Properties

Label 1575.2.d.e.1324.2
Level $1575$
Weight $2$
Character 1575.1324
Analytic conductor $12.576$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1575.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(12.5764383184\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
Defining polynomial: \(x^{4} + 9 x^{2} + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1324.2
Root \(-1.56155i\) of defining polynomial
Character \(\chi\) \(=\) 1575.1324
Dual form 1575.2.d.e.1324.3

$q$-expansion

\(f(q)\) \(=\) \(q-1.56155i q^{2} -0.438447 q^{4} -1.00000i q^{7} -2.43845i q^{8} +O(q^{10})\) \(q-1.56155i q^{2} -0.438447 q^{4} -1.00000i q^{7} -2.43845i q^{8} -2.56155 q^{11} -4.56155i q^{13} -1.56155 q^{14} -4.68466 q^{16} +4.56155i q^{17} -1.12311 q^{19} +4.00000i q^{22} -5.12311i q^{23} -7.12311 q^{26} +0.438447i q^{28} -5.68466 q^{29} +2.43845i q^{32} +7.12311 q^{34} +6.00000i q^{37} +1.75379i q^{38} +3.12311 q^{41} -9.12311i q^{43} +1.12311 q^{44} -8.00000 q^{46} -3.68466i q^{47} -1.00000 q^{49} +2.00000i q^{52} +3.12311i q^{53} -2.43845 q^{56} +8.87689i q^{58} -4.00000 q^{59} -9.36932 q^{61} -5.56155 q^{64} -6.24621i q^{67} -2.00000i q^{68} -8.00000 q^{71} -4.24621i q^{73} +9.36932 q^{74} +0.492423 q^{76} +2.56155i q^{77} +6.56155 q^{79} -4.87689i q^{82} +4.00000i q^{83} -14.2462 q^{86} +6.24621i q^{88} +7.12311 q^{89} -4.56155 q^{91} +2.24621i q^{92} -5.75379 q^{94} -14.8078i q^{97} +1.56155i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 10q^{4} + O(q^{10}) \) \( 4q - 10q^{4} - 2q^{11} + 2q^{14} + 6q^{16} + 12q^{19} - 12q^{26} + 2q^{29} + 12q^{34} - 4q^{41} - 12q^{44} - 32q^{46} - 4q^{49} - 18q^{56} - 16q^{59} + 12q^{61} - 14q^{64} - 32q^{71} - 12q^{74} - 64q^{76} + 18q^{79} - 24q^{86} + 12q^{89} - 10q^{91} - 56q^{94} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1575\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(1226\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.56155i − 1.10418i −0.833783 0.552092i \(-0.813830\pi\)
0.833783 0.552092i \(-0.186170\pi\)
\(3\) 0 0
\(4\) −0.438447 −0.219224
\(5\) 0 0
\(6\) 0 0
\(7\) − 1.00000i − 0.377964i
\(8\) − 2.43845i − 0.862121i
\(9\) 0 0
\(10\) 0 0
\(11\) −2.56155 −0.772337 −0.386169 0.922428i \(-0.626202\pi\)
−0.386169 + 0.922428i \(0.626202\pi\)
\(12\) 0 0
\(13\) − 4.56155i − 1.26515i −0.774500 0.632574i \(-0.781999\pi\)
0.774500 0.632574i \(-0.218001\pi\)
\(14\) −1.56155 −0.417343
\(15\) 0 0
\(16\) −4.68466 −1.17116
\(17\) 4.56155i 1.10634i 0.833069 + 0.553170i \(0.186582\pi\)
−0.833069 + 0.553170i \(0.813418\pi\)
\(18\) 0 0
\(19\) −1.12311 −0.257658 −0.128829 0.991667i \(-0.541122\pi\)
−0.128829 + 0.991667i \(0.541122\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 4.00000i 0.852803i
\(23\) − 5.12311i − 1.06824i −0.845408 0.534121i \(-0.820643\pi\)
0.845408 0.534121i \(-0.179357\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −7.12311 −1.39696
\(27\) 0 0
\(28\) 0.438447i 0.0828587i
\(29\) −5.68466 −1.05561 −0.527807 0.849364i \(-0.676986\pi\)
−0.527807 + 0.849364i \(0.676986\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 2.43845i 0.431061i
\(33\) 0 0
\(34\) 7.12311 1.22160
\(35\) 0 0
\(36\) 0 0
\(37\) 6.00000i 0.986394i 0.869918 + 0.493197i \(0.164172\pi\)
−0.869918 + 0.493197i \(0.835828\pi\)
\(38\) 1.75379i 0.284502i
\(39\) 0 0
\(40\) 0 0
\(41\) 3.12311 0.487747 0.243874 0.969807i \(-0.421582\pi\)
