Properties

Label 1575.4.a.bg.1.1
Level $1575$
Weight $4$
Character 1575.1
Self dual yes
Analytic conductor $92.928$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1575,4,Mod(1,1575)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1575.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1575, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1575.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,0,36,0,0,28,-27,0,0,-100] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.9280082590\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 32x^{2} - 35x + 120 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 175)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.84167\) of defining polynomial
Character \(\chi\) \(=\) 1575.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.84167 q^{2} +15.4418 q^{4} +7.00000 q^{7} -36.0308 q^{8} -62.1962 q^{11} +14.0934 q^{13} -33.8917 q^{14} +50.9148 q^{16} -63.5104 q^{17} +48.7094 q^{19} +301.134 q^{22} +99.3784 q^{23} -68.2354 q^{26} +108.093 q^{28} +69.0571 q^{29} -9.68658 q^{31} +41.7334 q^{32} +307.497 q^{34} +240.290 q^{37} -235.835 q^{38} -335.306 q^{41} +51.2582 q^{43} -960.421 q^{44} -481.158 q^{46} +451.564 q^{47} +49.0000 q^{49} +217.627 q^{52} +180.014 q^{53} -252.215 q^{56} -334.352 q^{58} -268.600 q^{59} -323.925 q^{61} +46.8992 q^{62} -609.378 q^{64} -541.910 q^{67} -980.715 q^{68} +161.433 q^{71} +305.751 q^{73} -1163.40 q^{74} +752.161 q^{76} -435.373 q^{77} -504.722 q^{79} +1623.44 q^{82} +513.838 q^{83} -248.176 q^{86} +2240.98 q^{88} -543.158 q^{89} +98.6535 q^{91} +1534.58 q^{92} -2186.32 q^{94} +1863.06 q^{97} -237.242 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 36 q^{4} + 28 q^{7} - 27 q^{8} - 100 q^{11} + 44 q^{13} - 28 q^{14} + 160 q^{16} + 53 q^{17} - 29 q^{19} - 152 q^{22} - 295 q^{23} - 700 q^{26} + 252 q^{28} - 129 q^{29} + 114 q^{31} + 310 q^{32}+ \cdots - 196 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.84167 −1.71179 −0.855895 0.517150i \(-0.826993\pi\)
−0.855895 + 0.517150i \(0.826993\pi\)
\(3\) 0 0
\(4\) 15.4418 1.93022
\(5\) 0 0
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) −36.0308 −1.59235
\(9\) 0 0
\(10\) 0 0
\(11\) −62.1962 −1.70481 −0.852403 0.522886i \(-0.824855\pi\)
−0.852403 + 0.522886i \(0.824855\pi\)
\(12\) 0 0
\(13\) 14.0934 0.300676 0.150338 0.988635i \(-0.451964\pi\)
0.150338 + 0.988635i \(0.451964\pi\)
\(14\) −33.8917 −0.646996
\(15\) 0 0
\(16\) 50.9148 0.795543
\(17\) −63.5104 −0.906091 −0.453045 0.891487i \(-0.649662\pi\)
−0.453045 + 0.891487i \(0.649662\pi\)
\(18\) 0 0
\(19\) 48.7094 0.588143 0.294071 0.955783i \(-0.404990\pi\)
0.294071 + 0.955783i \(0.404990\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 301.134 2.91827
\(23\) 99.3784 0.900949 0.450475 0.892789i \(-0.351255\pi\)
0.450475 + 0.892789i \(0.351255\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −68.2354 −0.514695
\(27\) 0 0
\(28\) 108.093 0.729556
\(29\) 69.0571 0.442193 0.221096 0.975252i \(-0.429036\pi\)
0.221096 + 0.975252i \(0.429036\pi\)
\(30\) 0 0
\(31\) −9.68658 −0.0561213 −0.0280607 0.999606i \(-0.508933\pi\)
−0.0280607 + 0.999606i \(0.508933\pi\)
\(32\) 41.7334 0.230547
\(33\) 0 0
\(34\) 307.497 1.55104
\(35\) 0 0
\(36\) 0 0
\(37\) 240.290 1.06766 0.533829 0.845592i \(-0.320752\pi\)
0.533829 + 0.845592i \(0.320752\pi\)
\(38\) −235.835 −1.00678
\(39\) 0 0
\(40\) 0 0
\(41\) −335.306 −1.27722 −0.638610 0.769531i \(-0.720490\pi\)
−0.638610 + 0.769531i \(0.720490\pi\)
\(42\) 0 0
\(43\) 51.2582 0.181786 0.0908931 0.995861i \(-0.471028\pi\)
0.0908931 + 0.995861i \(0.471028\pi\)
\(44\) −960.421 −3.29066
\(45\) 0 0
\(46\) −481.158 −1.54224
\(47\) 451.564 1.40143 0.700716 0.713440i \(-0.252864\pi\)
0.700716 + 0.713440i \(0.252864\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 217.627 0.580373
\(53\) 180.014 0.466545 0.233273 0.972411i \(-0.425057\pi\)
0.233273 + 0.972411i \(0.425057\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −252.215 −0.601852
\(57\) 0 0
\(58\) −334.352 −0.756941
\(59\) −268.600 −0.592691 −0.296345 0.955081i \(-0.595768\pi\)
−0.296345 + 0.955081i \(0.595768\pi\)
\(60\) 0 0
\(61\) −323.925 −0.679906 −0.339953 0.940442i \(-0.610411\pi\)
−0.339953 + 0.940442i \(0.610411\pi\)
\(62\) 46.8992 0.0960679
\(63\) 0 0
\(64\) −609.378 −1.19019
\(65\) 0 0
\(66\) 0 0
\(67\) −541.910 −0.988132 −0.494066 0.869424i \(-0.664490\pi\)
