Properties

 Label 1575.2.v Level 1575 Weight 2 Character orbit v Rep. character $$\chi_{1575}(299,\cdot)$$ Character field $$\Q(\zeta_{6})$$ Dimension 280 Sturm bound 480

Related objects

Defining parameters

 Level: $$N$$ = $$1575 = 3^{2} \cdot 5^{2} \cdot 7$$ Weight: $$k$$ = $$2$$ Character orbit: $$[\chi]$$ = 1575.v (of order $$6$$ and degree $$2$$) Character conductor: $$\operatorname{cond}(\chi)$$ = $$315$$ Character field: $$\Q(\zeta_{6})$$ Sturm bound: $$480$$

Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(1575, [\chi])$$.

Total New Old
Modular forms 504 296 208
Cusp forms 456 280 176
Eisenstein series 48 16 32

Trace form

 $$280q - 138q^{4} - 12q^{6} + 10q^{9} + O(q^{10})$$ $$280q - 138q^{4} - 12q^{6} + 10q^{9} + 18q^{14} - 130q^{16} + 12q^{19} - 6q^{21} + 24q^{24} - 12q^{26} - 24q^{29} - 6q^{31} + 12q^{34} + 36q^{39} + 12q^{41} - 84q^{44} + 16q^{46} - 22q^{49} + 6q^{51} + 90q^{54} + 120q^{56} + 6q^{59} - 42q^{61} + 248q^{64} - 18q^{66} + 24q^{69} - 2q^{79} - 34q^{81} - 66q^{84} + 114q^{89} - 36q^{91} + 6q^{94} - 42q^{96} - 34q^{99} + O(q^{100})$$

Decomposition of $$S_{2}^{\mathrm{new}}(1575, [\chi])$$ into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of $$S_{2}^{\mathrm{old}}(1575, [\chi])$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(1575, [\chi]) \cong$$ $$S_{2}^{\mathrm{new}}(315, [\chi])$$$$^{\oplus 2}$$

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database