0.243874 + 0.969807i \(0.421582\pi\)
\(42\) 0 0
\(43\) − 9.12311i − 1.39126i −0.718400 0.695630i \(-0.755125\pi\)
0.718400 0.695630i \(-0.244875\pi\)
\(44\) 1.12311 0.169315
\(45\) 0 0
\(46\) −8.00000 −1.17954
\(47\) − 3.68466i − 0.537463i −0.963215 0.268731i \(-0.913396\pi\)
0.963215 0.268731i \(-0.0866044\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 2.00000i 0.277350i
\(53\) 3.12311i 0.428992i 0.976725 + 0.214496i \(0.0688108\pi\)
−0.976725 + 0.214496i \(0.931189\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −2.43845 −0.325851
\(57\) 0 0
\(58\) 8.87689i 1.16559i
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) −9.36932 −1.19962 −0.599809 0.800143i \(-0.704757\pi\)
−0.599809 + 0.800143i \(0.704757\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −5.56155 −0.695194
\(65\) 0 0
\(66\) 0 0
\(67\) − 6.24621i − 0.763096i −0.924349 0.381548i \(-0.875391\pi\)
0.924349 0.381548i \(-0.124609\pi\)
\(68\) − 2.00000i − 0.242536i
\(69\) 0 0
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) − 4.24621i − 0.496981i −0.968634 0.248491i \(-0.920065\pi\)
0.968634 0.248491i \(-0.0799345\pi\)
\(74\) 9.36932 1.08916
\(75\) 0 0
\(76\) 0.492423 0.0564847
\(77\) 2.56155i 0.291916i
\(78\) 0 0
\(79\) 6.56155 0.738232 0.369116 0.929383i \(-0.379660\pi\)
0.369116 + 0.929383i \(0.379660\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) − 4.87689i − 0.538563i
\(83\) 4.00000i 0.439057i 0.975606 + 0.219529i \(0.0704519\pi\)
−0.975606 + 0.219529i \(0.929548\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −14.2462 −1.53621
\(87\) 0 0
\(88\) 6.24621i 0.665848i
\(89\) 7.12311 0.755048 0.377524 0.926000i \(-0.376776\pi\)
0.377524 + 0.926000i \(0.376776\pi\)
\(90\) 0 0
\(91\) −4.56155 −0.478181
\(92\) 2.24621i 0.234184i
\(93\) 0 0
\(94\) −5.75379 −0.593458
\(95\) 0 0
\(96\) 0 0
\(97\) − 14.8078i − 1.50350i −0.659448 0.751750i \(-0.729210\pi\)
0.659448 0.751750i \(-0.270790\pi\)
\(98\) 1.56155i 0.157741i
\(99\) 0 0
\(100\) 0 0
\(101\) −0.246211 −0.0244989 −0.0122495 0.999925i \(-0.503899\pi\)
−0.0122495 + 0.999925i \(0.503899\pi\)
\(102\) 0 0
\(103\) − 1.43845i − 0.141734i −0.997486 0.0708672i \(-0.977423\pi\)
0.997486 0.0708672i \(-0.0225767\pi\)
\(104\) −11.1231 −1.09071
\(105\) 0 0
\(106\) 4.87689 0.473686
\(107\) 11.3693i 1.09911i 0.835456 + 0.549557i \(0.185203\pi\)
−0.835456 + 0.549557i \(0.814797\pi\)
\(108\) 0 0
\(109\) −17.6847 −1.69388 −0.846942 0.531686i \(-0.821559\pi\)
−0.846942 + 0.531686i \(0.821559\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 4.68466i 0.442659i
\(113\) − 14.0000i − 1.31701i −0.752577 0.658505i \(-0.771189\pi\)
0.752577 0.658505i \(-0.228811\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2.49242 0.231416
\(117\) 0 0
\(118\) 6.24621i 0.575010i
\(119\) 4.56155 0.418157
\(120\) 0 0
\(121\) −4.43845 −0.403495
\(122\) 14.6307i 1.32460i
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 10.2462i 0.909204i 0.890695 + 0.454602i \(0.150219\pi\)
−0.890695 + 0.454602i \(0.849781\pi\)
\(128\) 13.5616i 1.19868i
\(129\) 0 0
\(130\) 0 0
\(131\) 9.12311 0.797089 0.398545 0.917149i \(-0.369515\pi\)
0.398545 + 0.917149i \(0.369515\pi\)
\(132\) 0 0
\(133\) 1.12311i 0.0973856i
\(134\) −9.75379 −0.842599
\(135\) 0 0
\(136\) 11.1231 0.953798
\(137\) 8.87689i 0.758404i 0.925314 + 0.379202i \(0.123801\pi\)
−0.925314 + 0.379202i \(0.876199\pi\)
