Properties

Label 1575.4.a.bb.1.2
Level $1575$
Weight $4$
Character 1575.1
Self dual yes
Analytic conductor $92.928$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1575,4,Mod(1,1575)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1575.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1575, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1575.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-2,0,14,0,0,-21,-66,0,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.9280082590\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.22952.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 18x + 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 315)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.770205\) of defining polynomial
Character \(\chi\) \(=\) 1575.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.229795 q^{2} -7.94719 q^{4} -7.00000 q^{7} +3.66459 q^{8} -51.0059 q^{11} -46.0867 q^{13} +1.60857 q^{14} +62.7354 q^{16} -72.7575 q^{17} -123.876 q^{19} +11.7209 q^{22} -156.124 q^{23} +10.5905 q^{26} +55.6304 q^{28} +191.155 q^{29} -116.298 q^{31} -43.7331 q^{32} +16.7194 q^{34} -83.1918 q^{37} +28.4660 q^{38} +466.186 q^{41} -422.695 q^{43} +405.354 q^{44} +35.8766 q^{46} -268.534 q^{47} +49.0000 q^{49} +366.260 q^{52} -310.545 q^{53} -25.6521 q^{56} -43.9266 q^{58} -709.612 q^{59} +402.425 q^{61} +26.7247 q^{62} -491.834 q^{64} +114.306 q^{67} +578.218 q^{68} +214.461 q^{71} -402.954 q^{73} +19.1171 q^{74} +984.463 q^{76} +357.041 q^{77} -1376.43 q^{79} -107.127 q^{82} -1152.33 q^{83} +97.1334 q^{86} -186.916 q^{88} +366.795 q^{89} +322.607 q^{91} +1240.75 q^{92} +61.7080 q^{94} +1068.22 q^{97} -11.2600 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{2} + 14 q^{4} - 21 q^{7} - 66 q^{8} - 20 q^{11} + 14 q^{14} + 114 q^{16} - 234 q^{17} - 82 q^{19} + 236 q^{22} - 30 q^{23} + 76 q^{26} - 98 q^{28} - 32 q^{29} - 362 q^{31} - 430 q^{32} + 596 q^{34}+ \cdots - 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.229795 −0.0812450 −0.0406225 0.999175i \(-0.512934\pi\)
−0.0406225 + 0.999175i \(0.512934\pi\)
\(3\) 0 0
\(4\) −7.94719 −0.993399
\(5\) 0 0
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 3.66459 0.161954
\(9\) 0 0
\(10\) 0 0
\(11\) −51.0059 −1.39808 −0.699039 0.715083i \(-0.746389\pi\)
−0.699039 + 0.715083i \(0.746389\pi\)
\(12\) 0 0
\(13\) −46.0867 −0.983243 −0.491622 0.870809i \(-0.663596\pi\)
−0.491622 + 0.870809i \(0.663596\pi\)
\(14\) 1.60857 0.0307077
\(15\) 0 0
\(16\) 62.7354 0.980241
\(17\) −72.7575 −1.03802 −0.519009 0.854769i \(-0.673699\pi\)
−0.519009 + 0.854769i \(0.673699\pi\)
\(18\) 0 0
\(19\) −123.876 −1.49574 −0.747868 0.663847i \(-0.768922\pi\)
−0.747868 + 0.663847i \(0.768922\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 11.7209 0.113587
\(23\) −156.124 −1.41539 −0.707697 0.706516i \(-0.750266\pi\)
−0.707697 + 0.706516i \(0.750266\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 10.5905 0.0798835
\(27\) 0 0
\(28\) 55.6304 0.375470
\(29\) 191.155 1.22402 0.612011 0.790850i \(-0.290361\pi\)
0.612011 + 0.790850i \(0.290361\pi\)
\(30\) 0 0
\(31\) −116.298 −0.673798 −0.336899 0.941541i \(-0.609378\pi\)
−0.336899 + 0.941541i \(0.609378\pi\)
\(32\) −43.7331 −0.241593
\(33\) 0 0
\(34\) 16.7194 0.0843337
\(35\) 0 0
\(36\) 0 0
\(37\) −83.1918 −0.369639 −0.184820 0.982772i \(-0.559170\pi\)
−0.184820 + 0.982772i \(0.559170\pi\)
\(38\) 28.4660 0.121521
\(39\) 0 0
\(40\) 0 0
\(41\) 466.186 1.77576 0.887879 0.460077i \(-0.152178\pi\)
0.887879 + 0.460077i \(0.152178\pi\)
\(42\) 0 0
\(43\) −422.695 −1.49908 −0.749539 0.661960i \(-0.769725\pi\)
−0.749539 + 0.661960i \(0.769725\pi\)
\(44\) 405.354 1.38885
\(45\) 0 0
\(46\) 35.8766 0.114994
\(47\) −268.534 −0.833400 −0.416700 0.909044i \(-0.636813\pi\)
−0.416700 + 0.909044i \(0.636813\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 366.260 0.976753
\(53\) −310.545 −0.804841 −0.402421 0.915455i \(-0.631831\pi\)
−0.402421 + 0.915455i \(0.631831\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −25.6521 −0.0612127
\(57\) 0 0
\(58\) −43.9266 −0.0994455
\(59\) −709.612 −1.56582 −0.782912 0.622133i \(-0.786266\pi\)
−0.782912 + 0.622133i \(0.786266\pi\)
\(60\) 0 0
\(61\) 402.425 0.844675 0.422338 0.906439i \(-0.361210\pi\)
0.422338 + 0.906439i \(0.361210\pi\)
\(62\) 26.7247 0.0547427
\(63\) 0 0
\(64\) −491.834 −0.960613
\(65\) 0 0
\(66\) 0 0
