Properties

Label 1575.4.a.ba.1.1
Level $1575$
Weight $4$
Character 1575.1
Self dual yes
Analytic conductor $92.928$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,4,Mod(1,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.9280082590\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.14360.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 17x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.62456\) of defining polynomial
Character \(\chi\) \(=\) 1575.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.62456 q^{2} +13.3866 q^{4} -7.00000 q^{7} -24.9107 q^{8} +30.1117 q^{11} -88.9295 q^{13} +32.3720 q^{14} +8.10818 q^{16} -4.73699 q^{17} +124.818 q^{19} -139.253 q^{22} +20.2680 q^{23} +411.260 q^{26} -93.7062 q^{28} -134.088 q^{29} -2.03767 q^{31} +161.788 q^{32} +21.9065 q^{34} +141.137 q^{37} -577.228 q^{38} -95.2784 q^{41} +298.646 q^{43} +403.093 q^{44} -93.7305 q^{46} -129.054 q^{47} +49.0000 q^{49} -1190.46 q^{52} +388.429 q^{53} +174.375 q^{56} +620.098 q^{58} -838.501 q^{59} +389.422 q^{61} +9.42333 q^{62} -813.067 q^{64} -697.794 q^{67} -63.4122 q^{68} +523.450 q^{71} -66.4684 q^{73} -652.699 q^{74} +1670.89 q^{76} -210.782 q^{77} -526.982 q^{79} +440.621 q^{82} +70.0265 q^{83} -1381.11 q^{86} -750.101 q^{88} +9.27925 q^{89} +622.506 q^{91} +271.319 q^{92} +596.817 q^{94} +4.19493 q^{97} -226.604 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 13 q^{4} - 21 q^{7} - 15 q^{8} + 74 q^{11} - 44 q^{13} + 21 q^{14} - 79 q^{16} - 52 q^{17} + 168 q^{19} - 184 q^{22} - 124 q^{23} + 446 q^{26} - 91 q^{28} - 332 q^{29} + 320 q^{31} - 183 q^{32}+ \cdots - 147 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.62456 −1.63503 −0.817515 0.575907i \(-0.804649\pi\)
−0.817515 + 0.575907i \(0.804649\pi\)
\(3\) 0 0
\(4\) 13.3866 1.67332
\(5\) 0 0
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) −24.9107 −1.10091
\(9\) 0 0
\(10\) 0 0
\(11\) 30.1117 0.825364 0.412682 0.910875i \(-0.364592\pi\)
0.412682 + 0.910875i \(0.364592\pi\)
\(12\) 0 0
\(13\) −88.9295 −1.89728 −0.948639 0.316362i \(-0.897539\pi\)
−0.948639 + 0.316362i \(0.897539\pi\)
\(14\) 32.3720 0.617983
\(15\) 0 0
\(16\) 8.10818 0.126690
\(17\) −4.73699 −0.0675817 −0.0337909 0.999429i \(-0.510758\pi\)
−0.0337909 + 0.999429i \(0.510758\pi\)
\(18\) 0 0
\(19\) 124.818 1.50711 0.753557 0.657382i \(-0.228336\pi\)
0.753557 + 0.657382i \(0.228336\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −139.253 −1.34950
\(23\) 20.2680 0.183746 0.0918731 0.995771i \(-0.470715\pi\)
0.0918731 + 0.995771i \(0.470715\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 411.260 3.10211
\(27\) 0 0
\(28\) −93.7062 −0.632457
\(29\) −134.088 −0.858603 −0.429301 0.903161i \(-0.641240\pi\)
−0.429301 + 0.903161i \(0.641240\pi\)
\(30\) 0 0
\(31\) −2.03767 −0.0118057 −0.00590284 0.999983i \(-0.501879\pi\)
−0.00590284 + 0.999983i \(0.501879\pi\)
\(32\) 161.788 0.893764
\(33\) 0 0
\(34\) 21.9065 0.110498
\(35\) 0 0
\(36\) 0 0
\(37\) 141.137 0.627104 0.313552 0.949571i \(-0.398481\pi\)
0.313552 + 0.949571i \(0.398481\pi\)
\(38\) −577.228 −2.46418
\(39\) 0 0
\(40\) 0 0
\(41\) −95.2784 −0.362927 −0.181463 0.983398i \(-0.558083\pi\)
−0.181463 + 0.983398i \(0.558083\pi\)
\(42\) 0 0
\(43\) 298.646 1.05914 0.529571 0.848266i \(-0.322353\pi\)
0.529571 + 0.848266i \(0.322353\pi\)
\(44\) 403.093 1.38110
\(45\) 0 0
\(46\) −93.7305 −0.300431
\(47\) −129.054 −0.400519 −0.200260 0.979743i \(-0.564179\pi\)
−0.200260 + 0.979743i \(0.564179\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) −1190.46 −3.17476
\(53\) 388.429 1.00669 0.503347 0.864084i \(-0.332102\pi\)
0.503347 + 0.864084i \(0.332102\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 174.375 0.416103
\(57\) 0 0
\(58\) 620.098 1.40384
\(59\) −838.501 −1.85023 −0.925114 0.379688i \(-0.876031\pi\)
−0.925114 + 0.379688i \(0.876031\pi\)
\(60\) 0 0
\(61\) 389.422 0.817384 0.408692 0.912672i \(-0.365985\pi\)
0.408692 + 0.912672i \(0.365985\pi\)
\(62\) 9.42333 0.0193027
\(63\) 0 0
\(64\) −813.067 −1.58802
\(65\) 0 0
\(66\) 0 0
\(67\) −697.794 −1.27237 −0.636187 0.771534i \(-0.719490\pi\)
−0.636187 + 0.771534i \(0.719490\pi\)
\(68\) −63.4122 −0.113086
\(69\) 0 0
\(70\) 0 0
\(71\) 523.450 0.874959 0.437479 0.899228i \(-0.355871\pi\)
0.437479 + 0.899228i \(0.355871\pi\)
\(72\) 0 0
\(73\) −66.4684 −0.106569 −0.0532845 0.998579i \(-0.516969\pi\)
−0.0532845 + 0.998579i \(0.516969\pi\)