\(138\) 0 0
\(139\) 6.87689 0.583291 0.291645 0.956527i \(-0.405797\pi\)
0.291645 + 0.956527i \(0.405797\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 12.4924i 1.04834i
\(143\) 11.6847i 0.977120i
\(144\) 0 0
\(145\) 0 0
\(146\) −6.63068 −0.548759
\(147\) 0 0
\(148\) − 2.63068i − 0.216241i
\(149\) −4.24621 −0.347863 −0.173932 0.984758i \(-0.555647\pi\)
−0.173932 + 0.984758i \(0.555647\pi\)
\(150\) 0 0
\(151\) 21.9309 1.78471 0.892354 0.451335i \(-0.149052\pi\)
0.892354 + 0.451335i \(0.149052\pi\)
\(152\) 2.73863i 0.222133i
\(153\) 0 0
\(154\) 4.00000 0.322329
\(155\) 0 0
\(156\) 0 0
\(157\) 3.75379i 0.299585i 0.988717 + 0.149792i \(0.0478606\pi\)
−0.988717 + 0.149792i \(0.952139\pi\)
\(158\) − 10.2462i − 0.815145i
\(159\) 0 0
\(160\) 0 0
\(161\) −5.12311 −0.403757
\(162\) 0 0
\(163\) − 1.12311i − 0.0879684i −0.999032 0.0439842i \(-0.985995\pi\)
0.999032 0.0439842i \(-0.0140051\pi\)
\(164\) −1.36932 −0.106926
\(165\) 0 0
\(166\) 6.24621 0.484800
\(167\) − 21.9309i − 1.69706i −0.529146 0.848531i \(-0.677488\pi\)
0.529146 0.848531i \(-0.322512\pi\)
\(168\) 0 0
\(169\) −7.80776 −0.600597
\(170\) 0 0
\(171\) 0 0
\(172\) 4.00000i 0.304997i
\(173\) − 8.56155i − 0.650923i −0.945555 0.325461i \(-0.894480\pi\)
0.945555 0.325461i \(-0.105520\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 12.0000 0.904534
\(177\) 0 0
\(178\) − 11.1231i − 0.833712i
\(179\) 20.0000 1.49487 0.747435 0.664335i \(-0.231285\pi\)
0.747435 + 0.664335i \(0.231285\pi\)
\(180\) 0 0
\(181\) 23.6155 1.75533 0.877664 0.479276i \(-0.159101\pi\)
0.877664 + 0.479276i \(0.159101\pi\)
\(182\) 7.12311i 0.528000i
\(183\) 0 0
\(184\) −12.4924 −0.920954
\(185\) 0 0
\(186\) 0 0
\(187\) − 11.6847i − 0.854467i
\(188\) 1.61553i 0.117824i
\(189\) 0 0
\(190\) 0 0
\(191\) 9.43845 0.682942 0.341471 0.939892i \(-0.389075\pi\)
0.341471 + 0.939892i \(0.389075\pi\)
\(192\) 0 0
\(193\) 5.36932i 0.386492i 0.981150 + 0.193246i \(0.0619015\pi\)
−0.981150 + 0.193246i \(0.938098\pi\)
\(194\) −23.1231 −1.66014
\(195\) 0 0
\(196\) 0.438447 0.0313177
\(197\) 7.12311i 0.507500i 0.967270 + 0.253750i \(0.0816641\pi\)
−0.967270 + 0.253750i \(0.918336\pi\)
\(198\) 0 0
\(199\) 18.2462 1.29344 0.646720 0.762728i \(-0.276140\pi\)
0.646720 + 0.762728i \(0.276140\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0.384472i 0.0270513i
\(203\) 5.68466i 0.398985i
\(204\) 0 0
\(205\) 0 0
\(206\) −2.24621 −0.156501
\(207\) 0 0
\(208\) 21.3693i 1.48170i
\(209\) 2.87689 0.198999
\(210\) 0 0
\(211\) −23.0540 −1.58710 −0.793551 0.608504i \(-0.791770\pi\)
−0.793551 + 0.608504i \(0.791770\pi\)
\(212\) − 1.36932i − 0.0940451i
\(213\) 0 0
\(214\) 17.7538 1.21362
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 27.6155i 1.87036i
\(219\) 0 0
\(220\) 0 0
\(221\) 20.8078 1.39968
\(222\) 0 0
\(223\) 6.56155i 0.439394i 0.975568 + 0.219697i \(0.0705069\pi\)
−0.975568 + 0.219697i \(0.929493\pi\)
\(224\) 2.43845 0.162926
\(225\) 0 0
\(226\) −21.8617 −1.45422
\(227\) − 23.6847i − 1.57201i −0.618223 0.786003i \(-0.712147\pi\)
0.618223 0.786003i \(-0.287853\pi\)
\(228\) 0 0
\(229\) −19.1231 −1.26369 −0.631845 0.775095i \(-0.717702\pi\)
−0.631845 + 0.775095i \(0.717702\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 13.8617i 0.910068i
\(233\) − 3.12311i − 0.204601i −0.994754 0.102301i \(-0.967380\pi\)