\(67\) 114.306 0.208428 0.104214 0.994555i \(-0.466767\pi\)
0.104214 + 0.994555i \(0.466767\pi\)
\(68\) 578.218 1.03117
\(69\) 0 0
\(70\) 0 0
\(71\) 214.461 0.358476 0.179238 0.983806i \(-0.442637\pi\)
0.179238 + 0.983806i \(0.442637\pi\)
\(72\) 0 0
\(73\) −402.954 −0.646058 −0.323029 0.946389i \(-0.604701\pi\)
−0.323029 + 0.946389i \(0.604701\pi\)
\(74\) 19.1171 0.0300313
\(75\) 0 0
\(76\) 984.463 1.48586
\(77\) 357.041 0.528424
\(78\) 0 0
\(79\) −1376.43 −1.96026 −0.980128 0.198367i \(-0.936436\pi\)
−0.980128 + 0.198367i \(0.936436\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −107.127 −0.144271
\(83\) −1152.33 −1.52391 −0.761955 0.647630i \(-0.775760\pi\)
−0.761955 + 0.647630i \(0.775760\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 97.1334 0.121793
\(87\) 0 0
\(88\) −186.916 −0.226424
\(89\) 366.795 0.436856 0.218428 0.975853i \(-0.429907\pi\)
0.218428 + 0.975853i \(0.429907\pi\)
\(90\) 0 0
\(91\) 322.607 0.371631
\(92\) 1240.75 1.40605
\(93\) 0 0
\(94\) 61.7080 0.0677095
\(95\) 0 0
\(96\) 0 0
\(97\) 1068.22 1.11816 0.559079 0.829115i \(-0.311155\pi\)
0.559079 + 0.829115i \(0.311155\pi\)
\(98\) −11.2600 −0.0116064
\(99\) 0 0
\(100\) 0 0
\(101\) −393.710 −0.387877 −0.193939 0.981014i \(-0.562126\pi\)
−0.193939 + 0.981014i \(0.562126\pi\)
\(102\) 0 0
\(103\) 1419.35 1.35779 0.678895 0.734235i \(-0.262459\pi\)
0.678895 + 0.734235i \(0.262459\pi\)
\(104\) −168.889 −0.159240
\(105\) 0 0
\(106\) 71.3617 0.0653893
\(107\) −2178.53 −1.96829 −0.984143 0.177377i \(-0.943239\pi\)
−0.984143 + 0.177377i \(0.943239\pi\)
\(108\) 0 0
\(109\) 249.368 0.219130 0.109565 0.993980i \(-0.465054\pi\)
0.109565 + 0.993980i \(0.465054\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −439.148 −0.370496
\(113\) 805.709 0.670750 0.335375 0.942085i \(-0.391137\pi\)
0.335375 + 0.942085i \(0.391137\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1519.15 −1.21594
\(117\) 0 0
\(118\) 163.066 0.127215
\(119\) 509.303 0.392334
\(120\) 0 0
\(121\) 1270.60 0.954623
\(122\) −92.4753 −0.0686256
\(123\) 0 0
\(124\) 924.242 0.669350
\(125\) 0 0
\(126\) 0 0
\(127\) 458.507 0.320362 0.160181 0.987088i \(-0.448792\pi\)
0.160181 + 0.987088i \(0.448792\pi\)
\(128\) 462.886 0.319638
\(129\) 0 0
\(130\) 0 0
\(131\) −1048.12 −0.699041 −0.349521 0.936929i \(-0.613656\pi\)
−0.349521 + 0.936929i \(0.613656\pi\)
\(132\) 0 0
\(133\) 867.129 0.565335
\(134\) −26.2670 −0.0169338
\(135\) 0 0
\(136\) −266.627 −0.168111
\(137\) 1559.36 0.972445 0.486223 0.873835i \(-0.338374\pi\)
0.486223 + 0.873835i \(0.338374\pi\)
\(138\) 0 0
\(139\) 230.969 0.140939 0.0704696 0.997514i \(-0.477550\pi\)
0.0704696 + 0.997514i \(0.477550\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −49.2821 −0.0291244
\(143\) 2350.70 1.37465
\(144\) 0 0
\(145\) 0 0
\(146\) 92.5970 0.0524889
\(147\) 0 0
\(148\) 661.142 0.367199
\(149\) −1754.58 −0.964701 −0.482351 0.875978i \(-0.660217\pi\)
−0.482351 + 0.875978i \(0.660217\pi\)
\(150\) 0 0
\(151\) 1707.28 0.920107 0.460054 0.887891i \(-0.347830\pi\)
0.460054 + 0.887891i \(0.347830\pi\)
\(152\) −453.953 −0.242240
\(153\) 0 0
\(154\) −82.0465 −0.0429318
\(155\) 0 0
\(156\) 0 0
\(157\) 1815.33 0.922798 0.461399 0.887193i \(-0.347348\pi\)
0.461399 + 0.887193i \(0.347348\pi\)
\(158\) 316.297 0.159261
\(159\) 0 0
\(160\) 0 0
\(161\) 1092.87 0.534969
\(162\) 0 0
\(163\) −1763.58 −0.847449 −0.423724 0.905791i \(-0.639277\pi\)
−0.423724 + 0.905791i \(0.639277\pi\)
\(164\) −3704.87 −1.76404
\(165\) 0 0
\(166\) 264.800 0.123810
\(167\) 1184.52 0.548866 0.274433 0.961606i \(-0.411510\pi\)
0.274433 + 0.961606i \(0.411510\pi\)
\(168\) 0 0
\(169\) −73.0133 −0.0332332
\(170\) 0 0
\(171\) 0 0
\(172\) 3359.24 1.48918
\(173\) −3232.75 −1.42070 −0.710351 0.703847i \(-0.751464\pi\)
−0.710351 + 0.703847i \(0.751464\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −3199.88 −1.37045
\(177\) 0 0
\(178\) −84.2878 −0.0354924
\(179\) 1520.16 0.634760 0.317380 0.948298i \(-0.397197\pi\)
0.317380 + 0.948298i \(0.397197\pi\)
\(180\) 0 0
\(181\) 2173.37 0.892514 0.446257 0.894905i \(-0.352757\pi\)
0.446257 + 0.894905i \(0.352757\pi\)
\(182\) −74.1336 −0.0301931
\(183\) 0 0
\(184\) −572.130 −0.229228
\(185\) 0 0
\(186\) 0 0
\(187\) 3711.06 1.45123
\(188\) 2134.10 0.827899
\(189\) 0 0
\(190\) 0 0
\(191\) 1195.92 0.453057 0.226528 0.974005i \(-0.427262\pi\)
0.226528 + 0.974005i \(0.427262\pi\)