−0.494066 + 0.869424i \(0.664490\pi\)
\(68\) −980.715 −1.74896
\(69\) 0 0
\(70\) 0 0
\(71\) 161.433 0.269839 0.134919 0.990857i \(-0.456922\pi\)
0.134919 + 0.990857i \(0.456922\pi\)
\(72\) 0 0
\(73\) 305.751 0.490212 0.245106 0.969496i \(-0.421177\pi\)
0.245106 + 0.969496i \(0.421177\pi\)
\(74\) −1163.40 −1.82761
\(75\) 0 0
\(76\) 752.161 1.13525
\(77\) −435.373 −0.644356
\(78\) 0 0
\(79\) −504.722 −0.718805 −0.359403 0.933183i \(-0.617020\pi\)
−0.359403 + 0.933183i \(0.617020\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 1623.44 2.18633
\(83\) 513.838 0.679531 0.339766 0.940510i \(-0.389652\pi\)
0.339766 + 0.940510i \(0.389652\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −248.176 −0.311180
\(87\) 0 0
\(88\) 2240.98 2.71465
\(89\) −543.158 −0.646907 −0.323453 0.946244i \(-0.604844\pi\)
−0.323453 + 0.946244i \(0.604844\pi\)
\(90\) 0 0
\(91\) 98.6535 0.113645
\(92\) 1534.58 1.73903
\(93\) 0 0
\(94\) −2186.32 −2.39896
\(95\) 0 0
\(96\) 0 0
\(97\) 1863.06 1.95016 0.975079 0.221857i \(-0.0712118\pi\)
0.975079 + 0.221857i \(0.0712118\pi\)
\(98\) −237.242 −0.244541
\(99\) 0 0
\(100\) 0 0
\(101\) 1685.70 1.66073 0.830365 0.557221i \(-0.188132\pi\)
0.830365 + 0.557221i \(0.188132\pi\)
\(102\) 0 0
\(103\) −1014.19 −0.970203 −0.485102 0.874458i \(-0.661217\pi\)
−0.485102 + 0.874458i \(0.661217\pi\)
\(104\) −507.794 −0.478782
\(105\) 0 0
\(106\) −871.571 −0.798627
\(107\) −913.161 −0.825033 −0.412517 0.910950i \(-0.635350\pi\)
−0.412517 + 0.910950i \(0.635350\pi\)
\(108\) 0 0
\(109\) −1397.13 −1.22772 −0.613859 0.789416i \(-0.710383\pi\)
−0.613859 + 0.789416i \(0.710383\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 356.403 0.300687
\(113\) −2082.49 −1.73366 −0.866831 0.498603i \(-0.833847\pi\)
−0.866831 + 0.498603i \(0.833847\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1066.37 0.853531
\(117\) 0 0
\(118\) 1300.47 1.01456
\(119\) −444.573 −0.342470
\(120\) 0 0
\(121\) 2537.37 1.90636
\(122\) 1568.34 1.16386
\(123\) 0 0
\(124\) −149.578 −0.108327
\(125\) 0 0
\(126\) 0 0
\(127\) −230.691 −0.161185 −0.0805925 0.996747i \(-0.525681\pi\)
−0.0805925 + 0.996747i \(0.525681\pi\)
\(128\) 2616.54 1.80681
\(129\) 0 0
\(130\) 0 0
\(131\) 973.877 0.649527 0.324764 0.945795i \(-0.394715\pi\)
0.324764 + 0.945795i \(0.394715\pi\)
\(132\) 0 0
\(133\) 340.966 0.222297
\(134\) 2623.75 1.69148
\(135\) 0 0
\(136\) 2288.33 1.44281
\(137\) −695.734 −0.433873 −0.216936 0.976186i \(-0.569606\pi\)
−0.216936 + 0.976186i \(0.569606\pi\)
\(138\) 0 0
\(139\) −298.530 −0.182165 −0.0910826 0.995843i \(-0.529033\pi\)
−0.0910826 + 0.995843i \(0.529033\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −781.605 −0.461908
\(143\) −876.553 −0.512595
\(144\) 0 0
\(145\) 0 0
\(146\) −1480.35 −0.839140
\(147\) 0 0
\(148\) 3710.50 2.06082
\(149\) 1792.02 0.985290 0.492645 0.870230i \(-0.336030\pi\)
0.492645 + 0.870230i \(0.336030\pi\)
\(150\) 0 0
\(151\) 1201.27 0.647403 0.323701 0.946159i \(-0.395073\pi\)
0.323701 + 0.946159i \(0.395073\pi\)
\(152\) −1755.04 −0.936529
\(153\) 0 0
\(154\) 2107.94 1.10300
\(155\) 0 0
\(156\) 0 0
\(157\) 409.798 0.208315 0.104158 0.994561i \(-0.466785\pi\)
0.104158 + 0.994561i \(0.466785\pi\)
\(158\) 2443.70 1.23044
\(159\) 0 0
\(160\) 0 0
\(161\) 695.649 0.340527
\(162\) 0 0
\(163\) −2030.71 −0.975811 −0.487905 0.872896i \(-0.662239\pi\)
−0.487905 + 0.872896i \(0.662239\pi\)
\(164\) −5177.73 −2.46532
\(165\) 0 0
\(166\) −2487.84 −1.16321
\(167\) −520.014 −0.240958 −0.120479 0.992716i \(-0.538443\pi\)
−0.120479 + 0.992716i \(0.538443\pi\)
\(168\) 0 0
\(169\) −1998.38 −0.909594
\(170\) 0 0
\(171\) 0 0
\(172\) 791.520 0.350888
\(173\) 2561.90 1.12588 0.562942 0.826497i \(-0.309669\pi\)
0.562942 + 0.826497i \(0.309669\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −3166.71 −1.35625
\(177\) 0 0
\(178\) 2629.80 1.10737
\(179\) 3042.08 1.27025 0.635127 0.772408i \(-0.280948\pi\)
0.635127 + 0.772408i \(0.280948\pi\)
\(180\) 0 0
\(181\) −3648.02 −1.49809 −0.749047 0.662516i \(-0.769488\pi\)
−0.749047 + 0.662516i \(0.769488\pi\)
\(182\) −477.648 −0.194536
\(183\) 0 0
\(184\) −3580.68 −1.43463
\(185\) 0 0
\(186\) 0 0
\(187\) 3950.11 1.54471
\(188\) 6972.95 2.70508
\(189\) 0 0
\(190\) 0 0
\(191\) 4091.12 1.54986 0.774929 0.632049i \(-0.217786\pi\)
0.774929 + 0.632049i \(0.217786\pi\)
\(192\) 0 0