0.994754 0.102301i \(-0.0326204\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1.75379 0.114162
\(237\) 0 0
\(238\) − 7.12311i − 0.461722i
\(239\) −0.807764 −0.0522499 −0.0261250 0.999659i \(-0.508317\pi\)
−0.0261250 + 0.999659i \(0.508317\pi\)
\(240\) 0 0
\(241\) 12.2462 0.788848 0.394424 0.918929i \(-0.370944\pi\)
0.394424 + 0.918929i \(0.370944\pi\)
\(242\) 6.93087i 0.445533i
\(243\) 0 0
\(244\) 4.10795 0.262985
\(245\) 0 0
\(246\) 0 0
\(247\) 5.12311i 0.325975i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 17.1231 1.08080 0.540400 0.841408i \(-0.318273\pi\)
0.540400 + 0.841408i \(0.318273\pi\)
\(252\) 0 0
\(253\) 13.1231i 0.825043i
\(254\) 16.0000 1.00393
\(255\) 0 0
\(256\) 10.0540 0.628373
\(257\) − 22.4924i − 1.40304i −0.712650 0.701519i \(-0.752505\pi\)
0.712650 0.701519i \(-0.247495\pi\)
\(258\) 0 0
\(259\) 6.00000 0.372822
\(260\) 0 0
\(261\) 0 0
\(262\) − 14.2462i − 0.880134i
\(263\) − 21.1231i − 1.30251i −0.758860 0.651253i \(-0.774244\pi\)
0.758860 0.651253i \(-0.225756\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.75379 0.107532
\(267\) 0 0
\(268\) 2.73863i 0.167289i
\(269\) 28.7386 1.75223 0.876113 0.482106i \(-0.160128\pi\)
0.876113 + 0.482106i \(0.160128\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) − 21.3693i − 1.29571i
\(273\) 0 0
\(274\) 13.8617 0.837418
\(275\) 0 0
\(276\) 0 0
\(277\) 16.2462i 0.976140i 0.872804 + 0.488070i \(0.162299\pi\)
−0.872804 + 0.488070i \(0.837701\pi\)
\(278\) − 10.7386i − 0.644060i
\(279\) 0 0
\(280\) 0 0
\(281\) −16.5616 −0.987979 −0.493990 0.869468i \(-0.664462\pi\)
−0.493990 + 0.869468i \(0.664462\pi\)
\(282\) 0 0
\(283\) 23.6847i 1.40791i 0.710246 + 0.703953i \(0.248584\pi\)
−0.710246 + 0.703953i \(0.751416\pi\)
\(284\) 3.50758 0.208136
\(285\) 0 0
\(286\) 18.2462 1.07892
\(287\) − 3.12311i − 0.184351i
\(288\) 0 0
\(289\) −3.80776 −0.223986
\(290\) 0 0
\(291\) 0 0
\(292\) 1.86174i 0.108950i
\(293\) 9.68466i 0.565784i 0.959152 + 0.282892i \(0.0912938\pi\)
−0.959152 + 0.282892i \(0.908706\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 14.6307 0.850391
\(297\) 0 0
\(298\) 6.63068i 0.384105i
\(299\) −23.3693 −1.35148
\(300\) 0 0
\(301\) −9.12311 −0.525847
\(302\) − 34.2462i − 1.97065i
\(303\) 0 0
\(304\) 5.26137 0.301760
\(305\) 0 0
\(306\) 0 0
\(307\) − 31.6847i − 1.80834i −0.427174 0.904169i \(-0.640491\pi\)
0.427174 0.904169i \(-0.359509\pi\)
\(308\) − 1.12311i − 0.0639949i
\(309\) 0 0
\(310\) 0 0
\(311\) 9.61553 0.545247 0.272623 0.962121i \(-0.412109\pi\)
0.272623 + 0.962121i \(0.412109\pi\)
\(312\) 0 0
\(313\) − 31.3002i − 1.76919i −0.466359 0.884596i \(-0.654434\pi\)
0.466359 0.884596i \(-0.345566\pi\)
\(314\) 5.86174 0.330797
\(315\) 0 0
\(316\) −2.87689 −0.161838
\(317\) 22.4924i 1.26330i 0.775254 + 0.631650i \(0.217622\pi\)
−0.775254 + 0.631650i \(0.782378\pi\)
\(318\) 0 0
\(319\) 14.5616 0.815290
\(320\) 0 0
\(321\) 0 0
\(322\) 8.00000i 0.445823i
\(323\) − 5.12311i − 0.285057i
\(324\) 0 0
\(325\) 0 0
\(326\) −1.75379 −0.0971334
\(327\) 0 0
\(328\) − 7.61553i − 0.420497i
\(329\) −3.68466 −0.203142
\(330\) 0 0
\(331\) 12.0000 0.659580 0.329790 0.944054i \(-0.393022\pi\)
0.329790 + 0.944054i \(0.393022\pi\)
\(332\) − 1.75379i − 0.0962517i
\(333\) 0 0
\(334\) −34.2462 −1.87387
\(335\) 0 0
\(336\) 0 0
\(337\) − 34.4924i − 1.87892i −0.342656 0.939461i \(-0.611326\pi\)
0.342656 0.939461i \(-0.388674\pi\)