\(192\) 0 0
\(193\) 4678.84 1.74503 0.872514 0.488588i \(-0.162488\pi\)
0.872514 + 0.488588i \(0.162488\pi\)
\(194\) −245.472 −0.0908446
\(195\) 0 0
\(196\) −389.413 −0.141914
\(197\) 4802.92 1.73702 0.868512 0.495668i \(-0.165077\pi\)
0.868512 + 0.495668i \(0.165077\pi\)
\(198\) 0 0
\(199\) 1348.64 0.480414 0.240207 0.970722i \(-0.422785\pi\)
0.240207 + 0.970722i \(0.422785\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 90.4727 0.0315131
\(203\) −1338.09 −0.462636
\(204\) 0 0
\(205\) 0 0
\(206\) −326.159 −0.110314
\(207\) 0 0
\(208\) −2891.27 −0.963815
\(209\) 6318.38 2.09116
\(210\) 0 0
\(211\) 5550.35 1.81091 0.905455 0.424442i \(-0.139530\pi\)
0.905455 + 0.424442i \(0.139530\pi\)
\(212\) 2467.96 0.799529
\(213\) 0 0
\(214\) 500.617 0.159913
\(215\) 0 0
\(216\) 0 0
\(217\) 814.086 0.254672
\(218\) −57.3037 −0.0178032
\(219\) 0 0
\(220\) 0 0
\(221\) 3353.16 1.02062
\(222\) 0 0
\(223\) 771.304 0.231616 0.115808 0.993272i \(-0.463054\pi\)
0.115808 + 0.993272i \(0.463054\pi\)
\(224\) 306.131 0.0913137
\(225\) 0 0
\(226\) −185.148 −0.0544951
\(227\) −5509.84 −1.61102 −0.805508 0.592585i \(-0.798108\pi\)
−0.805508 + 0.592585i \(0.798108\pi\)
\(228\) 0 0
\(229\) −1378.43 −0.397771 −0.198885 0.980023i \(-0.563732\pi\)
−0.198885 + 0.980023i \(0.563732\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 700.506 0.198235
\(233\) −2540.67 −0.714354 −0.357177 0.934037i \(-0.616261\pi\)
−0.357177 + 0.934037i \(0.616261\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 5639.42 1.55549
\(237\) 0 0
\(238\) −117.035 −0.0318751
\(239\) −5082.14 −1.37547 −0.687733 0.725964i \(-0.741394\pi\)
−0.687733 + 0.725964i \(0.741394\pi\)
\(240\) 0 0
\(241\) 681.272 0.182094 0.0910468 0.995847i \(-0.470979\pi\)
0.0910468 + 0.995847i \(0.470979\pi\)
\(242\) −291.979 −0.0775583
\(243\) 0 0
\(244\) −3198.15 −0.839100
\(245\) 0 0
\(246\) 0 0
\(247\) 5709.02 1.47067
\(248\) −426.185 −0.109124
\(249\) 0 0
\(250\) 0 0
\(251\) 1044.10 0.262561 0.131280 0.991345i \(-0.458091\pi\)
0.131280 + 0.991345i \(0.458091\pi\)
\(252\) 0 0
\(253\) 7963.24 1.97883
\(254\) −105.363 −0.0260278
\(255\) 0 0
\(256\) 3828.30 0.934644
\(257\) −5205.91 −1.26356 −0.631781 0.775147i \(-0.717676\pi\)
−0.631781 + 0.775147i \(0.717676\pi\)
\(258\) 0 0
\(259\) 582.343 0.139710
\(260\) 0 0
\(261\) 0 0
\(262\) 240.853 0.0567936
\(263\) 2984.55 0.699754 0.349877 0.936796i \(-0.386223\pi\)
0.349877 + 0.936796i \(0.386223\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −199.262 −0.0459306
\(267\) 0 0
\(268\) −908.412 −0.207053
\(269\) 3507.88 0.795089 0.397545 0.917583i \(-0.369862\pi\)
0.397545 + 0.917583i \(0.369862\pi\)
\(270\) 0 0
\(271\) 1612.27 0.361396 0.180698 0.983539i \(-0.442164\pi\)
0.180698 + 0.983539i \(0.442164\pi\)
\(272\) −4564.48 −1.01751
\(273\) 0 0
\(274\) −358.334 −0.0790063
\(275\) 0 0
\(276\) 0 0
\(277\) −7326.89 −1.58928 −0.794639 0.607082i \(-0.792340\pi\)
−0.794639 + 0.607082i \(0.792340\pi\)
\(278\) −53.0756 −0.0114506
\(279\) 0 0
\(280\) 0 0
\(281\) −3499.91 −0.743016 −0.371508 0.928430i \(-0.621159\pi\)
−0.371508 + 0.928430i \(0.621159\pi\)
\(282\) 0 0
\(283\) −6261.51 −1.31522 −0.657612 0.753357i \(-0.728433\pi\)
−0.657612 + 0.753357i \(0.728433\pi\)
\(284\) −1704.36 −0.356110
\(285\) 0 0
\(286\) −540.179 −0.111683
\(287\) −3263.30 −0.671173
\(288\) 0 0
\(289\) 380.660 0.0774802
\(290\) 0 0
\(291\) 0 0
\(292\) 3202.35 0.641793
\(293\) −5860.41 −1.16849 −0.584247 0.811576i \(-0.698610\pi\)
−0.584247 + 0.811576i \(0.698610\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −304.864 −0.0598644
\(297\) 0 0
\(298\) 403.194 0.0783771
\(299\) 7195.24 1.39168
\(300\) 0 0
\(301\) 2958.86 0.566598
\(302\) −392.324 −0.0747541
\(303\) 0 0
\(304\) −7771.39 −1.46618
\(305\) 0 0
\(306\) 0 0
\(307\) 3135.86 0.582974 0.291487 0.956575i \(-0.405850\pi\)
0.291487 + 0.956575i \(0.405850\pi\)
\(308\) −2837.48 −0.524936
\(309\) 0 0
\(310\) 0 0
\(311\) −5903.72 −1.07643 −0.538214 0.842808i \(-0.680901\pi\)
−0.538214 + 0.842808i \(0.680901\pi\)
\(312\) 0 0
\(313\) −6127.89 −1.10661 −0.553304 0.832979i \(-0.686633\pi\)
−0.553304 + 0.832979i \(0.686633\pi\)
\(314\) −417.155 −0.0749727
\(315\) 0 0
\(316\) 10938.7 1.94732
\(317\) −2846.55 −0.504348 −0.252174 0.967682i \(-0.581146\pi\)
−0.252174 + 0.967682i \(0.581146\pi\)
\(318\) 0 0
\(319\) −9750.04 −1.71128
\(320\) 0 0
\(321\) 0 0