\(74\) −652.699 −1.02533
\(75\) 0 0
\(76\) 1670.89 2.52189
\(77\) −210.782 −0.311958
\(78\) 0 0
\(79\) −526.982 −0.750508 −0.375254 0.926922i \(-0.622444\pi\)
−0.375254 + 0.926922i \(0.622444\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 440.621 0.593396
\(83\) 70.0265 0.0926074 0.0463037 0.998927i \(-0.485256\pi\)
0.0463037 + 0.998927i \(0.485256\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1381.11 −1.73173
\(87\) 0 0
\(88\) −750.101 −0.908649
\(89\) 9.27925 0.0110517 0.00552584 0.999985i \(-0.498241\pi\)
0.00552584 + 0.999985i \(0.498241\pi\)
\(90\) 0 0
\(91\) 622.506 0.717103
\(92\) 271.319 0.307467
\(93\) 0 0
\(94\) 596.817 0.654861
\(95\) 0 0
\(96\) 0 0
\(97\) 4.19493 0.00439104 0.00219552 0.999998i \(-0.499301\pi\)
0.00219552 + 0.999998i \(0.499301\pi\)
\(98\) −226.604 −0.233576
\(99\) 0 0
\(100\) 0 0
\(101\) 865.844 0.853016 0.426508 0.904484i \(-0.359744\pi\)
0.426508 + 0.904484i \(0.359744\pi\)
\(102\) 0 0
\(103\) 1166.12 1.11554 0.557771 0.829995i \(-0.311657\pi\)
0.557771 + 0.829995i \(0.311657\pi\)
\(104\) 2215.29 2.08872
\(105\) 0 0
\(106\) −1796.31 −1.64598
\(107\) 56.9652 0.0514676 0.0257338 0.999669i \(-0.491808\pi\)
0.0257338 + 0.999669i \(0.491808\pi\)
\(108\) 0 0
\(109\) −1358.89 −1.19411 −0.597055 0.802200i \(-0.703663\pi\)
−0.597055 + 0.802200i \(0.703663\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −56.7572 −0.0478844
\(113\) 436.038 0.363000 0.181500 0.983391i \(-0.441905\pi\)
0.181500 + 0.983391i \(0.441905\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1794.98 −1.43672
\(117\) 0 0
\(118\) 3877.70 3.02518
\(119\) 33.1590 0.0255435
\(120\) 0 0
\(121\) −424.288 −0.318774
\(122\) −1800.91 −1.33645
\(123\) 0 0
\(124\) −27.2775 −0.0197547
\(125\) 0 0
\(126\) 0 0
\(127\) −1186.69 −0.829144 −0.414572 0.910017i \(-0.636069\pi\)
−0.414572 + 0.910017i \(0.636069\pi\)
\(128\) 2465.77 1.70270
\(129\) 0 0
\(130\) 0 0
\(131\) −1034.56 −0.689997 −0.344999 0.938603i \(-0.612121\pi\)
−0.344999 + 0.938603i \(0.612121\pi\)
\(132\) 0 0
\(133\) −873.725 −0.569636
\(134\) 3226.99 2.08037
\(135\) 0 0
\(136\) 118.002 0.0744011
\(137\) 646.219 0.402994 0.201497 0.979489i \(-0.435419\pi\)
0.201497 + 0.979489i \(0.435419\pi\)
\(138\) 0 0
\(139\) 506.484 0.309061 0.154530 0.987988i \(-0.450614\pi\)
0.154530 + 0.987988i \(0.450614\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −2420.73 −1.43058
\(143\) −2677.81 −1.56594
\(144\) 0 0
\(145\) 0 0
\(146\) 307.387 0.174244
\(147\) 0 0
\(148\) 1889.35 1.04935
\(149\) 1828.12 1.00513 0.502567 0.864538i \(-0.332389\pi\)
0.502567 + 0.864538i \(0.332389\pi\)
\(150\) 0 0
\(151\) 2975.17 1.60342 0.801708 0.597716i \(-0.203925\pi\)
0.801708 + 0.597716i \(0.203925\pi\)
\(152\) −3109.29 −1.65919
\(153\) 0 0
\(154\) 974.773 0.510061
\(155\) 0 0
\(156\) 0 0
\(157\) 2131.74 1.08364 0.541820 0.840495i \(-0.317736\pi\)
0.541820 + 0.840495i \(0.317736\pi\)
\(158\) 2437.06 1.22710
\(159\) 0 0
\(160\) 0 0
\(161\) −141.876 −0.0694495
\(162\) 0 0
\(163\) 593.939 0.285404 0.142702 0.989766i \(-0.454421\pi\)
0.142702 + 0.989766i \(0.454421\pi\)
\(164\) −1275.45 −0.607294
\(165\) 0 0
\(166\) −323.842 −0.151416
\(167\) −2936.30 −1.36059 −0.680293 0.732941i \(-0.738147\pi\)
−0.680293 + 0.732941i \(0.738147\pi\)
\(168\) 0 0
\(169\) 5711.45 2.59966
\(170\) 0 0
\(171\) 0 0
\(172\) 3997.85 1.77229
\(173\) 2347.31 1.03158 0.515788 0.856716i \(-0.327499\pi\)
0.515788 + 0.856716i \(0.327499\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 244.151 0.104566
\(177\) 0 0
\(178\) −42.9125 −0.0180698
\(179\) −3036.56 −1.26795 −0.633975 0.773354i \(-0.718578\pi\)
−0.633975 + 0.773354i \(0.718578\pi\)
\(180\) 0 0
\(181\) −899.776 −0.369502 −0.184751 0.982785i \(-0.559148\pi\)
−0.184751 + 0.982785i \(0.559148\pi\)
\(182\) −2878.82 −1.17249
\(183\) 0 0
\(184\) −504.888 −0.202287
\(185\) 0 0
\(186\) 0 0
\(187\) −142.639 −0.0557796
\(188\) −1727.59 −0.670199
\(189\) 0 0
\(190\) 0 0
\(191\) −416.168 −0.157659 −0.0788294 0.996888i \(-0.525118\pi\)
−0.0788294 + 0.996888i \(0.525118\pi\)
\(192\) 0 0
\(193\) 5181.05 1.93233 0.966166 0.257922i \(-0.0830376\pi\)
0.966166 + 0.257922i \(0.0830376\pi\)
\(194\) −19.3997 −0.00717948
\(195\) 0 0
\(196\) 655.943 0.239046
\(197\) 1452.34 0.525255 0.262627 0.964897i \(-0.415411\pi\)
0.262627 + 0.964897i \(0.415411\pi\)
\(198\) 0 0
\(199\) −1277.23 −0.454978 −0.227489 0.973781i \(-0.573052\pi\)