\(338\) 12.1922i 0.663170i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) −22.2462 −1.19944
\(345\) 0 0
\(346\) −13.3693 −0.718739
\(347\) 1.12311i 0.0602915i 0.999546 + 0.0301457i \(0.00959714\pi\)
−0.999546 + 0.0301457i \(0.990403\pi\)
\(348\) 0 0
\(349\) 22.4924 1.20399 0.601996 0.798499i \(-0.294372\pi\)
0.601996 + 0.798499i \(0.294372\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 6.24621i − 0.332924i
\(353\) − 14.8078i − 0.788138i −0.919081 0.394069i \(-0.871067\pi\)
0.919081 0.394069i \(-0.128933\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −3.12311 −0.165524
\(357\) 0 0
\(358\) − 31.2311i − 1.65061i
\(359\) 8.00000 0.422224 0.211112 0.977462i \(-0.432292\pi\)
0.211112 + 0.977462i \(0.432292\pi\)
\(360\) 0 0
\(361\) −17.7386 −0.933612
\(362\) − 36.8769i − 1.93821i
\(363\) 0 0
\(364\) 2.00000 0.104828
\(365\) 0 0
\(366\) 0 0
\(367\) 3.68466i 0.192338i 0.995365 + 0.0961688i \(0.0306589\pi\)
−0.995365 + 0.0961688i \(0.969341\pi\)
\(368\) 24.0000i 1.25109i
\(369\) 0 0
\(370\) 0 0
\(371\) 3.12311 0.162144
\(372\) 0 0
\(373\) − 29.3693i − 1.52069i −0.649522 0.760343i \(-0.725031\pi\)
0.649522 0.760343i \(-0.274969\pi\)
\(374\) −18.2462 −0.943489
\(375\) 0 0
\(376\) −8.98485 −0.463358
\(377\) 25.9309i 1.33551i
\(378\) 0 0
\(379\) −16.4924 −0.847159 −0.423579 0.905859i \(-0.639227\pi\)
−0.423579 + 0.905859i \(0.639227\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) − 14.7386i − 0.754094i
\(383\) − 10.2462i − 0.523557i −0.965128 0.261778i \(-0.915691\pi\)
0.965128 0.261778i \(-0.0843090\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 8.38447 0.426758
\(387\) 0 0
\(388\) 6.49242i 0.329603i
\(389\) 3.93087 0.199303 0.0996515 0.995022i \(-0.468227\pi\)
0.0996515 + 0.995022i \(0.468227\pi\)
\(390\) 0 0
\(391\) 23.3693 1.18184
\(392\) 2.43845i 0.123160i
\(393\) 0 0
\(394\) 11.1231 0.560374
\(395\) 0 0
\(396\) 0 0
\(397\) 23.4384i 1.17634i 0.808737 + 0.588171i \(0.200152\pi\)
−0.808737 + 0.588171i \(0.799848\pi\)
\(398\) − 28.4924i − 1.42820i
\(399\) 0 0
\(400\) 0 0
\(401\) −27.4384 −1.37021 −0.685105 0.728444i \(-0.740244\pi\)
−0.685105 + 0.728444i \(0.740244\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0.107951 0.00537074
\(405\) 0 0
\(406\) 8.87689 0.440553
\(407\) − 15.3693i − 0.761829i
\(408\) 0 0
\(409\) 26.4924 1.30997 0.654983 0.755644i \(-0.272676\pi\)
0.654983 + 0.755644i \(0.272676\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.630683i 0.0310715i
\(413\) 4.00000i 0.196827i
\(414\) 0 0
\(415\) 0 0
\(416\) 11.1231 0.545355
\(417\) 0 0
\(418\) − 4.49242i − 0.219732i
\(419\) 9.75379 0.476504 0.238252 0.971203i \(-0.423426\pi\)
0.238252 + 0.971203i \(0.423426\pi\)
\(420\) 0 0
\(421\) 9.68466 0.472001 0.236001 0.971753i \(-0.424163\pi\)
0.236001 + 0.971753i \(0.424163\pi\)
\(422\) 36.0000i 1.75245i
\(423\) 0 0
\(424\) 7.61553 0.369843
\(425\) 0 0
\(426\) 0 0
\(427\) 9.36932i 0.453413i
\(428\) − 4.98485i − 0.240952i
\(429\) 0 0
\(430\) 0 0
\(431\) −0.807764 −0.0389086 −0.0194543 0.999811i \(-0.506193\pi\)
−0.0194543 + 0.999811i \(0.506193\pi\)
\(432\) 0 0
\(433\) 8.24621i 0.396288i 0.980173 + 0.198144i \(0.0634913\pi\)
−0.980173 + 0.198144i \(0.936509\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 7.75379 0.371339
\(437\) 5.75379i 0.275241i
\(438\) 0 0
\(439\) 15.3693 0.733537 0.366769 0.930312i \(-0.380464\pi\)
