.186585
\(813\) 0 0
\(814\) −10203.9 −0.439369
\(815\) 0 0
\(816\) 0 0
\(817\) −18686.2 −0.800181
\(818\) −43245.6 −1.84847
\(819\) 0 0
\(820\) 0 0
\(821\) 9610.94 0.408556 0.204278 0.978913i \(-0.434515\pi\)
0.204278 + 0.978913i \(0.434515\pi\)
\(822\) 0 0
\(823\) 13767.3 0.583109 0.291555 0.956554i \(-0.405827\pi\)
0.291555 + 0.956554i \(0.405827\pi\)
\(824\) −43127.8 −1.82333
\(825\) 0 0
\(826\) −10451.1 −0.440242
\(827\) −31978.6 −1.34462 −0.672312 0.740268i \(-0.734699\pi\)
−0.672312 + 0.740268i \(0.734699\pi\)
\(828\) 0 0
\(829\) 18477.2 0.774111 0.387055 0.922056i \(-0.373492\pi\)
0.387055 + 0.922056i \(0.373492\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 2996.58 0.124865
\(833\) −2622.56 −0.109083
\(834\) 0 0
\(835\) 0 0
\(836\) −9495.45 −0.392831
\(837\) 0 0
\(838\) −22360.3 −0.921745
\(839\) 38552.6 1.58639 0.793196 0.608967i \(-0.208416\pi\)
0.793196 + 0.608967i \(0.208416\pi\)
\(840\) 0 0
\(841\) −22603.3 −0.926784
\(842\) −7591.04 −0.310694
\(843\) 0 0
\(844\) −22738.1 −0.927344
\(845\) 0 0
\(846\) 0 0
\(847\) −8942.13 −0.362757
\(848\) −3741.34 −0.151507
\(849\) 0 0
\(850\) 0 0
\(851\) 45989.1 1.85251
\(852\) 0 0
\(853\) 3080.15 0.123637 0.0618185 0.998087i \(-0.480310\pi\)
0.0618185 + 0.998087i \(0.480310\pi\)
\(854\) −25567.4 −1.02447
\(855\) 0 0
\(856\) 5215.43 0.208247
\(857\) 28362.3 1.13050 0.565249 0.824920i \(-0.308780\pi\)
0.565249 + 0.824920i \(0.308780\pi\)
\(858\) 0 0
\(859\) −4928.50 −0.195761 −0.0978803 0.995198i \(-0.531206\pi\)
−0.0978803 + 0.995198i \(0.531206\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 29638.9 1.17112
\(863\) −39910.8 −1.57425 −0.787126 0.616792i \(-0.788432\pi\)
−0.787126 + 0.616792i \(0.788432\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −11236.9 −0.440928
\(867\) 0 0
\(868\) −1432.87 −0.0560309
\(869\) 2043.63 0.0797762
\(870\) 0 0
\(871\) 2978.92 0.115886
\(872\) 42197.8 1.63876
\(873\) 0 0
\(874\) 66253.6 2.56414
\(875\) 0 0
\(876\) 0 0
\(877\) −29231.5 −1.12552 −0.562759 0.826621i \(-0.690260\pi\)
−0.562759 + 0.826621i \(0.690260\pi\)
\(878\) 83364.5 3.20435
\(879\) 0 0
\(880\) 0 0
\(881\) 23473.3 0.897657 0.448829 0.893618i \(-0.351841\pi\)
0.448829 + 0.893618i \(0.351841\pi\)
\(882\) 0 0
\(883\) 21250.7 0.809902 0.404951 0.914338i \(-0.367289\pi\)
0.404951 + 0.914338i \(0.367289\pi\)
\(884\) 3245.13 0.123468
\(885\) 0 0
\(886\) −21337.4 −0.809080
\(887\) 48748.6 1.84534 0.922671 0.385588i \(-0.126001\pi\)
0.922671 + 0.385588i \(0.126001\pi\)
\(888\) 0 0
\(889\) 14783.0 0.557710
\(890\) 0 0
\(891\) 0 0
\(892\) 19263.3 0.723075
\(893\) 41667.2 1.56141
\(894\) 0 0
\(895\) 0 0
\(896\) 18544.2 0.691428
\(897\) 0 0
\(898\) 62690.0 2.32961
\(899\) 592.646 0.0219865
\(900\) 0 0
\(901\) 6207.08 0.229509
\(902\) 4425.21 0.163352
\(903\) 0 0
\(904\) −41453.2 −1.52513
\(905\) 0 0
\(906\) 0 0
\(907\) −13144.5 −0.481209 −0.240604 0.970623i \(-0.577346\pi\)
−0.240604 + 0.970623i \(0.577346\pi\)
\(908\) −94029.0 −3.43663
\(909\) 0 0
\(910\) 0 0
\(911\) 29731.7 1.08129 0.540644 0.841251i \(-0.318181\pi\)
0.540644 + 0.841251i \(0.318181\pi\)