\(193\) 3051.70 1.13817 0.569084 0.822280i \(-0.307298\pi\)
0.569084 + 0.822280i \(0.307298\pi\)
\(194\) −9020.34 −3.33826
\(195\) 0 0
\(196\) 756.648 0.275746
\(197\) −3011.44 −1.08912 −0.544560 0.838722i \(-0.683303\pi\)
−0.544560 + 0.838722i \(0.683303\pi\)
\(198\) 0 0
\(199\) 199.943 0.0712239 0.0356119 0.999366i \(-0.488662\pi\)
0.0356119 + 0.999366i \(0.488662\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −8161.62 −2.84282
\(203\) 483.400 0.167133
\(204\) 0 0
\(205\) 0 0
\(206\) 4910.37 1.66078
\(207\) 0 0
\(208\) 717.560 0.239201
\(209\) −3029.54 −1.00267
\(210\) 0 0
\(211\) −297.442 −0.0970461 −0.0485231 0.998822i \(-0.515451\pi\)
−0.0485231 + 0.998822i \(0.515451\pi\)
\(212\) 2779.75 0.900537
\(213\) 0 0
\(214\) 4421.23 1.41228
\(215\) 0 0
\(216\) 0 0
\(217\) −67.8061 −0.0212119
\(218\) 6764.47 2.10159
\(219\) 0 0
\(220\) 0 0
\(221\) −895.075 −0.272440
\(222\) 0 0
\(223\) −6282.68 −1.88663 −0.943317 0.331894i \(-0.892312\pi\)
−0.943317 + 0.331894i \(0.892312\pi\)
\(224\) 292.134 0.0871385
\(225\) 0 0
\(226\) 10082.7 2.96766
\(227\) 2357.28 0.689243 0.344621 0.938742i \(-0.388007\pi\)
0.344621 + 0.938742i \(0.388007\pi\)
\(228\) 0 0
\(229\) −2476.81 −0.714727 −0.357363 0.933965i \(-0.616324\pi\)
−0.357363 + 0.933965i \(0.616324\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2488.18 −0.704125
\(233\) 5142.47 1.44590 0.722950 0.690900i \(-0.242786\pi\)
0.722950 + 0.690900i \(0.242786\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −4147.67 −1.14403
\(237\) 0 0
\(238\) 2152.48 0.586237
\(239\) 831.250 0.224975 0.112488 0.993653i \(-0.464118\pi\)
0.112488 + 0.993653i \(0.464118\pi\)
\(240\) 0 0
\(241\) 4538.85 1.21317 0.606584 0.795020i \(-0.292540\pi\)
0.606584 + 0.795020i \(0.292540\pi\)
\(242\) −12285.1 −3.26329
\(243\) 0 0
\(244\) −5001.98 −1.31237
\(245\) 0 0
\(246\) 0 0
\(247\) 686.479 0.176841
\(248\) 349.015 0.0893648
\(249\) 0 0
\(250\) 0 0
\(251\) −7232.00 −1.81865 −0.909323 0.416091i \(-0.863400\pi\)
−0.909323 + 0.416091i \(0.863400\pi\)
\(252\) 0 0
\(253\) −6180.96 −1.53594
\(254\) 1116.93 0.275915
\(255\) 0 0
\(256\) −7793.41 −1.90269
\(257\) −4242.66 −1.02977 −0.514883 0.857260i \(-0.672165\pi\)
−0.514883 + 0.857260i \(0.672165\pi\)
\(258\) 0 0
\(259\) 1682.03 0.403537
\(260\) 0 0
\(261\) 0 0
\(262\) −4715.20 −1.11185
\(263\) −6604.75 −1.54854 −0.774271 0.632855i \(-0.781883\pi\)
−0.774271 + 0.632855i \(0.781883\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −1650.85 −0.380526
\(267\) 0 0
\(268\) −8368.07 −1.90732
\(269\) −4612.29 −1.04541 −0.522707 0.852512i \(-0.675078\pi\)
−0.522707 + 0.852512i \(0.675078\pi\)
\(270\) 0 0
\(271\) −3542.29 −0.794018 −0.397009 0.917815i \(-0.629952\pi\)
−0.397009 + 0.917815i \(0.629952\pi\)
\(272\) −3233.62 −0.720834
\(273\) 0 0
\(274\) 3368.52 0.742699
\(275\) 0 0
\(276\) 0 0
\(277\) 19.5351 0.00423737 0.00211868 0.999998i \(-0.499326\pi\)
0.00211868 + 0.999998i \(0.499326\pi\)
\(278\) 1445.38 0.311829
\(279\) 0 0
\(280\) 0 0
\(281\) −6769.20 −1.43707 −0.718535 0.695491i \(-0.755187\pi\)
−0.718535 + 0.695491i \(0.755187\pi\)
\(282\) 0 0
\(283\) 1269.89 0.266740 0.133370 0.991066i \(-0.457420\pi\)
0.133370 + 0.991066i \(0.457420\pi\)
\(284\) 2492.81 0.520850
\(285\) 0 0
\(286\) 4243.98 0.877455
\(287\) −2347.14 −0.482743
\(288\) 0 0
\(289\) −879.424 −0.178999
\(290\) 0 0
\(291\) 0 0
\(292\) 4721.35 0.946220
\(293\) −6349.74 −1.26606 −0.633030 0.774127i \(-0.718189\pi\)
−0.633030 + 0.774127i \(0.718189\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −8657.82 −1.70009
\(297\) 0 0
\(298\) −8676.39 −1.68661
\(299\) 1400.58 0.270894
\(300\) 0 0
\(301\) 358.808 0.0687087
\(302\) −5816.15 −1.10822
\(303\) 0 0
\(304\) 2480.03 0.467893
\(305\) 0 0
\(306\) 0 0
\(307\) −4772.37 −0.887211 −0.443605 0.896222i \(-0.646301\pi\)
−0.443605 + 0.896222i \(0.646301\pi\)
\(308\) −6722.95 −1.24375
\(309\) 0 0
\(310\) 0 0
\(311\) −740.703 −0.135053 −0.0675264 0.997717i \(-0.521511\pi\)
−0.0675264 + 0.997717i \(0.521511\pi\)
\(312\) 0 0
\(313\) −2279.68 −0.411678 −0.205839 0.978586i \(-0.565992\pi\)
−0.205839 + 0.978586i \(0.565992\pi\)
\(314\) −1984.11 −0.356592
\(315\) 0 0
\(316\) −7793.81 −1.38746
\(317\) 10198.1 1.80689 0.903446 0.428702i \(-0.141029\pi\)
0.903446 + 0.428702i \(0.141029\pi\)
\(318\) 0 0
\(319\) −4295.09 −0.753852
\(320\) 0 0
\(321\) 0 0
\(322\) −3368.10 −0.582910
\(323\) −3093.56 −0.532911