−0.227489 + 0.973781i \(0.573052\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −4004.15 −1.39471
\(203\) 938.615 0.324521
\(204\) 0 0
\(205\) 0 0
\(206\) −5392.78 −1.82395
\(207\) 0 0
\(208\) −721.056 −0.240367
\(209\) 3758.47 1.24392
\(210\) 0 0
\(211\) −3259.09 −1.06334 −0.531670 0.846951i \(-0.678436\pi\)
−0.531670 + 0.846951i \(0.678436\pi\)
\(212\) 5199.74 1.68453
\(213\) 0 0
\(214\) −263.439 −0.0841511
\(215\) 0 0
\(216\) 0 0
\(217\) 14.2637 0.00446213
\(218\) 6284.27 1.95241
\(219\) 0 0
\(220\) 0 0
\(221\) 421.258 0.128221
\(222\) 0 0
\(223\) −4373.35 −1.31328 −0.656639 0.754205i \(-0.728023\pi\)
−0.656639 + 0.754205i \(0.728023\pi\)
\(224\) −1132.52 −0.337811
\(225\) 0 0
\(226\) −2016.48 −0.593516
\(227\) −61.1145 −0.0178692 −0.00893461 0.999960i \(-0.502844\pi\)
−0.00893461 + 0.999960i \(0.502844\pi\)
\(228\) 0 0
\(229\) 3019.41 0.871302 0.435651 0.900116i \(-0.356518\pi\)
0.435651 + 0.900116i \(0.356518\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 3340.22 0.945241
\(233\) −3531.17 −0.992851 −0.496426 0.868079i \(-0.665354\pi\)
−0.496426 + 0.868079i \(0.665354\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −11224.7 −3.09603
\(237\) 0 0
\(238\) −153.346 −0.0417644
\(239\) −2282.62 −0.617785 −0.308893 0.951097i \(-0.599958\pi\)
−0.308893 + 0.951097i \(0.599958\pi\)
\(240\) 0 0
\(241\) −2215.68 −0.592217 −0.296109 0.955154i \(-0.595689\pi\)
−0.296109 + 0.955154i \(0.595689\pi\)
\(242\) 1962.15 0.521205
\(243\) 0 0
\(244\) 5213.04 1.36775
\(245\) 0 0
\(246\) 0 0
\(247\) −11100.0 −2.85941
\(248\) 50.7597 0.0129970
\(249\) 0 0
\(250\) 0 0
\(251\) 3082.55 0.775174 0.387587 0.921833i \(-0.373309\pi\)
0.387587 + 0.921833i \(0.373309\pi\)
\(252\) 0 0
\(253\) 610.302 0.151658
\(254\) 5487.90 1.35568
\(255\) 0 0
\(256\) −4898.58 −1.19594
\(257\) −6032.40 −1.46417 −0.732083 0.681215i \(-0.761452\pi\)
−0.732083 + 0.681215i \(0.761452\pi\)
\(258\) 0 0
\(259\) −987.962 −0.237023
\(260\) 0 0
\(261\) 0 0
\(262\) 4784.37 1.12817
\(263\) 5923.81 1.38889 0.694445 0.719546i \(-0.255650\pi\)
0.694445 + 0.719546i \(0.255650\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 4040.60 0.931372
\(267\) 0 0
\(268\) −9341.09 −2.12910
\(269\) −3252.80 −0.737273 −0.368637 0.929574i \(-0.620175\pi\)
−0.368637 + 0.929574i \(0.620175\pi\)
\(270\) 0 0
\(271\) −6246.26 −1.40012 −0.700061 0.714083i \(-0.746844\pi\)
−0.700061 + 0.714083i \(0.746844\pi\)
\(272\) −38.4084 −0.00856195
\(273\) 0 0
\(274\) −2988.48 −0.658907
\(275\) 0 0
\(276\) 0 0
\(277\) 1572.17 0.341020 0.170510 0.985356i \(-0.445459\pi\)
0.170510 + 0.985356i \(0.445459\pi\)
\(278\) −2342.27 −0.505324
\(279\) 0 0
\(280\) 0 0
\(281\) 7846.03 1.66567 0.832837 0.553518i \(-0.186715\pi\)
0.832837 + 0.553518i \(0.186715\pi\)
\(282\) 0 0
\(283\) −6265.58 −1.31608 −0.658039 0.752984i \(-0.728614\pi\)
−0.658039 + 0.752984i \(0.728614\pi\)
\(284\) 7007.21 1.46409
\(285\) 0 0
\(286\) 12383.7 2.56037
\(287\) 666.949 0.137173
\(288\) 0 0
\(289\) −4890.56 −0.995433
\(290\) 0 0
\(291\) 0 0
\(292\) −889.785 −0.178325
\(293\) −7264.99 −1.44855 −0.724276 0.689511i \(-0.757826\pi\)
−0.724276 + 0.689511i \(0.757826\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −3515.83 −0.690382
\(297\) 0 0
\(298\) −8454.24 −1.64343
\(299\) −1802.42 −0.348617
\(300\) 0 0
\(301\) −2090.52 −0.400318
\(302\) −13758.9 −2.62163
\(303\) 0 0
\(304\) 1012.05 0.190937
\(305\) 0 0
\(306\) 0 0
\(307\) −1328.32 −0.246943 −0.123471 0.992348i \(-0.539403\pi\)
−0.123471 + 0.992348i \(0.539403\pi\)
\(308\) −2821.65 −0.522008
\(309\) 0 0
\(310\) 0 0
\(311\) −4868.68 −0.887709 −0.443855 0.896099i \(-0.646389\pi\)
−0.443855 + 0.896099i \(0.646389\pi\)
\(312\) 0 0
\(313\) −7733.39 −1.39654 −0.698270 0.715835i \(-0.746046\pi\)
−0.698270 + 0.715835i \(0.746046\pi\)
\(314\) −9858.37 −1.77178
\(315\) 0 0
\(316\) −7054.49 −1.25584
\(317\) −8175.03 −1.44844 −0.724220 0.689569i \(-0.757800\pi\)
−0.724220 + 0.689569i \(0.757800\pi\)
\(318\) 0 0
\(319\) −4037.61 −0.708660
\(320\) 0 0
\(321\) 0 0
\(322\) 656.114 0.113552
\(323\) −591.261 −0.101853
\(324\) 0 0
\(325\) 0 0
\(326\) −2746.71 −0.466644
\(327\) 0 0
\(328\) 2373.45 0.399548
\(329\) 903.375 0.151382
\(330\) 0 0
\(331\) −2040.76 −0.338884 −0.169442 0.985540i \(-0.554197\pi\)
−0.169442 + 0.985540i \(0.554197\pi\)
\(332\) 937.417 0.154962
\(333\) 0 0
\(334\) 13579.1 2.22460
\(335\) 0 0
\(336\) 0 0