0.366769 + 0.930312i \(0.380464\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 32.4924i − 1.54551i
\(443\) − 27.3693i − 1.30036i −0.759782 0.650178i \(-0.774694\pi\)
0.759782 0.650178i \(-0.225306\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 10.2462 0.485172
\(447\) 0 0
\(448\) 5.56155i 0.262759i
\(449\) 18.8078 0.887593 0.443797 0.896128i \(-0.353631\pi\)
0.443797 + 0.896128i \(0.353631\pi\)
\(450\) 0 0
\(451\) −8.00000 −0.376705
\(452\) 6.13826i 0.288719i
\(453\) 0 0
\(454\) −36.9848 −1.73578
\(455\) 0 0
\(456\) 0 0
\(457\) − 8.87689i − 0.415244i −0.978209 0.207622i \(-0.933428\pi\)
0.978209 0.207622i \(-0.0665723\pi\)
\(458\) 29.8617i 1.39535i
\(459\) 0 0
\(460\) 0 0
\(461\) 4.87689 0.227140 0.113570 0.993530i \(-0.463771\pi\)
0.113570 + 0.993530i \(0.463771\pi\)
\(462\) 0 0
\(463\) 20.4924i 0.952364i 0.879347 + 0.476182i \(0.157980\pi\)
−0.879347 + 0.476182i \(0.842020\pi\)
\(464\) 26.6307 1.23630
\(465\) 0 0
\(466\) −4.87689 −0.225918
\(467\) − 26.5616i − 1.22912i −0.788869 0.614561i \(-0.789333\pi\)
0.788869 0.614561i \(-0.210667\pi\)
\(468\) 0 0
\(469\) −6.24621 −0.288423
\(470\) 0 0
\(471\) 0 0
\(472\) 9.75379i 0.448955i
\(473\) 23.3693i 1.07452i
\(474\) 0 0
\(475\) 0 0
\(476\) −2.00000 −0.0916698
\(477\) 0 0
\(478\) 1.26137i 0.0576935i
\(479\) 13.1231 0.599610 0.299805 0.954001i \(-0.403078\pi\)
0.299805 + 0.954001i \(0.403078\pi\)
\(480\) 0 0
\(481\) 27.3693 1.24793
\(482\) − 19.1231i − 0.871034i
\(483\) 0 0
\(484\) 1.94602 0.0884557
\(485\) 0 0
\(486\) 0 0
\(487\) 5.12311i 0.232150i 0.993240 + 0.116075i \(0.0370313\pi\)
−0.993240 + 0.116075i \(0.962969\pi\)
\(488\) 22.8466i 1.03422i
\(489\) 0 0
\(490\) 0 0
\(491\) −4.17708 −0.188509 −0.0942545 0.995548i \(-0.530047\pi\)
−0.0942545 + 0.995548i \(0.530047\pi\)
\(492\) 0 0
\(493\) − 25.9309i − 1.16787i
\(494\) 8.00000 0.359937
\(495\) 0 0
\(496\) 0 0
\(497\) 8.00000i 0.358849i
\(498\) 0 0
\(499\) 4.17708 0.186992 0.0934959 0.995620i \(-0.470196\pi\)
0.0934959 + 0.995620i \(0.470196\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) − 26.7386i − 1.19340i
\(503\) 10.0691i 0.448960i 0.974479 + 0.224480i \(0.0720684\pi\)
−0.974479 + 0.224480i \(0.927932\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 20.4924 0.910999
\(507\) 0 0
\(508\) − 4.49242i − 0.199319i
\(509\) −28.2462 −1.25199 −0.625996 0.779827i \(-0.715307\pi\)
−0.625996 + 0.779827i \(0.715307\pi\)
\(510\) 0 0
\(511\) −4.24621 −0.187841
\(512\) 11.4233i 0.504843i
\(513\) 0 0
\(514\) −35.1231 −1.54921
\(515\) 0 0
\(516\) 0 0
\(517\) 9.43845i 0.415102i
\(518\) − 9.36932i − 0.411664i
\(519\) 0 0
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) − 7.50758i − 0.328283i −0.986437 0.164142i \(-0.947515\pi\)
0.986437 0.164142i \(-0.0524854\pi\)
\(524\) −4.00000 −0.174741
\(525\) 0 0
\(526\) −32.9848 −1.43821
\(527\) 0 0
\(528\) 0 0
\(529\) −3.24621 −0.141140
\(530\) 0 0
\(531\) 0 0
\(532\) − 0.492423i − 0.0213492i
\(533\) − 14.2462i − 0.617072i
\(534\) 0 0
\(535\) 0 0
\(536\) −15.2311 −0.657881
\(537\) 0 0
\(538\) − 44.8769i − 1.93478i
\(539\) 2.56155 0.110334
\(540\) 0 0
\(541\) −17.1922 −0.739152 −0.369576 0.929201i \(-0.620497\pi\)
−0.369576 + 0.929201i \(0.620497\pi\)
\(542\) 24.9848i 1.07319i
\(543\) 0 0
\(544\) −11.1231 −0.476899
\(545\) 0 0
\(546\) 0 0
\(547\) 14.2462i 0.609124i 0.952493 + 0.304562i \(0.0985101\pi\)
−0.952493 + 0.304562i \(0.901490\pi\)
\(548\) − 3.89205i − 0.166260i