\(324\) 0 0
\(325\) 0 0
\(326\) 9832.01 1.67038
\(327\) 0 0
\(328\) 12081.3 2.03378
\(329\) 3160.95 0.529692
\(330\) 0 0
\(331\) −78.0380 −0.0129588 −0.00647939 0.999979i \(-0.502062\pi\)
−0.00647939 + 0.999979i \(0.502062\pi\)
\(332\) 7934.59 1.31165
\(333\) 0 0
\(334\) 2517.74 0.412469
\(335\) 0 0
\(336\) 0 0
\(337\) −4164.73 −0.673196 −0.336598 0.941648i \(-0.609276\pi\)
−0.336598 + 0.941648i \(0.609276\pi\)
\(338\) 9675.49 1.55703
\(339\) 0 0
\(340\) 0 0
\(341\) 602.468 0.0956759
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) −1846.87 −0.289467
\(345\) 0 0
\(346\) −12403.9 −1.92728
\(347\) −1795.19 −0.277726 −0.138863 0.990312i \(-0.544345\pi\)
−0.138863 + 0.990312i \(0.544345\pi\)
\(348\) 0 0
\(349\) −11751.4 −1.80241 −0.901203 0.433398i \(-0.857314\pi\)
−0.901203 + 0.433398i \(0.857314\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2595.66 −0.393038
\(353\) −2882.32 −0.434590 −0.217295 0.976106i \(-0.569723\pi\)
−0.217295 + 0.976106i \(0.569723\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −8387.34 −1.24868
\(357\) 0 0
\(358\) −14728.7 −2.17441
\(359\) 1193.78 0.175503 0.0877513 0.996142i \(-0.472032\pi\)
0.0877513 + 0.996142i \(0.472032\pi\)
\(360\) 0 0
\(361\) −4486.39 −0.654088
\(362\) 17662.5 2.56442
\(363\) 0 0
\(364\) 1523.39 0.219360
\(365\) 0 0
\(366\) 0 0
\(367\) 8858.80 1.26001 0.630007 0.776589i \(-0.283052\pi\)
0.630007 + 0.776589i \(0.283052\pi\)
\(368\) 5059.83 0.716744
\(369\) 0 0
\(370\) 0 0
\(371\) 1260.10 0.176337
\(372\) 0 0
\(373\) −2287.78 −0.317578 −0.158789 0.987313i \(-0.550759\pi\)
−0.158789 + 0.987313i \(0.550759\pi\)
\(374\) −19125.1 −2.64422
\(375\) 0 0
\(376\) −16270.2 −2.23157
\(377\) 973.246 0.132957
\(378\) 0 0
\(379\) 8870.18 1.20219 0.601095 0.799177i \(-0.294731\pi\)
0.601095 + 0.799177i \(0.294731\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −19807.8 −2.65303
\(383\) −13359.2 −1.78231 −0.891155 0.453700i \(-0.850104\pi\)
−0.891155 + 0.453700i \(0.850104\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −14775.3 −1.94830
\(387\) 0 0
\(388\) 28769.0 3.76424
\(389\) −11324.7 −1.47605 −0.738025 0.674773i \(-0.764241\pi\)
−0.738025 + 0.674773i \(0.764241\pi\)
\(390\) 0 0
\(391\) −6311.57 −0.816342
\(392\) −1765.51 −0.227479
\(393\) 0 0
\(394\) 14580.4 1.86434
\(395\) 0 0
\(396\) 0 0
\(397\) −13242.8 −1.67415 −0.837076 0.547087i \(-0.815737\pi\)
−0.837076 + 0.547087i \(0.815737\pi\)
\(398\) −968.056 −0.121920
\(399\) 0 0
\(400\) 0 0
\(401\) −1952.96 −0.243207 −0.121604 0.992579i \(-0.538804\pi\)
−0.121604 + 0.992579i \(0.538804\pi\)
\(402\) 0 0
\(403\) −136.516 −0.0168744
\(404\) 26030.3 3.20558
\(405\) 0 0
\(406\) −2340.46 −0.286097
\(407\) −14945.1 −1.82015
\(408\) 0 0
\(409\) −10597.8 −1.28124 −0.640618 0.767860i \(-0.721322\pi\)
−0.640618 + 0.767860i \(0.721322\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −15660.9 −1.87271
\(413\) −1880.20 −0.224016
\(414\) 0 0
\(415\) 0 0
\(416\) 588.164 0.0693200
\(417\) 0 0
\(418\) 14668.1 1.71636
\(419\) 1631.18 0.190187 0.0950935 0.995468i \(-0.469685\pi\)
0.0950935 + 0.995468i \(0.469685\pi\)
\(420\) 0 0
\(421\) 13181.2 1.52592 0.762961 0.646445i \(-0.223745\pi\)
0.762961 + 0.646445i \(0.223745\pi\)
\(422\) 1440.12 0.166123
\(423\) 0 0
\(424\) −6486.06 −0.742903
\(425\) 0 0
\(426\) 0 0
\(427\) −2267.47 −0.256980
\(428\) −14100.8 −1.59250
\(429\) 0 0
\(430\) 0 0
\(431\) −9159.40 −1.02365 −0.511825 0.859090i \(-0.671030\pi\)
−0.511825 + 0.859090i \(0.671030\pi\)
\(432\) 0 0
\(433\) 270.519 0.0300238 0.0150119 0.999887i \(-0.495221\pi\)
0.0150119 + 0.999887i \(0.495221\pi\)
\(434\) 328.295 0.0363103
\(435\) 0 0
\(436\) −21574.3 −2.36977
\(437\) 4840.67 0.529887
\(438\) 0 0
\(439\) 17008.0 1.84908 0.924541 0.381082i \(-0.124448\pi\)
0.924541 + 0.381082i \(0.124448\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 4333.66 0.466360
\(443\) −3968.12 −0.425578 −0.212789 0.977098i \(-0.568255\pi\)
−0.212789 + 0.977098i \(0.568255\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 30418.7 3.22952
\(447\) 0 0
\(448\) −4265.64 −0.449850
\(449\) 12480.3 1.31177 0.655884 0.754862i \(-0.272296\pi\)
0.655884 + 0.754862i \(0.272296\pi\)
\(450\) 0 0
\(451\) 20854.8 2.17741
\(452\) −32157.3 −3.34636
\(453\) 0 0
\(454\) −11413.2 −1.17984
\(455\) 0 0
\(456\) 0 0
\(457\) 5782.90 0.591932 0.295966 0.955199i \(-0.404359\pi\)
