Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1575))\).
|
Total |
New |
Old |
Modular forms
| 261888 |
182167 |
79721 |
Cusp forms
| 256512 |
180323 |
76189 |
Eisenstein series
| 5376 |
1844 |
3532 |
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1575))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label |
\(\chi\) |
Newforms |
Dimension |
\(\chi\) degree |
1575.4.a |
\(\chi_{1575}(1, \cdot)\) |
1575.4.a.a |
1 |
1 |
1575.4.a.b |
1 |
1575.4.a.c |
1 |
1575.4.a.d |
1 |
1575.4.a.e |
1 |
1575.4.a.f |
1 |
1575.4.a.g |
1 |
1575.4.a.h |
1 |
1575.4.a.i |
1 |
1575.4.a.j |
1 |
1575.4.a.k |
1 |
1575.4.a.l |
1 |
1575.4.a.m |
2 |
1575.4.a.n |
2 |
1575.4.a.o |
2 |
1575.4.a.p |
2 |
1575.4.a.q |
2 |
1575.4.a.r |
2 |
1575.4.a.s |
2 |
1575.4.a.t |
2 |
1575.4.a.u |
2 |
1575.4.a.v |
2 |
1575.4.a.w |
2 |
1575.4.a.x |
2 |
1575.4.a.y |
2 |
1575.4.a.z |
2 |
1575.4.a.ba |
3 |
1575.4.a.bb |
3 |
1575.4.a.bc |
3 |
1575.4.a.bd |
3 |
1575.4.a.be |
3 |
1575.4.a.bf |
4 |
1575.4.a.bg |
4 |
1575.4.a.bh |
4 |
1575.4.a.bi |
4 |
1575.4.a.bj |
4 |
1575.4.a.bk |
4 |
1575.4.a.bl |
4 |
1575.4.a.bm |
4 |
1575.4.a.bn |
5 |
1575.4.a.bo |
5 |
1575.4.a.bp |
5 |
1575.4.a.bq |
5 |
1575.4.a.br |
8 |
1575.4.a.bs |
8 |
1575.4.a.bt |
10 |
1575.4.a.bu |
10 |
1575.4.b |
\(\chi_{1575}(251, \cdot)\) |
n/a |
152 |
1 |
1575.4.d |
\(\chi_{1575}(1324, \cdot)\) |
n/a |
134 |
1 |
1575.4.g |
\(\chi_{1575}(1574, \cdot)\) |
n/a |
144 |
1 |
1575.4.i |
\(\chi_{1575}(526, \cdot)\) |
n/a |
684 |
2 |
1575.4.j |
\(\chi_{1575}(226, \cdot)\) |
n/a |
374 |
2 |
1575.4.k |
\(\chi_{1575}(1201, \cdot)\) |
n/a |
900 |
2 |
1575.4.l |
\(\chi_{1575}(151, \cdot)\) |
n/a |
900 |
2 |
1575.4.m |
\(\chi_{1575}(1268, \cdot)\) |
n/a |
216 |
2 |
1575.4.p |
\(\chi_{1575}(118, \cdot)\) |
n/a |
356 |
2 |
1575.4.q |
\(\chi_{1575}(316, \cdot)\) |
n/a |
896 |
4 |
1575.4.s |
\(\chi_{1575}(499, \cdot)\) |
n/a |
856 |
2 |
1575.4.u |
\(\chi_{1575}(101, \cdot)\) |
n/a |
900 |
2 |
1575.4.v |
\(\chi_{1575}(299, \cdot)\) |
n/a |
856 |
2 |
1575.4.ba |
\(\chi_{1575}(524, \cdot)\) |
n/a |
856 |
2 |
1575.4.bc |
\(\chi_{1575}(899, \cdot)\) |
n/a |
288 |
2 |
1575.4.bf |
\(\chi_{1575}(551, \cdot)\) |
n/a |
900 |
2 |
1575.4.bg |
\(\chi_{1575}(424, \cdot)\) |
n/a |
356 |
2 |
1575.4.bi |
\(\chi_{1575}(274, \cdot)\) |
n/a |
648 |
2 |
1575.4.bk |
\(\chi_{1575}(26, \cdot)\) |
n/a |
304 |
2 |
1575.4.bm |
\(\chi_{1575}(776, \cdot)\) |
n/a |