\(322\) −251.136 −0.0434635
\(323\) 9012.88 1.55260
\(324\) 0 0
\(325\) 0 0
\(326\) 405.262 0.0688509
\(327\) 0 0
\(328\) 1708.38 0.287590
\(329\) 1879.74 0.314995
\(330\) 0 0
\(331\) −2166.44 −0.359753 −0.179877 0.983689i \(-0.557570\pi\)
−0.179877 + 0.983689i \(0.557570\pi\)
\(332\) 9157.79 1.51385
\(333\) 0 0
\(334\) −272.197 −0.0445926
\(335\) 0 0
\(336\) 0 0
\(337\) 4382.45 0.708390 0.354195 0.935172i \(-0.384755\pi\)
0.354195 + 0.935172i \(0.384755\pi\)
\(338\) 16.7781 0.00270003
\(339\) 0 0
\(340\) 0 0
\(341\) 5931.88 0.942022
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) −1549.00 −0.242781
\(345\) 0 0
\(346\) 742.871 0.115425
\(347\) 5931.63 0.917656 0.458828 0.888525i \(-0.348269\pi\)
0.458828 + 0.888525i \(0.348269\pi\)
\(348\) 0 0
\(349\) 1340.59 0.205616 0.102808 0.994701i \(-0.467217\pi\)
0.102808 + 0.994701i \(0.467217\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2230.64 0.337766
\(353\) −716.976 −0.108104 −0.0540521 0.998538i \(-0.517214\pi\)
−0.0540521 + 0.998538i \(0.517214\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −2914.99 −0.433973
\(357\) 0 0
\(358\) −349.326 −0.0515711
\(359\) 3962.70 0.582572 0.291286 0.956636i \(-0.405917\pi\)
0.291286 + 0.956636i \(0.405917\pi\)
\(360\) 0 0
\(361\) 8486.14 1.23723
\(362\) −499.430 −0.0725123
\(363\) 0 0
\(364\) −2563.82 −0.369178
\(365\) 0 0
\(366\) 0 0
\(367\) 7257.92 1.03232 0.516158 0.856493i \(-0.327362\pi\)
0.516158 + 0.856493i \(0.327362\pi\)
\(368\) −9794.50 −1.38743
\(369\) 0 0
\(370\) 0 0
\(371\) 2173.81 0.304201
\(372\) 0 0
\(373\) −1949.21 −0.270580 −0.135290 0.990806i \(-0.543197\pi\)
−0.135290 + 0.990806i \(0.543197\pi\)
\(374\) −852.786 −0.117905
\(375\) 0 0
\(376\) −984.070 −0.134972
\(377\) −8809.71 −1.20351
\(378\) 0 0
\(379\) 10147.5 1.37531 0.687655 0.726038i \(-0.258640\pi\)
0.687655 + 0.726038i \(0.258640\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −274.817 −0.0368086
\(383\) −1593.28 −0.212566 −0.106283 0.994336i \(-0.533895\pi\)
−0.106283 + 0.994336i \(0.533895\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −1075.18 −0.141775
\(387\) 0 0
\(388\) −8489.35 −1.11078
\(389\) −10208.7 −1.33060 −0.665300 0.746576i \(-0.731696\pi\)
−0.665300 + 0.746576i \(0.731696\pi\)
\(390\) 0 0
\(391\) 11359.2 1.46920
\(392\) 179.565 0.0231362
\(393\) 0 0
\(394\) −1103.69 −0.141124
\(395\) 0 0
\(396\) 0 0
\(397\) 8550.26 1.08092 0.540460 0.841370i \(-0.318250\pi\)
0.540460 + 0.841370i \(0.318250\pi\)
\(398\) −309.911 −0.0390312
\(399\) 0 0
\(400\) 0 0
\(401\) 6422.21 0.799775 0.399888 0.916564i \(-0.369049\pi\)
0.399888 + 0.916564i \(0.369049\pi\)
\(402\) 0 0
\(403\) 5359.79 0.662507
\(404\) 3128.89 0.385317
\(405\) 0 0
\(406\) 307.486 0.0375869
\(407\) 4243.27 0.516785
\(408\) 0 0
\(409\) −8536.12 −1.03199 −0.515995 0.856591i \(-0.672578\pi\)
−0.515995 + 0.856591i \(0.672578\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −11279.8 −1.34883
\(413\) 4967.28 0.591826
\(414\) 0 0
\(415\) 0 0
\(416\) 2015.51 0.237545
\(417\) 0 0
\(418\) −1451.94 −0.169896
\(419\) −9948.69 −1.15997 −0.579983 0.814629i \(-0.696941\pi\)
−0.579983 + 0.814629i \(0.696941\pi\)
\(420\) 0 0
\(421\) −7989.63 −0.924918 −0.462459 0.886641i \(-0.653033\pi\)
−0.462459 + 0.886641i \(0.653033\pi\)
\(422\) −1275.45 −0.147127
\(423\) 0 0
\(424\) −1138.02 −0.130347
\(425\) 0 0
\(426\) 0 0
\(427\) −2816.97 −0.319257
\(428\) 17313.2 1.95529
\(429\) 0 0
\(430\) 0 0
\(431\) −9893.26 −1.10566 −0.552832 0.833292i \(-0.686453\pi\)
−0.552832 + 0.833292i \(0.686453\pi\)
\(432\) 0 0
\(433\) 10225.7 1.13491 0.567456 0.823404i \(-0.307928\pi\)
0.567456 + 0.823404i \(0.307928\pi\)
\(434\) −187.073 −0.0206908
\(435\) 0 0
\(436\) −1981.78 −0.217684
\(437\) 19339.9 2.11706
\(438\) 0 0
\(439\) 3871.07 0.420857 0.210428 0.977609i \(-0.432514\pi\)
0.210428 + 0.977609i \(0.432514\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −770.540 −0.0829205
\(443\) −394.626 −0.0423233 −0.0211617 0.999776i \(-0.506736\pi\)
−0.0211617 + 0.999776i \(0.506736\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −177.242 −0.0188176
\(447\) 0 0
\(448\) 3442.84 0.363078
\(449\) −14437.4 −1.51747 −0.758735 0.651400i \(-0.774182\pi\)
−0.758735 + 0.651400i \(0.774182\pi\)
\(450\) 0 0
\(451\) −23778.3 −2.48265
\(452\) −6403.13 −0.666323
\(453\) 0 0
\(454\) 1266.14 0.130887
\(455\) 0 0
\(456\) 0 0
\(457\) −10334.8 −1.05786 −0.528928 0.848667i \(-0.677406\pi\)