0.295966 + 0.955199i \(0.404359\pi\)
\(458\) 11991.9 1.22346
\(459\) 0 0
\(460\) 0 0
\(461\) −10049.6 −1.01531 −0.507653 0.861562i \(-0.669487\pi\)
−0.507653 + 0.861562i \(0.669487\pi\)
\(462\) 0 0
\(463\) −659.842 −0.0662321 −0.0331161 0.999452i \(-0.510543\pi\)
−0.0331161 + 0.999452i \(0.510543\pi\)
\(464\) 3516.03 0.351783
\(465\) 0 0
\(466\) −24898.2 −2.47508
\(467\) 4467.60 0.442690 0.221345 0.975196i \(-0.428955\pi\)
0.221345 + 0.975196i \(0.428955\pi\)
\(468\) 0 0
\(469\) −3793.37 −0.373479
\(470\) 0 0
\(471\) 0 0
\(472\) 9677.87 0.943771
\(473\) −3188.07 −0.309910
\(474\) 0 0
\(475\) 0 0
\(476\) −6865.01 −0.661044
\(477\) 0 0
\(478\) −4024.64 −0.385110
\(479\) −7633.87 −0.728185 −0.364092 0.931363i \(-0.618621\pi\)
−0.364092 + 0.931363i \(0.618621\pi\)
\(480\) 0 0
\(481\) 3386.49 0.321020
\(482\) −21975.6 −2.07669
\(483\) 0 0
\(484\) 39181.5 3.67971
\(485\) 0 0
\(486\) 0 0
\(487\) 6289.84 0.585256 0.292628 0.956226i \(-0.405470\pi\)
0.292628 + 0.956226i \(0.405470\pi\)
\(488\) 11671.2 1.08265
\(489\) 0 0
\(490\) 0 0
\(491\) −3562.54 −0.327445 −0.163722 0.986506i \(-0.552350\pi\)
−0.163722 + 0.986506i \(0.552350\pi\)
\(492\) 0 0
\(493\) −4385.85 −0.400667
\(494\) −3323.71 −0.302714
\(495\) 0 0
\(496\) −493.190 −0.0446469
\(497\) 1130.03 0.101990
\(498\) 0 0
\(499\) −18916.9 −1.69706 −0.848532 0.529144i \(-0.822513\pi\)
−0.848532 + 0.529144i \(0.822513\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 35015.0 3.11314
\(503\) −2565.91 −0.227452 −0.113726 0.993512i \(-0.536279\pi\)
−0.113726 + 0.993512i \(0.536279\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 29926.2 2.62921
\(507\) 0 0
\(508\) −3562.28 −0.311123
\(509\) −5447.84 −0.474403 −0.237202 0.971460i \(-0.576230\pi\)
−0.237202 + 0.971460i \(0.576230\pi\)
\(510\) 0 0
\(511\) 2140.26 0.185283
\(512\) 16800.8 1.45019
\(513\) 0 0
\(514\) 20541.6 1.76274
\(515\) 0 0
\(516\) 0 0
\(517\) −28085.5 −2.38917
\(518\) −8143.83 −0.690771
\(519\) 0 0
\(520\) 0 0
\(521\) 4732.95 0.397993 0.198997 0.980000i \(-0.436232\pi\)
0.198997 + 0.980000i \(0.436232\pi\)
\(522\) 0 0
\(523\) −9182.96 −0.767769 −0.383884 0.923381i \(-0.625414\pi\)
−0.383884 + 0.923381i \(0.625414\pi\)
\(524\) 15038.4 1.25373
\(525\) 0 0
\(526\) 31978.0 2.65078
\(527\) 615.199 0.0508510
\(528\) 0 0
\(529\) −2290.93 −0.188290
\(530\) 0 0
\(531\) 0 0
\(532\) 5265.13 0.429083
\(533\) −4725.59 −0.384030
\(534\) 0 0
\(535\) 0 0
\(536\) 19525.4 1.57345
\(537\) 0 0
\(538\) 22331.2 1.78953
\(539\) −3047.61 −0.243544
\(540\) 0 0
\(541\) 14572.9 1.15811 0.579055 0.815288i \(-0.303422\pi\)
0.579055 + 0.815288i \(0.303422\pi\)
\(542\) 17150.6 1.35919
\(543\) 0 0
\(544\) −2650.51 −0.208896
\(545\) 0 0
\(546\) 0 0
\(547\) 11290.3 0.882519 0.441260 0.897380i \(-0.354532\pi\)
0.441260 + 0.897380i \(0.354532\pi\)
\(548\) −10743.4 −0.837472
\(549\) 0 0
\(550\) 0 0
\(551\) 3363.73 0.260072
\(552\) 0 0
\(553\) −3533.05 −0.271683
\(554\) −94.5826 −0.00725349
\(555\) 0 0
\(556\) −4609.84 −0.351620
\(557\) −3919.93 −0.298191 −0.149096 0.988823i \(-0.547636\pi\)
−0.149096 + 0.988823i \(0.547636\pi\)
\(558\) 0 0
\(559\) 722.401 0.0546588
\(560\) 0 0
\(561\) 0 0
\(562\) 32774.2 2.45996
\(563\) 7444.71 0.557295 0.278647 0.960393i \(-0.410114\pi\)
0.278647 + 0.960393i \(0.410114\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −6148.41 −0.456602
\(567\) 0 0
\(568\) −5816.55 −0.429678
\(569\) −8529.24 −0.628408 −0.314204 0.949355i \(-0.601738\pi\)
−0.314204 + 0.949355i \(0.601738\pi\)
\(570\) 0 0
\(571\) 10324.8 0.756706 0.378353 0.925661i \(-0.376491\pi\)
0.378353 + 0.925661i \(0.376491\pi\)
\(572\) −13535.6 −0.989423
\(573\) 0 0
\(574\) 11364.1 0.826355
\(575\) 0 0
\(576\) 0 0
\(577\) 6467.10 0.466601 0.233301 0.972405i \(-0.425047\pi\)
0.233301 + 0.972405i \(0.425047\pi\)
\(578\) 4257.88 0.306409
\(579\) 0 0
\(580\) 0 0
\(581\) 3596.87 0.256839
\(582\) 0 0
\(583\) −11196.2 −0.795369
\(584\) −11016.5 −0.780589
\(585\) 0 0
\(586\) 30743.4 2.16723
\(587\) −7114.68 −0.500263 −0.250131 0.968212i \(-0.580474\pi\)
−0.250131 + 0.968212i \(0.580474\pi\)
\(588\) 0 0
\(589\) −471.828 −0.0330073
\(590\) 0 0
\(591\) 0 0
\(592\) 12234.3 0.849369
\(593\) 21270.8 1.47299 0.736497 0.676441i \(-0.236478\pi\)
0.736497 + 0.676441i \(0.236478\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 27672.1 1.90183
\(597\) 0 0
\(598\) −6781.13 −0.463714