\(549\) 0 0
\(550\) 0 0
\(551\) 6.38447 0.271988
\(552\) 0 0
\(553\) − 6.56155i − 0.279026i
\(554\) 25.3693 1.07784
\(555\) 0 0
\(556\) −3.01515 −0.127871
\(557\) 4.87689i 0.206641i 0.994648 + 0.103320i \(0.0329467\pi\)
−0.994648 + 0.103320i \(0.967053\pi\)
\(558\) 0 0
\(559\) −41.6155 −1.76015
\(560\) 0 0
\(561\) 0 0
\(562\) 25.8617i 1.09091i
\(563\) − 28.0000i − 1.18006i −0.807382 0.590030i \(-0.799116\pi\)
0.807382 0.590030i \(-0.200884\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 36.9848 1.55459
\(567\) 0 0
\(568\) 19.5076i 0.818520i
\(569\) 34.9848 1.46664 0.733320 0.679883i \(-0.237969\pi\)
0.733320 + 0.679883i \(0.237969\pi\)
\(570\) 0 0
\(571\) 7.50758 0.314182 0.157091 0.987584i \(-0.449788\pi\)
0.157091 + 0.987584i \(0.449788\pi\)
\(572\) − 5.12311i − 0.214208i
\(573\) 0 0
\(574\) −4.87689 −0.203558
\(575\) 0 0
\(576\) 0 0
\(577\) 13.0540i 0.543444i 0.962376 + 0.271722i \(0.0875931\pi\)
−0.962376 + 0.271722i \(0.912407\pi\)
\(578\) 5.94602i 0.247322i
\(579\) 0 0
\(580\) 0 0
\(581\) 4.00000 0.165948
\(582\) 0 0
\(583\) − 8.00000i − 0.331326i
\(584\) −10.3542 −0.428458
\(585\) 0 0
\(586\) 15.1231 0.624730
\(587\) 9.75379i 0.402582i 0.979531 + 0.201291i \(0.0645137\pi\)
−0.979531 + 0.201291i \(0.935486\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) − 28.1080i − 1.15523i
\(593\) − 23.4384i − 0.962502i −0.876583 0.481251i \(-0.840183\pi\)
0.876583 0.481251i \(-0.159817\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.86174 0.0762598
\(597\) 0 0
\(598\) 36.4924i 1.49229i
\(599\) 8.80776 0.359875 0.179938 0.983678i \(-0.442410\pi\)
0.179938 + 0.983678i \(0.442410\pi\)
\(600\) 0 0
\(601\) −26.4924 −1.08065 −0.540324 0.841457i \(-0.681698\pi\)
−0.540324 + 0.841457i \(0.681698\pi\)
\(602\) 14.2462i 0.580632i
\(603\) 0 0
\(604\) −9.61553 −0.391250
\(605\) 0 0
\(606\) 0 0
\(607\) − 4.94602i − 0.200753i −0.994950 0.100376i \(-0.967995\pi\)
0.994950 0.100376i \(-0.0320047\pi\)
\(608\) − 2.73863i − 0.111066i
\(609\) 0 0
\(610\) 0 0
\(611\) −16.8078 −0.679969
\(612\) 0 0
\(613\) 8.73863i 0.352950i 0.984305 + 0.176475i \(0.0564695\pi\)
−0.984305 + 0.176475i \(0.943531\pi\)
\(614\) −49.4773 −1.99674
\(615\) 0 0
\(616\) 6.24621 0.251667
\(617\) − 15.7538i − 0.634224i −0.948388 0.317112i \(-0.897287\pi\)
0.948388 0.317112i \(-0.102713\pi\)
\(618\) 0 0
\(619\) 42.1080 1.69246 0.846231 0.532817i \(-0.178866\pi\)
0.846231 + 0.532817i \(0.178866\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 15.0152i − 0.602053i
\(623\) − 7.12311i − 0.285381i
\(624\) 0 0
\(625\) 0 0
\(626\) −48.8769 −1.95351
\(627\) 0 0
\(628\) − 1.64584i − 0.0656761i
\(629\) −27.3693 −1.09129
\(630\) 0 0
\(631\) 8.80776 0.350632 0.175316 0.984512i \(-0.443905\pi\)
0.175316 + 0.984512i \(0.443905\pi\)
\(632\) − 16.0000i − 0.636446i
\(633\) 0 0
\(634\) 35.1231 1.39492
\(635\) 0 0
\(636\) 0 0
\(637\) 4.56155i 0.180735i
\(638\) − 22.7386i − 0.900231i
\(639\) 0 0
\(640\) 0 0
\(641\) −2.00000 −0.0789953 −0.0394976 0.999220i \(-0.512576\pi\)
−0.0394976 + 0.999220i \(0.512576\pi\)
\(642\) 0 0
\(643\) 2.56155i 0.101018i 0.998724 + 0.0505089i \(0.0160843\pi\)
−0.998724 + 0.0505089i \(0.983916\pi\)
\(644\) 2.24621 0.0885131
\(645\) 0 0
\(646\) −8.00000 −0.314756
\(647\) − 3.50758i − 0.137897i −0.997620 0.0689486i \(-0.978036\pi\)
0.997620 0.0689486i \(-0.0219644\pi\)
\(648\) 0 0
\(649\) 10.2462 0.402199