\(337\) −7349.73 −1.18803 −0.594013 0.804455i \(-0.702457\pi\)
−0.594013 + 0.804455i \(0.702457\pi\)
\(338\) −26413.0 −4.25052
\(339\) 0 0
\(340\) 0 0
\(341\) −61.3576 −0.00974399
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) −7439.47 −1.16602
\(345\) 0 0
\(346\) −10855.3 −1.68666
\(347\) −12069.9 −1.86728 −0.933642 0.358207i \(-0.883388\pi\)
−0.933642 + 0.358207i \(0.883388\pi\)
\(348\) 0 0
\(349\) −4484.96 −0.687892 −0.343946 0.938989i \(-0.611764\pi\)
−0.343946 + 0.938989i \(0.611764\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4871.72 0.737681
\(353\) −12762.5 −1.92430 −0.962151 0.272517i \(-0.912144\pi\)
−0.962151 + 0.272517i \(0.912144\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 124.218 0.0184930
\(357\) 0 0
\(358\) 14042.8 2.07314
\(359\) 2419.42 0.355689 0.177844 0.984059i \(-0.443088\pi\)
0.177844 + 0.984059i \(0.443088\pi\)
\(360\) 0 0
\(361\) 8720.49 1.27139
\(362\) 4161.07 0.604147
\(363\) 0 0
\(364\) 8333.24 1.19995
\(365\) 0 0
\(366\) 0 0
\(367\) 7129.74 1.01409 0.507043 0.861921i \(-0.330739\pi\)
0.507043 + 0.861921i \(0.330739\pi\)
\(368\) 164.336 0.0232789
\(369\) 0 0
\(370\) 0 0
\(371\) −2719.00 −0.380495
\(372\) 0 0
\(373\) −11596.9 −1.60983 −0.804914 0.593391i \(-0.797789\pi\)
−0.804914 + 0.593391i \(0.797789\pi\)
\(374\) 659.642 0.0912013
\(375\) 0 0
\(376\) 3214.81 0.440934
\(377\) 11924.4 1.62901
\(378\) 0 0
\(379\) −12770.8 −1.73085 −0.865424 0.501040i \(-0.832951\pi\)
−0.865424 + 0.501040i \(0.832951\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1924.59 0.257777
\(383\) 7470.10 0.996617 0.498308 0.867000i \(-0.333955\pi\)
0.498308 + 0.867000i \(0.333955\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −23960.1 −3.15942
\(387\) 0 0
\(388\) 56.1558 0.00734763
\(389\) −8749.77 −1.14044 −0.570220 0.821492i \(-0.693142\pi\)
−0.570220 + 0.821492i \(0.693142\pi\)
\(390\) 0 0
\(391\) −96.0092 −0.0124179
\(392\) −1220.62 −0.157272
\(393\) 0 0
\(394\) −6716.46 −0.858808
\(395\) 0 0
\(396\) 0 0
\(397\) −5375.25 −0.679537 −0.339769 0.940509i \(-0.610349\pi\)
−0.339769 + 0.940509i \(0.610349\pi\)
\(398\) 5906.65 0.743903
\(399\) 0 0
\(400\) 0 0
\(401\) −7361.33 −0.916727 −0.458363 0.888765i \(-0.651564\pi\)
−0.458363 + 0.888765i \(0.651564\pi\)
\(402\) 0 0
\(403\) 181.209 0.0223987
\(404\) 11590.7 1.42737
\(405\) 0 0
\(406\) −4340.68 −0.530602
\(407\) 4249.88 0.517589
\(408\) 0 0
\(409\) −2612.45 −0.315837 −0.157919 0.987452i \(-0.550478\pi\)
−0.157919 + 0.987452i \(0.550478\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 15610.3 1.86667
\(413\) 5869.51 0.699321
\(414\) 0 0
\(415\) 0 0
\(416\) −14387.8 −1.69572
\(417\) 0 0
\(418\) −17381.3 −2.03384
\(419\) −4398.21 −0.512808 −0.256404 0.966570i \(-0.582538\pi\)
−0.256404 + 0.966570i \(0.582538\pi\)
\(420\) 0 0
\(421\) 9723.32 1.12562 0.562810 0.826587i \(-0.309720\pi\)
0.562810 + 0.826587i \(0.309720\pi\)
\(422\) 15071.9 1.73859
\(423\) 0 0
\(424\) −9676.01 −1.10828
\(425\) 0 0
\(426\) 0 0
\(427\) −2725.96 −0.308942
\(428\) 762.570 0.0861220
\(429\) 0 0
\(430\) 0 0
\(431\) 14314.5 1.59978 0.799892 0.600144i \(-0.204890\pi\)
0.799892 + 0.600144i \(0.204890\pi\)
\(432\) 0 0
\(433\) 2373.62 0.263438 0.131719 0.991287i \(-0.457950\pi\)
0.131719 + 0.991287i \(0.457950\pi\)
\(434\) −65.9633 −0.00729572
\(435\) 0 0
\(436\) −18190.9 −1.99813
\(437\) 2529.80 0.276927
\(438\) 0 0
\(439\) −9533.46 −1.03646 −0.518231 0.855240i \(-0.673409\pi\)
−0.518231 + 0.855240i \(0.673409\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −1948.14 −0.209646
\(443\) 6647.94 0.712987 0.356493 0.934298i \(-0.383972\pi\)
0.356493 + 0.934298i \(0.383972\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 20224.8 2.14725
\(447\) 0 0
\(448\) 5691.47 0.600215
\(449\) 768.256 0.0807489 0.0403744 0.999185i \(-0.487145\pi\)
0.0403744 + 0.999185i \(0.487145\pi\)
\(450\) 0 0
\(451\) −2868.99 −0.299547
\(452\) 5837.06 0.607416
\(453\) 0 0
\(454\) 282.628 0.0292167
\(455\) 0 0
\(456\) 0 0
\(457\) 3323.50 0.340190 0.170095 0.985428i \(-0.445593\pi\)
0.170095 + 0.985428i \(0.445593\pi\)
\(458\) −13963.5 −1.42461
\(459\) 0 0
\(460\) 0 0
\(461\) 18840.7 1.90347 0.951733 0.306926i \(-0.0993004\pi\)
0.951733 + 0.306926i \(0.0993004\pi\)
\(462\) 0 0
\(463\) 10759.1 1.07995 0.539977 0.841679i \(-0.318433\pi\)
0.539977 + 0.841679i \(0.318433\pi\)
\(464\) −1087.21 −0.108777
\(465\) 0 0
\(466\) 16330.1 1.62334
\(467\) 7441.70 0.737390 0.368695 0.929550i \(-0.379805\pi\)