\(599\) 4697.43 0.320420 0.160210 0.987083i \(-0.448783\pi\)
0.160210 + 0.987083i \(0.448783\pi\)
\(600\) 0 0
\(601\) 8719.81 0.591828 0.295914 0.955215i \(-0.404376\pi\)
0.295914 + 0.955215i \(0.404376\pi\)
\(602\) −1737.23 −0.117615
\(603\) 0 0
\(604\) 18549.7 1.24963
\(605\) 0 0
\(606\) 0 0
\(607\) −23097.1 −1.54445 −0.772227 0.635347i \(-0.780857\pi\)
−0.772227 + 0.635347i \(0.780857\pi\)
\(608\) 2032.81 0.135594
\(609\) 0 0
\(610\) 0 0
\(611\) 6364.05 0.421378
\(612\) 0 0
\(613\) −16846.2 −1.10997 −0.554986 0.831860i \(-0.687276\pi\)
−0.554986 + 0.831860i \(0.687276\pi\)
\(614\) 23106.3 1.51872
\(615\) 0 0
\(616\) 15686.8 1.02604
\(617\) −3476.46 −0.226834 −0.113417 0.993547i \(-0.536180\pi\)
−0.113417 + 0.993547i \(0.536180\pi\)
\(618\) 0 0
\(619\) −5407.16 −0.351102 −0.175551 0.984470i \(-0.556171\pi\)
−0.175551 + 0.984470i \(0.556171\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 3586.24 0.231182
\(623\) −3802.11 −0.244508
\(624\) 0 0
\(625\) 0 0
\(626\) 11037.5 0.704706
\(627\) 0 0
\(628\) 6328.02 0.402095
\(629\) −15260.9 −0.967396
\(630\) 0 0
\(631\) −10498.7 −0.662358 −0.331179 0.943568i \(-0.607446\pi\)
−0.331179 + 0.943568i \(0.607446\pi\)
\(632\) 18185.5 1.14459
\(633\) 0 0
\(634\) −49376.1 −3.09302
\(635\) 0 0
\(636\) 0 0
\(637\) 690.574 0.0429538
\(638\) 20795.4 1.29044
\(639\) 0 0
\(640\) 0 0
\(641\) −14363.3 −0.885050 −0.442525 0.896756i \(-0.645917\pi\)
−0.442525 + 0.896756i \(0.645917\pi\)
\(642\) 0 0
\(643\) 16883.3 1.03548 0.517739 0.855539i \(-0.326774\pi\)
0.517739 + 0.855539i \(0.326774\pi\)
\(644\) 10742.1 0.657293
\(645\) 0 0
\(646\) 14978.0 0.912231
\(647\) 27365.2 1.66281 0.831404 0.555668i \(-0.187538\pi\)
0.831404 + 0.555668i \(0.187538\pi\)
\(648\) 0 0
\(649\) 16705.9 1.01042
\(650\) 0 0
\(651\) 0 0
\(652\) −31357.8 −1.88353
\(653\) −28643.3 −1.71654 −0.858269 0.513200i \(-0.828460\pi\)
−0.858269 + 0.513200i \(0.828460\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −17072.0 −1.01608
\(657\) 0 0
\(658\) −15304.3 −0.906721
\(659\) 4102.07 0.242480 0.121240 0.992623i \(-0.461313\pi\)
0.121240 + 0.992623i \(0.461313\pi\)
\(660\) 0 0
\(661\) −13784.0 −0.811098 −0.405549 0.914073i \(-0.632920\pi\)
−0.405549 + 0.914073i \(0.632920\pi\)
\(662\) 377.834 0.0221827
\(663\) 0 0
\(664\) −18514.0 −1.08205
\(665\) 0 0
\(666\) 0 0
\(667\) 6862.79 0.398393
\(668\) −8029.95 −0.465102
\(669\) 0 0
\(670\) 0 0
\(671\) 20146.9 1.15911
\(672\) 0 0
\(673\) 4676.98 0.267882 0.133941 0.990989i \(-0.457237\pi\)
0.133941 + 0.990989i \(0.457237\pi\)
\(674\) 20164.2 1.15237
\(675\) 0 0
\(676\) −30858.5 −1.75572
\(677\) −3849.54 −0.218537 −0.109269 0.994012i \(-0.534851\pi\)
−0.109269 + 0.994012i \(0.534851\pi\)
\(678\) 0 0
\(679\) 13041.4 0.737091
\(680\) 0 0
\(681\) 0 0
\(682\) −2916.96 −0.163777
\(683\) 10647.5 0.596508 0.298254 0.954487i \(-0.403596\pi\)
0.298254 + 0.954487i \(0.403596\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1660.69 −0.0924280
\(687\) 0 0
\(688\) 2609.80 0.144619
\(689\) 2537.01 0.140279
\(690\) 0 0
\(691\) 22410.8 1.23379 0.616894 0.787046i \(-0.288391\pi\)
0.616894 + 0.787046i \(0.288391\pi\)
\(692\) 39560.4 2.17321
\(693\) 0 0
\(694\) 8691.72 0.475408
\(695\) 0 0
\(696\) 0 0
\(697\) 21295.4 1.15728
\(698\) 56896.6 3.08534
\(699\) 0 0
\(700\) 0 0
\(701\) −6040.55 −0.325461 −0.162731 0.986671i \(-0.552030\pi\)
−0.162731 + 0.986671i \(0.552030\pi\)
\(702\) 0 0
\(703\) 11704.4 0.627936
\(704\) 37901.0 2.02904
\(705\) 0 0
\(706\) 13955.2 0.743926
\(707\) 11799.9 0.627697
\(708\) 0 0
\(709\) 19582.2 1.03727 0.518634 0.854996i \(-0.326441\pi\)
0.518634 + 0.854996i \(0.326441\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 19570.4 1.03010
\(713\) −962.637 −0.0505625
\(714\) 0 0
\(715\) 0 0
\(716\) 46975.2 2.45188
\(717\) 0 0
\(718\) −5779.91 −0.300424
\(719\) −9257.31 −0.480166 −0.240083 0.970752i \(-0.577175\pi\)
−0.240083 + 0.970752i \(0.577175\pi\)
\(720\) 0 0
\(721\) −7099.32 −0.366702
\(722\) 21721.6 1.11966
\(723\) 0 0
\(724\) −56332.0 −2.89166
\(725\) 0 0
\(726\) 0 0
\(727\) 11915.5 0.607870 0.303935 0.952693i \(-0.401699\pi\)
0.303935 + 0.952693i \(0.401699\pi\)
\(728\) −3554.56 −0.180963
\(729\) 0 0
\(730\) 0 0
\(731\) −3255.43 −0.164715
\(732\) 0 0
\(733\) −15608.0 −0.786486 −0.393243 0.919435i \(-0.628647\pi\)
−0.393243 + 0.919435i \(0.628647\pi\)
\(734\) −42891.4 −2.15688
\(735\) 0 0
\(736\) 4147.40 0.207711