−0.528928 + 0.848667i \(0.677406\pi\)
\(458\) 316.758 0.0323169
\(459\) 0 0
\(460\) 0 0
\(461\) 14401.9 1.45502 0.727511 0.686096i \(-0.240677\pi\)
0.727511 + 0.686096i \(0.240677\pi\)
\(462\) 0 0
\(463\) −1265.08 −0.126984 −0.0634919 0.997982i \(-0.520224\pi\)
−0.0634919 + 0.997982i \(0.520224\pi\)
\(464\) 11992.2 1.19984
\(465\) 0 0
\(466\) 583.833 0.0580377
\(467\) 13178.9 1.30588 0.652941 0.757409i \(-0.273535\pi\)
0.652941 + 0.757409i \(0.273535\pi\)
\(468\) 0 0
\(469\) −800.142 −0.0787785
\(470\) 0 0
\(471\) 0 0
\(472\) −2600.44 −0.253591
\(473\) 21559.9 2.09583
\(474\) 0 0
\(475\) 0 0
\(476\) −4047.53 −0.389744
\(477\) 0 0
\(478\) 1167.85 0.111750
\(479\) 883.505 0.0842763 0.0421382 0.999112i \(-0.486583\pi\)
0.0421382 + 0.999112i \(0.486583\pi\)
\(480\) 0 0
\(481\) 3834.04 0.363445
\(482\) −156.553 −0.0147942
\(483\) 0 0
\(484\) −10097.7 −0.948322
\(485\) 0 0
\(486\) 0 0
\(487\) −4959.35 −0.461458 −0.230729 0.973018i \(-0.574111\pi\)
−0.230729 + 0.973018i \(0.574111\pi\)
\(488\) 1474.72 0.136798
\(489\) 0 0
\(490\) 0 0
\(491\) −18088.8 −1.66260 −0.831301 0.555822i \(-0.812404\pi\)
−0.831301 + 0.555822i \(0.812404\pi\)
\(492\) 0 0
\(493\) −13908.0 −1.27056
\(494\) −1311.91 −0.119485
\(495\) 0 0
\(496\) −7296.00 −0.660484
\(497\) −1501.22 −0.135491
\(498\) 0 0
\(499\) 9428.10 0.845811 0.422906 0.906174i \(-0.361010\pi\)
0.422906 + 0.906174i \(0.361010\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −239.928 −0.0213317
\(503\) −8543.95 −0.757367 −0.378684 0.925526i \(-0.623623\pi\)
−0.378684 + 0.925526i \(0.623623\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −1829.92 −0.160770
\(507\) 0 0
\(508\) −3643.85 −0.318247
\(509\) −4081.74 −0.355442 −0.177721 0.984081i \(-0.556872\pi\)
−0.177721 + 0.984081i \(0.556872\pi\)
\(510\) 0 0
\(511\) 2820.68 0.244187
\(512\) −4582.81 −0.395573
\(513\) 0 0
\(514\) 1196.29 0.102658
\(515\) 0 0
\(516\) 0 0
\(517\) 13696.8 1.16516
\(518\) −133.820 −0.0113508
\(519\) 0 0
\(520\) 0 0
\(521\) −2593.89 −0.218120 −0.109060 0.994035i \(-0.534784\pi\)
−0.109060 + 0.994035i \(0.534784\pi\)
\(522\) 0 0
\(523\) 3216.08 0.268890 0.134445 0.990921i \(-0.457075\pi\)
0.134445 + 0.990921i \(0.457075\pi\)
\(524\) 8329.59 0.694427
\(525\) 0 0
\(526\) −685.836 −0.0568515
\(527\) 8461.55 0.699414
\(528\) 0 0
\(529\) 12207.7 1.00334
\(530\) 0 0
\(531\) 0 0
\(532\) −6891.24 −0.561604
\(533\) −21485.0 −1.74600
\(534\) 0 0
\(535\) 0 0
\(536\) 418.885 0.0337557
\(537\) 0 0
\(538\) −806.094 −0.0645970
\(539\) −2499.29 −0.199725
\(540\) 0 0
\(541\) −14686.4 −1.16713 −0.583567 0.812065i \(-0.698343\pi\)
−0.583567 + 0.812065i \(0.698343\pi\)
\(542\) −370.492 −0.0293616
\(543\) 0 0
\(544\) 3181.91 0.250778
\(545\) 0 0
\(546\) 0 0
\(547\) −8296.56 −0.648510 −0.324255 0.945970i \(-0.605114\pi\)
−0.324255 + 0.945970i \(0.605114\pi\)
\(548\) −12392.5 −0.966027
\(549\) 0 0
\(550\) 0 0
\(551\) −23679.4 −1.83081
\(552\) 0 0
\(553\) 9634.99 0.740907
\(554\) 1683.69 0.129121
\(555\) 0 0
\(556\) −1835.56 −0.140009
\(557\) −19711.8 −1.49949 −0.749746 0.661726i \(-0.769824\pi\)
−0.749746 + 0.661726i \(0.769824\pi\)
\(558\) 0 0
\(559\) 19480.6 1.47396
\(560\) 0 0
\(561\) 0 0
\(562\) 804.264 0.0603663
\(563\) 11500.3 0.860891 0.430446 0.902617i \(-0.358356\pi\)
0.430446 + 0.902617i \(0.358356\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 1438.87 0.106855
\(567\) 0 0
\(568\) 785.911 0.0580565
\(569\) 6191.04 0.456137 0.228068 0.973645i \(-0.426759\pi\)
0.228068 + 0.973645i \(0.426759\pi\)
\(570\) 0 0
\(571\) −15992.6 −1.17210 −0.586050 0.810275i \(-0.699318\pi\)
−0.586050 + 0.810275i \(0.699318\pi\)
\(572\) −18681.4 −1.36558
\(573\) 0 0
\(574\) 749.892 0.0545295
\(575\) 0 0
\(576\) 0 0
\(577\) −8285.26 −0.597781 −0.298891 0.954287i \(-0.596617\pi\)
−0.298891 + 0.954287i \(0.596617\pi\)
\(578\) −87.4740 −0.00629488
\(579\) 0 0
\(580\) 0 0
\(581\) 8066.31 0.575984
\(582\) 0 0
\(583\) 15839.6 1.12523
\(584\) −1476.66 −0.104631
\(585\) 0 0
\(586\) 1346.70 0.0949343
\(587\) −5419.34 −0.381056 −0.190528 0.981682i \(-0.561020\pi\)
−0.190528 + 0.981682i \(0.561020\pi\)
\(588\) 0 0
\(589\) 14406.5 1.00782
\(590\) 0 0
\(591\) 0 0
\(592\) −5219.08 −0.362336
\(593\) −16791.7 −1.16282 −0.581412 0.813609i \(-0.697500\pi\)
−0.581412 + 0.813609i \(0.697500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 13944.0 0.958333
\(597\) 0 0