0.368695 + 0.929550i \(0.379805\pi\)
\(468\) 0 0
\(469\) 4884.56 0.480913
\(470\) 0 0
\(471\) 0 0
\(472\) 20887.6 2.03693
\(473\) 8992.73 0.874178
\(474\) 0 0
\(475\) 0 0
\(476\) 443.885 0.0427426
\(477\) 0 0
\(478\) 10556.1 1.01010
\(479\) −5691.97 −0.542949 −0.271475 0.962446i \(-0.587511\pi\)
−0.271475 + 0.962446i \(0.587511\pi\)
\(480\) 0 0
\(481\) −12551.3 −1.18979
\(482\) 10246.5 0.968293
\(483\) 0 0
\(484\) −5679.77 −0.533412
\(485\) 0 0
\(486\) 0 0
\(487\) 2020.25 0.187980 0.0939899 0.995573i \(-0.470038\pi\)
0.0939899 + 0.995573i \(0.470038\pi\)
\(488\) −9700.77 −0.899863
\(489\) 0 0
\(490\) 0 0
\(491\) −7636.02 −0.701851 −0.350925 0.936403i \(-0.614133\pi\)
−0.350925 + 0.936403i \(0.614133\pi\)
\(492\) 0 0
\(493\) 635.173 0.0580259
\(494\) 51332.6 4.67523
\(495\) 0 0
\(496\) −16.5218 −0.00149567
\(497\) −3664.15 −0.330703
\(498\) 0 0
\(499\) 6284.56 0.563799 0.281900 0.959444i \(-0.409036\pi\)
0.281900 + 0.959444i \(0.409036\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −14255.4 −1.26743
\(503\) 11310.9 1.00264 0.501319 0.865262i \(-0.332848\pi\)
0.501319 + 0.865262i \(0.332848\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −2822.38 −0.247965
\(507\) 0 0
\(508\) −15885.7 −1.38743
\(509\) −10712.7 −0.932876 −0.466438 0.884554i \(-0.654463\pi\)
−0.466438 + 0.884554i \(0.654463\pi\)
\(510\) 0 0
\(511\) 465.279 0.0402793
\(512\) 2927.65 0.252705
\(513\) 0 0
\(514\) 27897.2 2.39396
\(515\) 0 0
\(516\) 0 0
\(517\) −3886.02 −0.330574
\(518\) 4568.89 0.387540
\(519\) 0 0
\(520\) 0 0
\(521\) −17721.9 −1.49023 −0.745116 0.666935i \(-0.767606\pi\)
−0.745116 + 0.666935i \(0.767606\pi\)
\(522\) 0 0
\(523\) −237.193 −0.0198312 −0.00991562 0.999951i \(-0.503156\pi\)
−0.00991562 + 0.999951i \(0.503156\pi\)
\(524\) −13849.2 −1.15459
\(525\) 0 0
\(526\) −27395.0 −2.27088
\(527\) 9.65243 0.000797849 0
\(528\) 0 0
\(529\) −11756.2 −0.966237
\(530\) 0 0
\(531\) 0 0
\(532\) −11696.2 −0.953185
\(533\) 8473.06 0.688572
\(534\) 0 0
\(535\) 0 0
\(536\) 17382.5 1.40077
\(537\) 0 0
\(538\) 15042.8 1.20546
\(539\) 1475.47 0.117909
\(540\) 0 0
\(541\) −5352.94 −0.425399 −0.212699 0.977118i \(-0.568226\pi\)
−0.212699 + 0.977118i \(0.568226\pi\)
\(542\) 28886.2 2.28924
\(543\) 0 0
\(544\) −766.391 −0.0604021
\(545\) 0 0
\(546\) 0 0
\(547\) 192.162 0.0150206 0.00751030 0.999972i \(-0.497609\pi\)
0.00751030 + 0.999972i \(0.497609\pi\)
\(548\) 8650.67 0.674340
\(549\) 0 0
\(550\) 0 0
\(551\) −16736.5 −1.29401
\(552\) 0 0
\(553\) 3688.87 0.283665
\(554\) −7270.60 −0.557578
\(555\) 0 0
\(556\) 6780.10 0.517159
\(557\) −4850.62 −0.368990 −0.184495 0.982833i \(-0.559065\pi\)
−0.184495 + 0.982833i \(0.559065\pi\)
\(558\) 0 0
\(559\) −26558.4 −2.00949
\(560\) 0 0
\(561\) 0 0
\(562\) −36284.4 −2.72343
\(563\) 9699.11 0.726055 0.363027 0.931778i \(-0.381743\pi\)
0.363027 + 0.931778i \(0.381743\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 28975.6 2.15183
\(567\) 0 0
\(568\) −13039.5 −0.963247
\(569\) −3109.53 −0.229100 −0.114550 0.993417i \(-0.536543\pi\)
−0.114550 + 0.993417i \(0.536543\pi\)
\(570\) 0 0
\(571\) −14476.2 −1.06097 −0.530483 0.847695i \(-0.677990\pi\)
−0.530483 + 0.847695i \(0.677990\pi\)
\(572\) −35846.8 −2.62033
\(573\) 0 0
\(574\) −3084.35 −0.224283
\(575\) 0 0
\(576\) 0 0
\(577\) 2208.23 0.159323 0.0796617 0.996822i \(-0.474616\pi\)
0.0796617 + 0.996822i \(0.474616\pi\)
\(578\) 22616.7 1.62756
\(579\) 0 0
\(580\) 0 0
\(581\) −490.186 −0.0350023
\(582\) 0 0
\(583\) 11696.2 0.830889
\(584\) 1655.77 0.117322
\(585\) 0 0
\(586\) 33597.4 2.36843
\(587\) −23988.7 −1.68675 −0.843374 0.537327i \(-0.819434\pi\)
−0.843374 + 0.537327i \(0.819434\pi\)
\(588\) 0 0
\(589\) −254.338 −0.0177925
\(590\) 0 0
\(591\) 0 0
\(592\) 1144.37 0.0794480
\(593\) −15869.4 −1.09895 −0.549474 0.835511i \(-0.685172\pi\)
−0.549474 + 0.835511i \(0.685172\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 24472.2 1.68192
\(597\) 0 0
\(598\) 8335.41 0.570000
\(599\) 15236.6 1.03932 0.519660 0.854373i \(-0.326059\pi\)
0.519660 + 0.854373i \(0.326059\pi\)
\(600\) 0 0
\(601\) 12258.8 0.832026 0.416013 0.909359i \(-0.363427\pi\)
0.416013 + 0.909359i \(0.363427\pi\)
\(602\) 9667.75 0.654532
\(603\) 0 0
\(604\) 39827.4 2.68303
\(605\) 0 0
\(606\) 0 0
\(607\) −23487.2 −1.57054 −0.785269 0.619155i \(-0.787475\pi\)
−0.785269 + 0.619155i \(0.787475\pi\)
\(608\) 20194.1 1.34700