\(737\) 33704.8 1.68457
\(738\) 0 0
\(739\) −26189.9 −1.30367 −0.651835 0.758361i \(-0.726000\pi\)
−0.651835 + 0.758361i \(0.726000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −6101.00 −0.301853
\(743\) −37914.9 −1.87209 −0.936044 0.351882i \(-0.885542\pi\)
−0.936044 + 0.351882i \(0.885542\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 11076.7 0.543627
\(747\) 0 0
\(748\) 60996.8 2.98164
\(749\) −6392.12 −0.311833
\(750\) 0 0
\(751\) −21401.6 −1.03989 −0.519944 0.854200i \(-0.674047\pi\)
−0.519944 + 0.854200i \(0.674047\pi\)
\(752\) 22991.3 1.11490
\(753\) 0 0
\(754\) −4712.14 −0.227594
\(755\) 0 0
\(756\) 0 0
\(757\) 24094.8 1.15686 0.578428 0.815734i \(-0.303667\pi\)
0.578428 + 0.815734i \(0.303667\pi\)
\(758\) −42946.5 −2.05790
\(759\) 0 0
\(760\) 0 0
\(761\) −19101.1 −0.909872 −0.454936 0.890524i \(-0.650338\pi\)
−0.454936 + 0.890524i \(0.650338\pi\)
\(762\) 0 0
\(763\) −9779.94 −0.464033
\(764\) 63174.2 2.99157
\(765\) 0 0
\(766\) 64681.0 3.05094
\(767\) −3785.48 −0.178208
\(768\) 0 0
\(769\) −32718.1 −1.53426 −0.767129 0.641493i \(-0.778315\pi\)
−0.767129 + 0.641493i \(0.778315\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 47123.8 2.19692
\(773\) 4707.97 0.219061 0.109530 0.993983i \(-0.465065\pi\)
0.109530 + 0.993983i \(0.465065\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −67127.6 −3.10533
\(777\) 0 0
\(778\) 54830.3 2.52669
\(779\) −16332.6 −0.751187
\(780\) 0 0
\(781\) −10040.5 −0.460023
\(782\) 30558.5 1.39741
\(783\) 0 0
\(784\) 2494.82 0.113649
\(785\) 0 0
\(786\) 0 0
\(787\) 3218.47 0.145776 0.0728882 0.997340i \(-0.476778\pi\)
0.0728882 + 0.997340i \(0.476778\pi\)
\(788\) −46502.1 −2.10224
\(789\) 0 0
\(790\) 0 0
\(791\) −14577.4 −0.655262
\(792\) 0 0
\(793\) −4565.18 −0.204432
\(794\) 64117.4 2.86580
\(795\) 0 0
\(796\) 3087.47 0.137478
\(797\) 15548.9 0.691054 0.345527 0.938409i \(-0.387700\pi\)
0.345527 + 0.938409i \(0.387700\pi\)
\(798\) 0 0
\(799\) −28679.0 −1.26982
\(800\) 0 0
\(801\) 0 0
\(802\) 9455.58 0.416319
\(803\) −19016.6 −0.835717
\(804\) 0 0
\(805\) 0 0
\(806\) 660.968 0.0288854
\(807\) 0 0
\(808\) −60737.1 −2.64446
\(809\) 3106.83 0.135019 0.0675095 0.997719i \(-0.478495\pi\)
0.0675095 + 0.997719i \(0.478495\pi\)
\(810\) 0 0
\(811\) −44061.1 −1.90776 −0.953882 0.300183i \(-0.902952\pi\)
−0.953882 + 0.300183i \(0.902952\pi\)
\(812\) 7464.56 0.322604
\(813\) 0 0
\(814\) 72359.3 3.11572
\(815\) 0 0
\(816\) 0 0
\(817\) 2496.76 0.106916
\(818\) 51310.9 2.19321
\(819\) 0 0
\(820\) 0 0
\(821\) −13977.3 −0.594169 −0.297084 0.954851i \(-0.596014\pi\)
−0.297084 + 0.954851i \(0.596014\pi\)
\(822\) 0 0
\(823\) 3287.14 0.139225 0.0696127 0.997574i \(-0.477824\pi\)
0.0696127 + 0.997574i \(0.477824\pi\)
\(824\) 36542.0 1.54490
\(825\) 0 0
\(826\) 9103.32 0.383469
\(827\) 2454.69 0.103214 0.0516069 0.998667i \(-0.483566\pi\)
0.0516069 + 0.998667i \(0.483566\pi\)
\(828\) 0 0
\(829\) −38510.6 −1.61342 −0.806711 0.590946i \(-0.798755\pi\)
−0.806711 + 0.590946i \(0.798755\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −8588.18 −0.357862
\(833\) −3112.01 −0.129442
\(834\) 0 0
\(835\) 0 0
\(836\) −46781.6 −1.93538
\(837\) 0 0
\(838\) −7897.64 −0.325560
\(839\) −32983.5 −1.35723 −0.678616 0.734493i \(-0.737420\pi\)
−0.678616 + 0.734493i \(0.737420\pi\)
\(840\) 0 0
\(841\) −19620.1 −0.804466
\(842\) −63819.1 −2.61206
\(843\) 0 0
\(844\) −4593.04 −0.187321
\(845\) 0 0
\(846\) 0 0
\(847\) 17761.6 0.720537
\(848\) 9165.39 0.371157
\(849\) 0 0
\(850\) 0 0
\(851\) 23879.6 0.961906
\(852\) 0 0
\(853\) −13620.1 −0.546710 −0.273355 0.961913i \(-0.588133\pi\)
−0.273355 + 0.961913i \(0.588133\pi\)
\(854\) 10978.4 0.439897
\(855\) 0 0
\(856\) 32901.9 1.31374
\(857\) −24493.2 −0.976279 −0.488139 0.872766i \(-0.662324\pi\)
−0.488139 + 0.872766i \(0.662324\pi\)
\(858\) 0 0
\(859\) 3742.34 0.148646 0.0743231 0.997234i \(-0.476320\pi\)
0.0743231 + 0.997234i \(0.476320\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 44346.8 1.75227
\(863\) −165.238 −0.00651770 −0.00325885 0.999995i \(-0.501037\pi\)
−0.00325885 + 0.999995i \(0.501037\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −1309.77 −0.0513945
\(867\) 0 0
\(868\) −1047.05 −0.0409437
\(869\) 31391.8 1.22542
\(870\) 0 0
\(871\) −7637.33 −0.297108
\(872\) 50339.8 1.95495
\(873\) 0 0
\(874\) −23436.9 −0.907055
\(875\) 0 0
\(876\) 0 0