\(598\) −1653.43 −0.113067
\(599\) 3005.34 0.205000 0.102500 0.994733i \(-0.467316\pi\)
0.102500 + 0.994733i \(0.467316\pi\)
\(600\) 0 0
\(601\) −1088.83 −0.0739007 −0.0369503 0.999317i \(-0.511764\pi\)
−0.0369503 + 0.999317i \(0.511764\pi\)
\(602\) −679.934 −0.0460333
\(603\) 0 0
\(604\) −13568.1 −0.914034
\(605\) 0 0
\(606\) 0 0
\(607\) 2227.51 0.148949 0.0744743 0.997223i \(-0.476272\pi\)
0.0744743 + 0.997223i \(0.476272\pi\)
\(608\) 5417.46 0.361360
\(609\) 0 0
\(610\) 0 0
\(611\) 12375.9 0.819434
\(612\) 0 0
\(613\) 20003.8 1.31802 0.659010 0.752134i \(-0.270976\pi\)
0.659010 + 0.752134i \(0.270976\pi\)
\(614\) −720.606 −0.0473637
\(615\) 0 0
\(616\) 1308.41 0.0855802
\(617\) 5297.13 0.345631 0.172816 0.984954i \(-0.444714\pi\)
0.172816 + 0.984954i \(0.444714\pi\)
\(618\) 0 0
\(619\) 24122.7 1.56636 0.783178 0.621797i \(-0.213597\pi\)
0.783178 + 0.621797i \(0.213597\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 1356.65 0.0874544
\(623\) −2567.57 −0.165116
\(624\) 0 0
\(625\) 0 0
\(626\) 1408.16 0.0899064
\(627\) 0 0
\(628\) −14426.8 −0.916707
\(629\) 6052.83 0.383692
\(630\) 0 0
\(631\) −13099.2 −0.826423 −0.413211 0.910635i \(-0.635593\pi\)
−0.413211 + 0.910635i \(0.635593\pi\)
\(632\) −5044.05 −0.317471
\(633\) 0 0
\(634\) 654.125 0.0409757
\(635\) 0 0
\(636\) 0 0
\(637\) −2258.25 −0.140463
\(638\) 2240.51 0.139033
\(639\) 0 0
\(640\) 0 0
\(641\) −7992.28 −0.492475 −0.246237 0.969210i \(-0.579194\pi\)
−0.246237 + 0.969210i \(0.579194\pi\)
\(642\) 0 0
\(643\) 7618.97 0.467283 0.233642 0.972323i \(-0.424936\pi\)
0.233642 + 0.972323i \(0.424936\pi\)
\(644\) −8685.23 −0.531438
\(645\) 0 0
\(646\) −2071.12 −0.126141
\(647\) −5037.17 −0.306076 −0.153038 0.988220i \(-0.548906\pi\)
−0.153038 + 0.988220i \(0.548906\pi\)
\(648\) 0 0
\(649\) 36194.4 2.18914
\(650\) 0 0
\(651\) 0 0
\(652\) 14015.5 0.841855
\(653\) 8818.74 0.528490 0.264245 0.964456i \(-0.414877\pi\)
0.264245 + 0.964456i \(0.414877\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 29246.4 1.74067
\(657\) 0 0
\(658\) −431.956 −0.0255918
\(659\) 2787.13 0.164752 0.0823758 0.996601i \(-0.473749\pi\)
0.0823758 + 0.996601i \(0.473749\pi\)
\(660\) 0 0
\(661\) −14848.3 −0.873726 −0.436863 0.899528i \(-0.643910\pi\)
−0.436863 + 0.899528i \(0.643910\pi\)
\(662\) 497.838 0.0292281
\(663\) 0 0
\(664\) −4222.82 −0.246803
\(665\) 0 0
\(666\) 0 0
\(667\) −29843.9 −1.73247
\(668\) −9413.58 −0.545243
\(669\) 0 0
\(670\) 0 0
\(671\) −20526.0 −1.18092
\(672\) 0 0
\(673\) 2238.59 0.128219 0.0641093 0.997943i \(-0.479579\pi\)
0.0641093 + 0.997943i \(0.479579\pi\)
\(674\) −1007.07 −0.0575531
\(675\) 0 0
\(676\) 580.250 0.0330138
\(677\) 5505.03 0.312519 0.156259 0.987716i \(-0.450056\pi\)
0.156259 + 0.987716i \(0.450056\pi\)
\(678\) 0 0
\(679\) −7477.53 −0.422624
\(680\) 0 0
\(681\) 0 0
\(682\) −1363.12 −0.0765345
\(683\) −8638.56 −0.483961 −0.241980 0.970281i \(-0.577797\pi\)
−0.241980 + 0.970281i \(0.577797\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 78.8198 0.00438682
\(687\) 0 0
\(688\) −26518.0 −1.46946
\(689\) 14312.0 0.791355
\(690\) 0 0
\(691\) −32838.2 −1.80785 −0.903925 0.427691i \(-0.859327\pi\)
−0.903925 + 0.427691i \(0.859327\pi\)
\(692\) 25691.3 1.41132
\(693\) 0 0
\(694\) −1363.06 −0.0745549
\(695\) 0 0
\(696\) 0 0
\(697\) −33918.6 −1.84327
\(698\) −308.061 −0.0167052
\(699\) 0 0
\(700\) 0 0
\(701\) 32942.3 1.77491 0.887455 0.460894i \(-0.152471\pi\)
0.887455 + 0.460894i \(0.152471\pi\)
\(702\) 0 0
\(703\) 10305.4 0.552883
\(704\) 25086.4 1.34301
\(705\) 0 0
\(706\) 164.758 0.00878292
\(707\) 2755.97 0.146604
\(708\) 0 0
\(709\) −34495.5 −1.82723 −0.913614 0.406583i \(-0.866720\pi\)
−0.913614 + 0.406583i \(0.866720\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1344.15 0.0707505
\(713\) 18156.9 0.953690
\(714\) 0 0
\(715\) 0 0
\(716\) −12081.0 −0.630570
\(717\) 0 0
\(718\) −910.611 −0.0473310
\(719\) −6884.11 −0.357071 −0.178535 0.983933i \(-0.557136\pi\)
−0.178535 + 0.983933i \(0.557136\pi\)
\(720\) 0 0
\(721\) −9935.43 −0.513196
\(722\) −1950.08 −0.100518
\(723\) 0 0
\(724\) −17272.2 −0.886623
\(725\) 0 0
\(726\) 0 0
\(727\) −13950.4 −0.711682 −0.355841 0.934546i \(-0.615806\pi\)
−0.355841 + 0.934546i \(0.615806\pi\)
\(728\) 1182.22 0.0601870
\(729\) 0 0
\(730\) 0 0
\(731\) 30754.2 1.55607
\(732\) 0 0
\(733\) 4055.50 0.204357 0.102178 0.994766i \(-0.467419\pi\)