\(609\) 0 0
\(610\) 0 0
\(611\) 11476.7 0.759896
\(612\) 0 0
\(613\) 22305.3 1.46966 0.734830 0.678251i \(-0.237262\pi\)
0.734830 + 0.678251i \(0.237262\pi\)
\(614\) 6142.92 0.403759
\(615\) 0 0
\(616\) 5250.71 0.343437
\(617\) 3285.91 0.214402 0.107201 0.994237i \(-0.465811\pi\)
0.107201 + 0.994237i \(0.465811\pi\)
\(618\) 0 0
\(619\) −11613.1 −0.754069 −0.377035 0.926199i \(-0.623056\pi\)
−0.377035 + 0.926199i \(0.623056\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 22515.5 1.45143
\(623\) −64.9548 −0.00417714
\(624\) 0 0
\(625\) 0 0
\(626\) 35763.5 2.28338
\(627\) 0 0
\(628\) 28536.7 1.81328
\(629\) −668.567 −0.0423808
\(630\) 0 0
\(631\) 6890.91 0.434743 0.217372 0.976089i \(-0.430252\pi\)
0.217372 + 0.976089i \(0.430252\pi\)
\(632\) 13127.5 0.826238
\(633\) 0 0
\(634\) 37805.9 2.36824
\(635\) 0 0
\(636\) 0 0
\(637\) −4357.55 −0.271040
\(638\) 18672.2 1.15868
\(639\) 0 0
\(640\) 0 0
\(641\) −18769.3 −1.15654 −0.578269 0.815846i \(-0.696272\pi\)
−0.578269 + 0.815846i \(0.696272\pi\)
\(642\) 0 0
\(643\) 3142.30 0.192722 0.0963609 0.995346i \(-0.469280\pi\)
0.0963609 + 0.995346i \(0.469280\pi\)
\(644\) −1899.23 −0.116212
\(645\) 0 0
\(646\) 2734.33 0.166533
\(647\) 19038.1 1.15683 0.578413 0.815744i \(-0.303672\pi\)
0.578413 + 0.815744i \(0.303672\pi\)
\(648\) 0 0
\(649\) −25248.7 −1.52711
\(650\) 0 0
\(651\) 0 0
\(652\) 7950.82 0.477574
\(653\) −20538.6 −1.23084 −0.615420 0.788199i \(-0.711014\pi\)
−0.615420 + 0.788199i \(0.711014\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −772.534 −0.0459793
\(657\) 0 0
\(658\) −4177.72 −0.247514
\(659\) 937.046 0.0553902 0.0276951 0.999616i \(-0.491183\pi\)
0.0276951 + 0.999616i \(0.491183\pi\)
\(660\) 0 0
\(661\) 21116.5 1.24257 0.621283 0.783586i \(-0.286612\pi\)
0.621283 + 0.783586i \(0.286612\pi\)
\(662\) 9437.65 0.554085
\(663\) 0 0
\(664\) −1744.41 −0.101952
\(665\) 0 0
\(666\) 0 0
\(667\) −2717.69 −0.157765
\(668\) −39307.1 −2.27670
\(669\) 0 0
\(670\) 0 0
\(671\) 11726.2 0.674640
\(672\) 0 0
\(673\) −13825.9 −0.791903 −0.395952 0.918271i \(-0.629585\pi\)
−0.395952 + 0.918271i \(0.629585\pi\)
\(674\) 33989.3 1.94246
\(675\) 0 0
\(676\) 76456.9 4.35008
\(677\) −16928.4 −0.961021 −0.480510 0.876989i \(-0.659549\pi\)
−0.480510 + 0.876989i \(0.659549\pi\)
\(678\) 0 0
\(679\) −29.3645 −0.00165966
\(680\) 0 0
\(681\) 0 0
\(682\) 283.752 0.0159317
\(683\) −13817.3 −0.774091 −0.387045 0.922061i \(-0.626504\pi\)
−0.387045 + 0.922061i \(0.626504\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1586.23 0.0882833
\(687\) 0 0
\(688\) 2421.47 0.134183
\(689\) −34542.8 −1.90998
\(690\) 0 0
\(691\) −23671.6 −1.30320 −0.651600 0.758563i \(-0.725902\pi\)
−0.651600 + 0.758563i \(0.725902\pi\)
\(692\) 31422.5 1.72616
\(693\) 0 0
\(694\) 55818.2 3.05307
\(695\) 0 0
\(696\) 0 0
\(697\) 451.333 0.0245272
\(698\) 20741.0 1.12472
\(699\) 0 0
\(700\) 0 0
\(701\) 17009.7 0.916472 0.458236 0.888831i \(-0.348481\pi\)
0.458236 + 0.888831i \(0.348481\pi\)
\(702\) 0 0
\(703\) 17616.5 0.945117
\(704\) −24482.8 −1.31070
\(705\) 0 0
\(706\) 59020.9 3.14629
\(707\) −6060.91 −0.322410
\(708\) 0 0
\(709\) 22038.9 1.16740 0.583701 0.811969i \(-0.301604\pi\)
0.583701 + 0.811969i \(0.301604\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −231.152 −0.0121669
\(713\) −41.2994 −0.00216925
\(714\) 0 0
\(715\) 0 0
\(716\) −40649.2 −2.12169
\(717\) 0 0
\(718\) −11188.8 −0.581562
\(719\) −7287.44 −0.377991 −0.188996 0.981978i \(-0.560523\pi\)
−0.188996 + 0.981978i \(0.560523\pi\)
\(720\) 0 0
\(721\) −8162.82 −0.421636
\(722\) −40328.5 −2.07877
\(723\) 0 0
\(724\) −12044.9 −0.618297
\(725\) 0 0
\(726\) 0 0
\(727\) 29676.7 1.51396 0.756980 0.653438i \(-0.226674\pi\)
0.756980 + 0.653438i \(0.226674\pi\)
\(728\) −15507.0 −0.789463
\(729\) 0 0
\(730\) 0 0
\(731\) −1414.68 −0.0715786
\(732\) 0 0
\(733\) −23111.8 −1.16460 −0.582300 0.812974i \(-0.697847\pi\)
−0.582300 + 0.812974i \(0.697847\pi\)
\(734\) −32971.9 −1.65806
\(735\) 0 0
\(736\) 3279.12 0.164226
\(737\) −21011.7 −1.05017
\(738\) 0 0
\(739\) −31171.4 −1.55164 −0.775818 0.630957i \(-0.782662\pi\)
−0.775818 + 0.630957i \(0.782662\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 12574.2 0.622120
\(743\) −31324.4 −1.54668 −0.773338 0.633993i \(-0.781415\pi\)
−0.773338 + 0.633993i \(0.781415\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 53630.7 2.63212
\(747\) 0 0
\(748\) −1909.45 −0.0933373