\(912\) 0 0
\(913\) 5685.94 0.206108
\(914\) −38431.8 −1.39082
\(915\) 0 0
\(916\) 67928.1 2.45022
\(917\) 1468.41 0.0528803
\(918\) 0 0
\(919\) −47715.4 −1.71272 −0.856358 0.516383i \(-0.827278\pi\)
−0.856358 + 0.516383i \(0.827278\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −3922.82 −0.140121
\(923\) −3064.92 −0.109299
\(924\) 0 0
\(925\) 0 0
\(926\) −78944.4 −2.80159
\(927\) 0 0
\(928\) −4118.18 −0.145674
\(929\) 19795.2 0.699094 0.349547 0.936919i \(-0.386335\pi\)
0.349547 + 0.936919i \(0.386335\pi\)
\(930\) 0 0
\(931\) 4356.19 0.153350
\(932\) 38365.3 1.34839
\(933\) 0 0
\(934\) 28539.0 0.999811
\(935\) 0 0
\(936\) 0 0
\(937\) −17993.9 −0.627359 −0.313680 0.949529i \(-0.601562\pi\)
−0.313680 + 0.949529i \(0.601562\pi\)
\(938\) 23860.3 0.830560
\(939\) 0 0
\(940\) 0 0
\(941\) 34667.7 1.20099 0.600497 0.799627i \(-0.294970\pi\)
0.600497 + 0.799627i \(0.294970\pi\)
\(942\) 0 0
\(943\) −19944.5 −0.688740
\(944\) 10132.7 0.349354
\(945\) 0 0
\(946\) −7311.57 −0.251289
\(947\) 56727.3 1.94656 0.973279 0.229627i \(-0.0737505\pi\)
0.973279 + 0.229627i \(0.0737505\pi\)
\(948\) 0 0
\(949\) −1984.13 −0.0678690
\(950\) 0 0
\(951\) 0 0
\(952\) 11745.5 0.399867
\(953\) −46267.5 −1.57267 −0.786333 0.617802i \(-0.788023\pi\)
−0.786333 + 0.617802i \(0.788023\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −8558.23 −0.289532
\(957\) 0 0
\(958\) 96903.7 3.26807
\(959\) −16703.9 −0.562458
\(960\) 0 0
\(961\) −29594.3 −0.993398
\(962\) −5792.48 −0.194134
\(963\) 0 0
\(964\) 45854.1 1.53201
\(965\) 0 0
\(966\) 0 0
\(967\) 26514.2 0.881738 0.440869 0.897571i \(-0.354670\pi\)
0.440869 + 0.897571i \(0.354670\pi\)
\(968\) 40048.5 1.32976
\(969\) 0 0
\(970\) 0 0
\(971\) −38864.6 −1.28447 −0.642237 0.766506i \(-0.721994\pi\)
−0.642237 + 0.766506i \(0.721994\pi\)
\(972\) 0 0
\(973\) 8508.13 0.280327
\(974\) −44789.9 −1.47347
\(975\) 0 0
\(976\) 24788.4 0.812968
\(977\) 33774.5 1.10598 0.552990 0.833188i \(-0.313487\pi\)
0.552990 + 0.833188i \(0.313487\pi\)
\(978\) 0 0
\(979\) −217.803 −0.00711032
\(980\) 0 0
\(981\) 0 0
\(982\) 28084.8 0.912651
\(983\) −23536.8 −0.763691 −0.381846 0.924226i \(-0.624711\pi\)
−0.381846 + 0.924226i \(0.624711\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −10750.7 −0.347234
\(987\) 0 0
\(988\) −5390.31 −0.173572
\(989\) 32953.3 1.05951
\(990\) 0 0
\(991\) 29012.6 0.929984 0.464992 0.885315i \(-0.346057\pi\)
0.464992 + 0.885315i \(0.346057\pi\)
\(992\) −1366.79 −0.0437457
\(993\) 0 0
\(994\) −24549.1 −0.783350
\(995\) 0 0
\(996\) 0 0
\(997\) 14027.1 0.445579 0.222790 0.974867i \(-0.428484\pi\)
0.222790 + 0.974867i \(0.428484\pi\)
\(998\) 15390.0 0.488138
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.4.a.bk.1.1 4
3.2 odd 2 525.4.a.u.1.4 yes 4
5.4 even 2 1575.4.a.bj.1.4 4
15.2 even 4 525.4.d.n.274.8 8
15.8 even 4 525.4.d.n.274.1 8
15.14 odd 2 525.4.a.t.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
525.4.a.t.1.1 4 15.14 odd 2
525.4.a.u.1.4 yes 4 3.2 odd 2
525.4.d.n.274.1 8 15.8 even 4
525.4.d.n.274.8 8 15.2 even 4
1575.4.a.bj.1.4 4 5.4 even 2
1575.4.a.bk.1.1 4 1.1 even 1 trivial