0.102178 + 0.994766i \(0.467419\pi\)
\(734\) −1667.84 −0.0838705
\(735\) 0 0
\(736\) 6827.77 0.341950
\(737\) −5830.28 −0.291399
\(738\) 0 0
\(739\) −11122.2 −0.553638 −0.276819 0.960922i \(-0.589280\pi\)
−0.276819 + 0.960922i \(0.589280\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −499.532 −0.0247148
\(743\) −4496.34 −0.222012 −0.111006 0.993820i \(-0.535407\pi\)
−0.111006 + 0.993820i \(0.535407\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 447.920 0.0219833
\(747\) 0 0
\(748\) −29492.6 −1.44165
\(749\) 15249.7 0.743942
\(750\) 0 0
\(751\) 1524.74 0.0740862 0.0370431 0.999314i \(-0.488206\pi\)
0.0370431 + 0.999314i \(0.488206\pi\)
\(752\) −16846.6 −0.816933
\(753\) 0 0
\(754\) 2024.43 0.0977791
\(755\) 0 0
\(756\) 0 0
\(757\) −19727.4 −0.947166 −0.473583 0.880749i \(-0.657040\pi\)
−0.473583 + 0.880749i \(0.657040\pi\)
\(758\) −2331.85 −0.111737
\(759\) 0 0
\(760\) 0 0
\(761\) −6327.41 −0.301404 −0.150702 0.988579i \(-0.548153\pi\)
−0.150702 + 0.988579i \(0.548153\pi\)
\(762\) 0 0
\(763\) −1745.58 −0.0828233
\(764\) −9504.22 −0.450066
\(765\) 0 0
\(766\) 366.128 0.0172699
\(767\) 32703.7 1.53959
\(768\) 0 0
\(769\) 6909.63 0.324015 0.162008 0.986790i \(-0.448203\pi\)
0.162008 + 0.986790i \(0.448203\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −37183.7 −1.73351
\(773\) −15447.7 −0.718777 −0.359388 0.933188i \(-0.617015\pi\)
−0.359388 + 0.933188i \(0.617015\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 3914.59 0.181090
\(777\) 0 0
\(778\) 2345.92 0.108105
\(779\) −57749.1 −2.65607
\(780\) 0 0
\(781\) −10938.8 −0.501178
\(782\) −2610.29 −0.119365
\(783\) 0 0
\(784\) 3074.04 0.140034
\(785\) 0 0
\(786\) 0 0
\(787\) −28152.9 −1.27515 −0.637575 0.770388i \(-0.720062\pi\)
−0.637575 + 0.770388i \(0.720062\pi\)
\(788\) −38169.7 −1.72556
\(789\) 0 0
\(790\) 0 0
\(791\) −5639.97 −0.253520
\(792\) 0 0
\(793\) −18546.4 −0.830521
\(794\) −1964.81 −0.0878193
\(795\) 0 0
\(796\) −10717.9 −0.477243
\(797\) −10603.4 −0.471259 −0.235629 0.971843i \(-0.575715\pi\)
−0.235629 + 0.971843i \(0.575715\pi\)
\(798\) 0 0
\(799\) 19537.9 0.865083
\(800\) 0 0
\(801\) 0 0
\(802\) −1475.79 −0.0649777
\(803\) 20553.0 0.903239
\(804\) 0 0
\(805\) 0 0
\(806\) −1231.66 −0.0538253
\(807\) 0 0
\(808\) −1442.79 −0.0628181
\(809\) 8022.99 0.348669 0.174335 0.984686i \(-0.444223\pi\)
0.174335 + 0.984686i \(0.444223\pi\)
\(810\) 0 0
\(811\) −33370.2 −1.44487 −0.722433 0.691441i \(-0.756976\pi\)
−0.722433 + 0.691441i \(0.756976\pi\)
\(812\) 10634.0 0.459583
\(813\) 0 0
\(814\) −975.085 −0.0419861
\(815\) 0 0
\(816\) 0 0
\(817\) 52361.5 2.24223
\(818\) 1961.56 0.0838440
\(819\) 0 0
\(820\) 0 0
\(821\) −29452.2 −1.25200 −0.625999 0.779824i \(-0.715308\pi\)
−0.625999 + 0.779824i \(0.715308\pi\)
\(822\) 0 0
\(823\) 3399.31 0.143976 0.0719882 0.997405i \(-0.477066\pi\)
0.0719882 + 0.997405i \(0.477066\pi\)
\(824\) 5201.33 0.219899
\(825\) 0 0
\(826\) −1141.46 −0.0480829
\(827\) −18959.8 −0.797217 −0.398608 0.917121i \(-0.630507\pi\)
−0.398608 + 0.917121i \(0.630507\pi\)
\(828\) 0 0
\(829\) −3162.26 −0.132485 −0.0662424 0.997804i \(-0.521101\pi\)
−0.0662424 + 0.997804i \(0.521101\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 22667.0 0.944516
\(833\) −3565.12 −0.148288
\(834\) 0 0
\(835\) 0 0
\(836\) −50213.4 −2.07735
\(837\) 0 0
\(838\) 2286.16 0.0942413
\(839\) 10141.2 0.417296 0.208648 0.977991i \(-0.433094\pi\)
0.208648 + 0.977991i \(0.433094\pi\)
\(840\) 0 0
\(841\) 12151.3 0.498228
\(842\) 1835.98 0.0751450
\(843\) 0 0
\(844\) −44109.7 −1.79896
\(845\) 0 0
\(846\) 0 0
\(847\) −8894.22 −0.360814
\(848\) −19482.2 −0.788939
\(849\) 0 0
\(850\) 0 0
\(851\) 12988.2 0.523185
\(852\) 0 0
\(853\) −32027.8 −1.28559 −0.642796 0.766038i \(-0.722226\pi\)
−0.642796 + 0.766038i \(0.722226\pi\)
\(854\) 647.327 0.0259380
\(855\) 0 0
\(856\) −7983.43 −0.318771
\(857\) −49716.8 −1.98167 −0.990837 0.135067i \(-0.956875\pi\)
−0.990837 + 0.135067i \(0.956875\pi\)
\(858\) 0 0
\(859\) 40559.0 1.61101 0.805504 0.592590i \(-0.201895\pi\)
0.805504 + 0.592590i \(0.201895\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 2273.43 0.0898297
\(863\) 41262.0 1.62755 0.813774 0.581182i \(-0.197410\pi\)
0.813774 + 0.581182i \(0.197410\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −2349.83 −0.0922059
\(867\) 0 0
\(868\) −6469.70 −0.252991
\(869\) 70205.9 2.74059
\(870\) 0 0
\(871\) −5267.99 −0.204936