\(749\) −398.756 −0.0194529
\(750\) 0 0
\(751\) 4032.20 0.195922 0.0979608 0.995190i \(-0.468768\pi\)
0.0979608 + 0.995190i \(0.468768\pi\)
\(752\) −1046.39 −0.0507419
\(753\) 0 0
\(754\) −55145.0 −2.66348
\(755\) 0 0
\(756\) 0 0
\(757\) −34263.7 −1.64509 −0.822546 0.568699i \(-0.807447\pi\)
−0.822546 + 0.568699i \(0.807447\pi\)
\(758\) 59059.3 2.82999
\(759\) 0 0
\(760\) 0 0
\(761\) −7265.88 −0.346108 −0.173054 0.984912i \(-0.555363\pi\)
−0.173054 + 0.984912i \(0.555363\pi\)
\(762\) 0 0
\(763\) 9512.22 0.451331
\(764\) −5571.07 −0.263814
\(765\) 0 0
\(766\) −34546.0 −1.62950
\(767\) 74567.5 3.51040
\(768\) 0 0
\(769\) 38116.2 1.78739 0.893695 0.448674i \(-0.148104\pi\)
0.893695 + 0.448674i \(0.148104\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 69356.6 3.23342
\(773\) 16158.2 0.751838 0.375919 0.926652i \(-0.377327\pi\)
0.375919 + 0.926652i \(0.377327\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −104.498 −0.00483412
\(777\) 0 0
\(778\) 40463.9 1.86465
\(779\) −11892.4 −0.546972
\(780\) 0 0
\(781\) 15761.9 0.722160
\(782\) 444.001 0.0203036
\(783\) 0 0
\(784\) 397.301 0.0180986
\(785\) 0 0
\(786\) 0 0
\(787\) −5092.49 −0.230658 −0.115329 0.993327i \(-0.536792\pi\)
−0.115329 + 0.993327i \(0.536792\pi\)
\(788\) 19441.9 0.878922
\(789\) 0 0
\(790\) 0 0
\(791\) −3052.26 −0.137201
\(792\) 0 0
\(793\) −34631.1 −1.55080
\(794\) 24858.2 1.11106
\(795\) 0 0
\(796\) −17097.8 −0.761326
\(797\) −34666.2 −1.54070 −0.770350 0.637621i \(-0.779919\pi\)
−0.770350 + 0.637621i \(0.779919\pi\)
\(798\) 0 0
\(799\) 611.326 0.0270678
\(800\) 0 0
\(801\) 0 0
\(802\) 34043.0 1.49888
\(803\) −2001.47 −0.0879582
\(804\) 0 0
\(805\) 0 0
\(806\) −838.012 −0.0366225
\(807\) 0 0
\(808\) −21568.7 −0.939091
\(809\) −15126.2 −0.657365 −0.328683 0.944440i \(-0.606605\pi\)
−0.328683 + 0.944440i \(0.606605\pi\)
\(810\) 0 0
\(811\) 29416.5 1.27368 0.636840 0.770996i \(-0.280241\pi\)
0.636840 + 0.770996i \(0.280241\pi\)
\(812\) 12564.9 0.543030
\(813\) 0 0
\(814\) −19653.9 −0.846274
\(815\) 0 0
\(816\) 0 0
\(817\) 37276.3 1.59625
\(818\) 12081.5 0.516404
\(819\) 0 0
\(820\) 0 0
\(821\) 15334.4 0.651856 0.325928 0.945395i \(-0.394323\pi\)
0.325928 + 0.945395i \(0.394323\pi\)
\(822\) 0 0
\(823\) 11003.7 0.466056 0.233028 0.972470i \(-0.425137\pi\)
0.233028 + 0.972470i \(0.425137\pi\)
\(824\) −29048.7 −1.22811
\(825\) 0 0
\(826\) −27143.9 −1.14341
\(827\) −3261.59 −0.137142 −0.0685711 0.997646i \(-0.521844\pi\)
−0.0685711 + 0.997646i \(0.521844\pi\)
\(828\) 0 0
\(829\) 5163.30 0.216319 0.108160 0.994134i \(-0.465504\pi\)
0.108160 + 0.994134i \(0.465504\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 72305.6 3.01292
\(833\) −232.113 −0.00965453
\(834\) 0 0
\(835\) 0 0
\(836\) 50313.1 2.08148
\(837\) 0 0
\(838\) 20339.8 0.838457
\(839\) 5641.70 0.232149 0.116075 0.993241i \(-0.462969\pi\)
0.116075 + 0.993241i \(0.462969\pi\)
\(840\) 0 0
\(841\) −6409.46 −0.262801
\(842\) −44966.1 −1.84042
\(843\) 0 0
\(844\) −43628.1 −1.77931
\(845\) 0 0
\(846\) 0 0
\(847\) 2970.01 0.120485
\(848\) 3149.45 0.127538
\(849\) 0 0
\(850\) 0 0
\(851\) 2860.57 0.115228
\(852\) 0 0
\(853\) 7799.52 0.313072 0.156536 0.987672i \(-0.449967\pi\)
0.156536 + 0.987672i \(0.449967\pi\)
\(854\) 12606.4 0.505130
\(855\) 0 0
\(856\) −1419.04 −0.0566610
\(857\) −21540.0 −0.858568 −0.429284 0.903170i \(-0.641234\pi\)
−0.429284 + 0.903170i \(0.641234\pi\)
\(858\) 0 0
\(859\) 4447.97 0.176674 0.0883370 0.996091i \(-0.471845\pi\)
0.0883370 + 0.996091i \(0.471845\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −66198.5 −2.61569
\(863\) −9425.21 −0.371770 −0.185885 0.982571i \(-0.559515\pi\)
−0.185885 + 0.982571i \(0.559515\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −10977.0 −0.430730
\(867\) 0 0
\(868\) 190.942 0.00746659
\(869\) −15868.3 −0.619442
\(870\) 0 0
\(871\) 62054.5 2.41405
\(872\) 33850.8 1.31460
\(873\) 0 0
\(874\) −11699.2 −0.452783
\(875\) 0 0
\(876\) 0 0
\(877\) −22346.1 −0.860403 −0.430201 0.902733i \(-0.641557\pi\)
−0.430201 + 0.902733i \(0.641557\pi\)
\(878\) 44088.1 1.69465
\(879\) 0 0
\(880\) 0 0
\(881\) −12074.9 −0.461762 −0.230881 0.972982i \(-0.574161\pi\)
−0.230881 + 0.972982i \(0.574161\pi\)
\(882\) 0 0
\(883\) 30499.6 1.16239 0.581196 0.813764i \(-0.302585\pi\)
0.581196 + 0.813764i \(0.302585\pi\)
\(884\) 5639.22 0.214556
\(885\) 0 0
\(886\) −30743.8 −1.16576
\(887\) 23344.2 0.883675 0.441838 0.897095i \(-0.354327\pi\)