\(877\) 7230.06 0.278383 0.139192 0.990265i \(-0.455550\pi\)
0.139192 + 0.990265i \(0.455550\pi\)
\(878\) −82347.2 −3.16524
\(879\) 0 0
\(880\) 0 0
\(881\) 18707.9 0.715422 0.357711 0.933832i \(-0.383557\pi\)
0.357711 + 0.933832i \(0.383557\pi\)
\(882\) 0 0
\(883\) −28766.9 −1.09636 −0.548179 0.836361i \(-0.684679\pi\)
−0.548179 + 0.836361i \(0.684679\pi\)
\(884\) −13821.6 −0.525871
\(885\) 0 0
\(886\) 19212.3 0.728500
\(887\) 33980.4 1.28630 0.643152 0.765738i \(-0.277626\pi\)
0.643152 + 0.765738i \(0.277626\pi\)
\(888\) 0 0
\(889\) −1614.84 −0.0609222
\(890\) 0 0
\(891\) 0 0
\(892\) −97015.8 −3.64163
\(893\) 21995.4 0.824242
\(894\) 0 0
\(895\) 0 0
\(896\) 18315.8 0.682910
\(897\) 0 0
\(898\) −60425.7 −2.24547
\(899\) −668.927 −0.0248164
\(900\) 0 0
\(901\) −11432.8 −0.422732
\(902\) −100972. −3.72727
\(903\) 0 0
\(904\) 75033.5 2.76059
\(905\) 0 0
\(906\) 0 0
\(907\) −35753.2 −1.30889 −0.654446 0.756109i \(-0.727098\pi\)
−0.654446 + 0.756109i \(0.727098\pi\)
\(908\) 36400.6 1.33039
\(909\) 0 0
\(910\) 0 0
\(911\) −16039.7 −0.583334 −0.291667 0.956520i \(-0.594210\pi\)
−0.291667 + 0.956520i \(0.594210\pi\)
\(912\) 0 0
\(913\) −31958.8 −1.15847
\(914\) −27998.9 −1.01326
\(915\) 0 0
\(916\) −38246.5 −1.37958
\(917\) 6817.14 0.245498
\(918\) 0 0
\(919\) 22104.9 0.793441 0.396720 0.917940i \(-0.370148\pi\)
0.396720 + 0.917940i \(0.370148\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 48656.8 1.73799
\(923\) 2275.13 0.0811342
\(924\) 0 0
\(925\) 0 0
\(926\) 3194.74 0.113376
\(927\) 0 0
\(928\) 2881.99 0.101946
\(929\) −20234.8 −0.714621 −0.357310 0.933986i \(-0.616306\pi\)
−0.357310 + 0.933986i \(0.616306\pi\)
\(930\) 0 0
\(931\) 2386.76 0.0840204
\(932\) 79409.1 2.79091
\(933\) 0 0
\(934\) −21630.7 −0.757792
\(935\) 0 0
\(936\) 0 0
\(937\) −37551.2 −1.30923 −0.654614 0.755964i \(-0.727169\pi\)
−0.654614 + 0.755964i \(0.727169\pi\)
\(938\) 18366.3 0.639318
\(939\) 0 0
\(940\) 0 0
\(941\) −19093.3 −0.661449 −0.330725 0.943727i \(-0.607293\pi\)
−0.330725 + 0.943727i \(0.607293\pi\)
\(942\) 0 0
\(943\) −33322.2 −1.15071
\(944\) −13675.7 −0.471511
\(945\) 0 0
\(946\) 15435.6 0.530501
\(947\) 10117.0 0.347158 0.173579 0.984820i \(-0.444467\pi\)
0.173579 + 0.984820i \(0.444467\pi\)
\(948\) 0 0
\(949\) 4309.06 0.147395
\(950\) 0 0
\(951\) 0 0
\(952\) 16018.3 0.545332
\(953\) −6272.48 −0.213206 −0.106603 0.994302i \(-0.533997\pi\)
−0.106603 + 0.994302i \(0.533997\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 12836.0 0.434253
\(957\) 0 0
\(958\) 36960.7 1.24650
\(959\) −4870.14 −0.163988
\(960\) 0 0
\(961\) −29697.2 −0.996850
\(962\) −16396.3 −0.549519
\(963\) 0 0
\(964\) 70088.1 2.34169
\(965\) 0 0
\(966\) 0 0
\(967\) 26660.8 0.886613 0.443307 0.896370i \(-0.353805\pi\)
0.443307 + 0.896370i \(0.353805\pi\)
\(968\) −91423.3 −3.03560
\(969\) 0 0
\(970\) 0 0
\(971\) 461.190 0.0152423 0.00762116 0.999971i \(-0.497574\pi\)
0.00762116 + 0.999971i \(0.497574\pi\)
\(972\) 0 0
\(973\) −2089.71 −0.0688520
\(974\) −30453.3 −1.00184
\(975\) 0 0
\(976\) −16492.5 −0.540895
\(977\) 4058.08 0.132886 0.0664429 0.997790i \(-0.478835\pi\)
0.0664429 + 0.997790i \(0.478835\pi\)
\(978\) 0 0
\(979\) 33782.4 1.10285
\(980\) 0 0
\(981\) 0 0
\(982\) 17248.7 0.560517
\(983\) −3259.92 −0.105773 −0.0528867 0.998601i \(-0.516842\pi\)
−0.0528867 + 0.998601i \(0.516842\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 21234.8 0.685857
\(987\) 0 0
\(988\) 10600.5 0.341342
\(989\) 5093.96 0.163780
\(990\) 0 0
\(991\) −21398.9 −0.685933 −0.342967 0.939348i \(-0.611432\pi\)
−0.342967 + 0.939348i \(0.611432\pi\)
\(992\) −404.254 −0.0129386
\(993\) 0 0
\(994\) −5471.24 −0.174585
\(995\) 0 0
\(996\) 0 0
\(997\) −28609.5 −0.908798 −0.454399 0.890798i \(-0.650146\pi\)
−0.454399 + 0.890798i \(0.650146\pi\)
\(998\) 91589.2 2.90502
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.4.a.bg.1.1 4
3.2 odd 2 175.4.a.h.1.4 yes 4
5.4 even 2 1575.4.a.bl.1.4 4
15.2 even 4 175.4.b.f.99.7 8
15.8 even 4 175.4.b.f.99.2 8
15.14 odd 2 175.4.a.g.1.1 4
21.20 even 2 1225.4.a.bd.1.4 4
105.104 even 2 1225.4.a.z.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.4.a.g.1.1 4 15.14 odd 2
175.4.a.h.1.4 yes 4 3.2 odd 2
175.4.b.f.99.2 8 15.8 even 4
175.4.b.f.99.7 8 15.2 even 4
1225.4.a.z.1.1 4 105.104 even 2
1225.4.a.bd.1.4 4 21.20 even 2
1575.4.a.bg.1.1 4 1.1 even 1 trivial
1575.4.a.bl.1.4 4 5.4 even 2