\(872\) 913.834 0.0354889
\(873\) 0 0
\(874\) −4444.23 −0.172000
\(875\) 0 0
\(876\) 0 0
\(877\) 25132.2 0.967677 0.483838 0.875157i \(-0.339242\pi\)
0.483838 + 0.875157i \(0.339242\pi\)
\(878\) −889.554 −0.0341925
\(879\) 0 0
\(880\) 0 0
\(881\) −42008.7 −1.60648 −0.803240 0.595655i \(-0.796893\pi\)
−0.803240 + 0.595655i \(0.796893\pi\)
\(882\) 0 0
\(883\) 2280.54 0.0869153 0.0434576 0.999055i \(-0.486163\pi\)
0.0434576 + 0.999055i \(0.486163\pi\)
\(884\) −26648.2 −1.01389
\(885\) 0 0
\(886\) 90.6832 0.00343856
\(887\) 22386.4 0.847419 0.423709 0.905798i \(-0.360728\pi\)
0.423709 + 0.905798i \(0.360728\pi\)
\(888\) 0 0
\(889\) −3209.55 −0.121085
\(890\) 0 0
\(891\) 0 0
\(892\) −6129.70 −0.230087
\(893\) 33264.8 1.24655
\(894\) 0 0
\(895\) 0 0
\(896\) −3240.20 −0.120812
\(897\) 0 0
\(898\) 3317.65 0.123287
\(899\) −22230.9 −0.824743
\(900\) 0 0
\(901\) 22594.5 0.835439
\(902\) 5464.14 0.201703
\(903\) 0 0
\(904\) 2952.60 0.108630
\(905\) 0 0
\(906\) 0 0
\(907\) −19570.3 −0.716451 −0.358226 0.933635i \(-0.616618\pi\)
−0.358226 + 0.933635i \(0.616618\pi\)
\(908\) 43787.7 1.60038
\(909\) 0 0
\(910\) 0 0
\(911\) −15605.6 −0.567550 −0.283775 0.958891i \(-0.591587\pi\)
−0.283775 + 0.958891i \(0.591587\pi\)
\(912\) 0 0
\(913\) 58775.6 2.13055
\(914\) 2374.88 0.0859454
\(915\) 0 0
\(916\) 10954.7 0.395145
\(917\) 7336.82 0.264213
\(918\) 0 0
\(919\) −905.249 −0.0324934 −0.0162467 0.999868i \(-0.505172\pi\)
−0.0162467 + 0.999868i \(0.505172\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −3309.50 −0.118213
\(923\) −9883.79 −0.352469
\(924\) 0 0
\(925\) 0 0
\(926\) 290.711 0.0103168
\(927\) 0 0
\(928\) −8359.80 −0.295715
\(929\) −44804.2 −1.58232 −0.791161 0.611608i \(-0.790523\pi\)
−0.791161 + 0.611608i \(0.790523\pi\)
\(930\) 0 0
\(931\) −6069.90 −0.213677
\(932\) 20191.2 0.709639
\(933\) 0 0
\(934\) −3028.45 −0.106096
\(935\) 0 0
\(936\) 0 0
\(937\) −22958.8 −0.800461 −0.400230 0.916415i \(-0.631070\pi\)
−0.400230 + 0.916415i \(0.631070\pi\)
\(938\) 183.869 0.00640036
\(939\) 0 0
\(940\) 0 0
\(941\) 27191.5 0.941994 0.470997 0.882135i \(-0.343894\pi\)
0.470997 + 0.882135i \(0.343894\pi\)
\(942\) 0 0
\(943\) −72782.8 −2.51340
\(944\) −44517.8 −1.53488
\(945\) 0 0
\(946\) −4954.38 −0.170276
\(947\) 45681.4 1.56752 0.783762 0.621061i \(-0.213298\pi\)
0.783762 + 0.621061i \(0.213298\pi\)
\(948\) 0 0
\(949\) 18570.8 0.635232
\(950\) 0 0
\(951\) 0 0
\(952\) 1866.39 0.0635399
\(953\) −21670.3 −0.736591 −0.368295 0.929709i \(-0.620058\pi\)
−0.368295 + 0.929709i \(0.620058\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 40388.7 1.36639
\(957\) 0 0
\(958\) −203.025 −0.00684703
\(959\) −10915.5 −0.367550
\(960\) 0 0
\(961\) −16265.8 −0.545997
\(962\) −881.045 −0.0295281
\(963\) 0 0
\(964\) −5414.20 −0.180892
\(965\) 0 0
\(966\) 0 0
\(967\) 46935.4 1.56085 0.780424 0.625250i \(-0.215003\pi\)
0.780424 + 0.625250i \(0.215003\pi\)
\(968\) 4656.24 0.154605
\(969\) 0 0
\(970\) 0 0
\(971\) −6475.64 −0.214020 −0.107010 0.994258i \(-0.534128\pi\)
−0.107010 + 0.994258i \(0.534128\pi\)
\(972\) 0 0
\(973\) −1616.78 −0.0532700
\(974\) 1139.64 0.0374911
\(975\) 0 0
\(976\) 25246.3 0.827985
\(977\) −1025.22 −0.0335717 −0.0167859 0.999859i \(-0.505343\pi\)
−0.0167859 + 0.999859i \(0.505343\pi\)
\(978\) 0 0
\(979\) −18708.7 −0.610759
\(980\) 0 0
\(981\) 0 0
\(982\) 4156.73 0.135078
\(983\) 7379.49 0.239440 0.119720 0.992808i \(-0.461800\pi\)
0.119720 + 0.992808i \(0.461800\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 3195.99 0.103226
\(987\) 0 0
\(988\) −45370.7 −1.46096
\(989\) 65992.8 2.12179
\(990\) 0 0
\(991\) −27747.3 −0.889428 −0.444714 0.895673i \(-0.646695\pi\)
−0.444714 + 0.895673i \(0.646695\pi\)
\(992\) 5086.07 0.162785
\(993\) 0 0
\(994\) 344.975 0.0110080
\(995\) 0 0
\(996\) 0 0
\(997\) −48509.6 −1.54094 −0.770469 0.637478i \(-0.779978\pi\)
−0.770469 + 0.637478i \(0.779978\pi\)
\(998\) −2166.54 −0.0687179
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.4.a.bb.1.2 3
3.2 odd 2 1575.4.a.be.1.2 3
5.4 even 2 315.4.a.o.1.2 yes 3
15.14 odd 2 315.4.a.n.1.2 3
35.34 odd 2 2205.4.a.bl.1.2 3
105.104 even 2 2205.4.a.bk.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.4.a.n.1.2 3 15.14 odd 2
315.4.a.o.1.2 yes 3 5.4 even 2
1575.4.a.bb.1.2 3 1.1 even 1 trivial
1575.4.a.be.1.2 3 3.2 odd 2
2205.4.a.bk.1.2 3 105.104 even 2
2205.4.a.bl.1.2 3 35.34 odd 2