0.441838 + 0.897095i \(0.354327\pi\)
\(888\) 0 0
\(889\) 8306.80 0.313387
\(890\) 0 0
\(891\) 0 0
\(892\) −58544.3 −2.19754
\(893\) −16108.2 −0.603628
\(894\) 0 0
\(895\) 0 0
\(896\) −17260.4 −0.643560
\(897\) 0 0
\(898\) −3552.85 −0.132027
\(899\) 273.227 0.0101364
\(900\) 0 0
\(901\) −1839.98 −0.0680341
\(902\) 13267.8 0.489768
\(903\) 0 0
\(904\) −10862.0 −0.399629
\(905\) 0 0
\(906\) 0 0
\(907\) 15092.5 0.552523 0.276262 0.961082i \(-0.410904\pi\)
0.276262 + 0.961082i \(0.410904\pi\)
\(908\) −818.115 −0.0299010
\(909\) 0 0
\(910\) 0 0
\(911\) 15207.8 0.553081 0.276541 0.961002i \(-0.410812\pi\)
0.276541 + 0.961002i \(0.410812\pi\)
\(912\) 0 0
\(913\) 2108.62 0.0764348
\(914\) −15369.7 −0.556221
\(915\) 0 0
\(916\) 40419.6 1.45797
\(917\) 7241.90 0.260794
\(918\) 0 0
\(919\) 24818.1 0.890831 0.445415 0.895324i \(-0.353056\pi\)
0.445415 + 0.895324i \(0.353056\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −87130.0 −3.11223
\(923\) −46550.1 −1.66004
\(924\) 0 0
\(925\) 0 0
\(926\) −49756.3 −1.76576
\(927\) 0 0
\(928\) −21693.9 −0.767388
\(929\) −39906.4 −1.40935 −0.704675 0.709530i \(-0.748907\pi\)
−0.704675 + 0.709530i \(0.748907\pi\)
\(930\) 0 0
\(931\) 6116.07 0.215302
\(932\) −47270.3 −1.66136
\(933\) 0 0
\(934\) −34414.6 −1.20565
\(935\) 0 0
\(936\) 0 0
\(937\) −16923.0 −0.590020 −0.295010 0.955494i \(-0.595323\pi\)
−0.295010 + 0.955494i \(0.595323\pi\)
\(938\) −22589.0 −0.786307
\(939\) 0 0
\(940\) 0 0
\(941\) 53014.1 1.83657 0.918285 0.395921i \(-0.129574\pi\)
0.918285 + 0.395921i \(0.129574\pi\)
\(942\) 0 0
\(943\) −1931.10 −0.0666864
\(944\) −6798.71 −0.234406
\(945\) 0 0
\(946\) −41587.4 −1.42931
\(947\) −25798.9 −0.885271 −0.442636 0.896702i \(-0.645957\pi\)
−0.442636 + 0.896702i \(0.645957\pi\)
\(948\) 0 0
\(949\) 5911.00 0.202191
\(950\) 0 0
\(951\) 0 0
\(952\) −826.011 −0.0281210
\(953\) −17942.7 −0.609885 −0.304943 0.952371i \(-0.598637\pi\)
−0.304943 + 0.952371i \(0.598637\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −30556.6 −1.03375
\(957\) 0 0
\(958\) 26322.9 0.887739
\(959\) −4523.53 −0.152317
\(960\) 0 0
\(961\) −29786.8 −0.999861
\(962\) 58044.2 1.94534
\(963\) 0 0
\(964\) −29660.4 −0.990971
\(965\) 0 0
\(966\) 0 0
\(967\) −19668.3 −0.654073 −0.327036 0.945012i \(-0.606050\pi\)
−0.327036 + 0.945012i \(0.606050\pi\)
\(968\) 10569.3 0.350940
\(969\) 0 0
\(970\) 0 0
\(971\) −6332.97 −0.209304 −0.104652 0.994509i \(-0.533373\pi\)
−0.104652 + 0.994509i \(0.533373\pi\)
\(972\) 0 0
\(973\) −3545.39 −0.116814
\(974\) −9342.76 −0.307353
\(975\) 0 0
\(976\) 3157.51 0.103555
\(977\) −11334.1 −0.371145 −0.185573 0.982631i \(-0.559414\pi\)
−0.185573 + 0.982631i \(0.559414\pi\)
\(978\) 0 0
\(979\) 279.414 0.00912166
\(980\) 0 0
\(981\) 0 0
\(982\) 35313.3 1.14755
\(983\) −37654.3 −1.22175 −0.610877 0.791725i \(-0.709183\pi\)
−0.610877 + 0.791725i \(0.709183\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −2937.40 −0.0948741
\(987\) 0 0
\(988\) −148591. −4.78473
\(989\) 6052.95 0.194613
\(990\) 0 0
\(991\) −53441.5 −1.71304 −0.856522 0.516111i \(-0.827379\pi\)
−0.856522 + 0.516111i \(0.827379\pi\)
\(992\) −329.671 −0.0105515
\(993\) 0 0
\(994\) 16945.1 0.540710
\(995\) 0 0
\(996\) 0 0
\(997\) −37919.3 −1.20453 −0.602266 0.798296i \(-0.705735\pi\)
−0.602266 + 0.798296i \(0.705735\pi\)
\(998\) −29063.4 −0.921829
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.4.a.ba.1.1 3
3.2 odd 2 175.4.a.f.1.3 3
5.4 even 2 315.4.a.p.1.3 3
15.2 even 4 175.4.b.e.99.6 6
15.8 even 4 175.4.b.e.99.1 6
15.14 odd 2 35.4.a.c.1.1 3
21.20 even 2 1225.4.a.y.1.3 3
35.34 odd 2 2205.4.a.bm.1.3 3
60.59 even 2 560.4.a.u.1.3 3
105.44 odd 6 245.4.e.m.116.3 6
105.59 even 6 245.4.e.n.226.3 6
105.74 odd 6 245.4.e.m.226.3 6
105.89 even 6 245.4.e.n.116.3 6
105.104 even 2 245.4.a.l.1.1 3
120.29 odd 2 2240.4.a.bt.1.3 3
120.59 even 2 2240.4.a.bv.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.a.c.1.1 3 15.14 odd 2
175.4.a.f.1.3 3 3.2 odd 2
175.4.b.e.99.1 6 15.8 even 4
175.4.b.e.99.6 6 15.2 even 4
245.4.a.l.1.1 3 105.104 even 2
245.4.e.m.116.3 6 105.44 odd 6
245.4.e.m.226.3 6 105.74 odd 6
245.4.e.n.116.3 6 105.89 even 6
245.4.e.n.226.3 6 105.59 even 6
315.4.a.p.1.3 3 5.4 even 2
560.4.a.u.1.3 3 60.59 even 2
1225.4.a.y.1.3 3 21.20 even 2
1575.4.a.ba.1.1 3 1.1 even 1 trivial
2205.4.a.bm.1.3 3 35.34 odd 2
2240.4.a.bt.1.3 3 120.29 odd 2
2240.4.a.bv.1.1 3 120.59 even 2