900 |
2 |
1575.4.bp |
\(\chi_{1575}(949, \cdot)\) |
n/a |
856 |
2 |
1575.4.br |
\(\chi_{1575}(824, \cdot)\) |
n/a |
856 |
2 |
1575.4.bu |
\(\chi_{1575}(314, \cdot)\) |
n/a |
960 |
4 |
1575.4.bx |
\(\chi_{1575}(64, \cdot)\) |
n/a |
904 |
4 |
1575.4.bz |
\(\chi_{1575}(566, \cdot)\) |
n/a |
960 |
4 |
1575.4.ca |
\(\chi_{1575}(418, \cdot)\) |
n/a |
1712 |
4 |
1575.4.cd |
\(\chi_{1575}(893, \cdot)\) |
n/a |
1712 |
4 |
1575.4.cf |
\(\chi_{1575}(32, \cdot)\) |
n/a |
1712 |
4 |
1575.4.ch |
\(\chi_{1575}(82, \cdot)\) |
n/a |
712 |
4 |
1575.4.cj |
\(\chi_{1575}(643, \cdot)\) |
n/a |
1712 |
4 |
1575.4.ck |
\(\chi_{1575}(218, \cdot)\) |
n/a |
1296 |
4 |
1575.4.cm |
\(\chi_{1575}(107, \cdot)\) |
n/a |
576 |
4 |
1575.4.co |
\(\chi_{1575}(157, \cdot)\) |
n/a |
1712 |
4 |
1575.4.cq |
\(\chi_{1575}(121, \cdot)\) |
n/a |
5728 |
8 |
1575.4.cr |
\(\chi_{1575}(16, \cdot)\) |
n/a |
5728 |
8 |
1575.4.cs |
\(\chi_{1575}(46, \cdot)\) |
n/a |
2384 |
8 |
1575.4.ct |
\(\chi_{1575}(106, \cdot)\) |
n/a |
4320 |
8 |
1575.4.cu |
\(\chi_{1575}(433, \cdot)\) |
n/a |
2384 |
8 |
1575.4.cx |
\(\chi_{1575}(8, \cdot)\) |
n/a |
1440 |
8 |
1575.4.cz |
\(\chi_{1575}(164, \cdot)\) |
n/a |
5728 |
8 |
1575.4.db |
\(\chi_{1575}(4, \cdot)\) |
n/a |
5728 |
8 |
1575.4.de |
\(\chi_{1575}(41, \cdot)\) |
n/a |
5728 |
8 |
1575.4.dg |
\(\chi_{1575}(206, \cdot)\) |
n/a |
1920 |
8 |
1575.4.di |
\(\chi_{1575}(169, \cdot)\) |
n/a |
4320 |
8 |
1575.4.dk |
\(\chi_{1575}(109, \cdot)\) |
n/a |
2384 |
8 |
1575.4.dl |
\(\chi_{1575}(236, \cdot)\) |
n/a |
5728 |
8 |
1575.4.do |
\(\chi_{1575}(89, \cdot)\) |
n/a |
1920 |
8 |
1575.4.dq |
\(\chi_{1575}(104, \cdot)\) |
n/a |
5728 |
8 |
1575.4.dv |
\(\chi_{1575}(59, \cdot)\) |
n/a |
5728 |
8 |
1575.4.dw |
\(\chi_{1575}(131, \cdot)\) |
n/a |
5728 |
8 |
1575.4.dy |
\(\chi_{1575}(184, \cdot)\) |
n/a |
5728 |
8 |
1575.4.eb |
\(\chi_{1575}(187, \cdot)\) |
n/a |
11456 |
16 |
1575.4.ed |
\(\chi_{1575}(53, \cdot)\) |
n/a |
3840 |
16 |
1575.4.ef |
\(\chi_{1575}(92, \cdot)\) |
n/a |
8640 |
16 |
1575.4.eg |
\(\chi_{1575}(13, \cdot)\) |
n/a |
11456 |
16 |
1575.4.ei |
\(\chi_{1575}(73, \cdot)\) |
n/a |
4768 |
16 |
1575.4.ek |
\(\chi_{1575}(2, \cdot)\) |
n/a |
11456 |
16 |
1575.4.em |
\(\chi_{1575}(23, \cdot)\) |
n/a |
11456 |
16 |
1575.4.ep |
\(\chi_{1575}(52, \cdot)\) |
n/a |
11456 |
16 |
"n/a" means that newforms for that character have not been added to the database yet