\(650\) 0 0
\(651\) 0 0
\(652\) 0.492423i 0.0192848i
\(653\) 49.2311i 1.92656i 0.268499 + 0.963280i \(0.413473\pi\)
−0.268499 + 0.963280i \(0.586527\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −14.6307 −0.571232
\(657\) 0 0
\(658\) 5.75379i 0.224306i
\(659\) −36.1771 −1.40926 −0.704629 0.709575i \(-0.748887\pi\)
−0.704629 + 0.709575i \(0.748887\pi\)
\(660\) 0 0
\(661\) 3.12311 0.121475 0.0607374 0.998154i \(-0.480655\pi\)
0.0607374 + 0.998154i \(0.480655\pi\)
\(662\) − 18.7386i − 0.728298i
\(663\) 0 0
\(664\) 9.75379 0.378520
\(665\) 0 0
\(666\) 0 0
\(667\) 29.1231i 1.12765i
\(668\) 9.61553i 0.372036i
\(669\) 0 0
\(670\) 0 0
\(671\) 24.0000 0.926510
\(672\) 0 0
\(673\) 25.8617i 0.996897i 0.866919 + 0.498448i \(0.166097\pi\)
−0.866919 + 0.498448i \(0.833903\pi\)
\(674\) −53.8617 −2.07468
\(675\) 0 0
\(676\) 3.42329 0.131665
\(677\) 23.9309i 0.919738i 0.887987 + 0.459869i \(0.152104\pi\)
−0.887987 + 0.459869i \(0.847896\pi\)
\(678\) 0 0
\(679\) −14.8078 −0.568270
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 42.7386i 1.63535i 0.575681 + 0.817674i \(0.304737\pi\)
−0.575681 + 0.817674i \(0.695263\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.56155 0.0596204
\(687\) 0 0
\(688\) 42.7386i 1.62940i
\(689\) 14.2462 0.542737
\(690\) 0 0
\(691\) 8.49242 0.323067 0.161533 0.986867i \(-0.448356\pi\)
0.161533 + 0.986867i \(0.448356\pi\)
\(692\) 3.75379i 0.142698i
\(693\) 0 0
\(694\) 1.75379 0.0665729
\(695\) 0 0
\(696\) 0 0
\(697\) 14.2462i 0.539614i
\(698\) − 35.1231i − 1.32943i
\(699\) 0 0
\(700\) 0 0
\(701\) −0.0691303 −0.00261102 −0.00130551 0.999999i \(-0.500416\pi\)
−0.00130551 + 0.999999i \(0.500416\pi\)
\(702\) 0 0
\(703\) − 6.73863i − 0.254152i
\(704\) 14.2462 0.536924
\(705\) 0 0
\(706\) −23.1231 −0.870250
\(707\) 0.246211i 0.00925973i
\(708\) 0 0
\(709\) 18.1771 0.682655 0.341327 0.939945i \(-0.389124\pi\)
0.341327 + 0.939945i \(0.389124\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 17.3693i − 0.650943i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −8.76894 −0.327711
\(717\) 0 0
\(718\) − 12.4924i − 0.466213i
\(719\) 49.6155 1.85035 0.925173 0.379544i \(-0.123919\pi\)
0.925173 + 0.379544i \(0.123919\pi\)
\(720\) 0 0
\(721\) −1.43845 −0.0535706
\(722\) 27.6998i 1.03088i
\(723\) 0 0
\(724\) −10.3542 −0.384809
\(725\) 0 0
\(726\) 0 0
\(727\) 19.5076i 0.723496i 0.932276 + 0.361748i \(0.117820\pi\)
−0.932276 + 0.361748i \(0.882180\pi\)
\(728\) 11.1231i 0.412250i
\(729\) 0 0
\(730\) 0 0
\(731\) 41.6155 1.53921
\(732\) 0 0
\(733\) 5.68466i 0.209968i 0.994474 + 0.104984i \(0.0334791\pi\)
−0.994474 + 0.104984i \(0.966521\pi\)
\(734\) 5.75379 0.212376
\(735\) 0 0
\(736\) 12.4924 0.460477
\(737\) 16.0000i 0.589368i
\(738\) 0 0
\(739\) −6.06913 −0.223257 −0.111628 0.993750i \(-0.535607\pi\)
−0.111628 + 0.993750i \(0.535607\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 4.87689i − 0.179036i
\(743\) 32.9848i 1.21010i 0.796189 + 0.605048i \(0.206846\pi\)
−0.796189 + 0.605048i \(0.793154\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −45.8617 −1.67912
\(747\) 0 0
\(748\) 5.12311i 0.187319i
\(749\) 11.3693 0.415426
\(750\) 0 0
\(751\) 45.9309 1.67604 0.838021 0.545639i \(-0.183713\pi\)
0.838021 + 0.545639i \(0.183713\pi\)
\(752\) 17.2614i 0.629457i
\(753\) 0 0
\(754\) 40.4924 1.47465
\(755\) 0 0
\(756\) 0 0
\(757\) 14.6307i 0.531761i 0.964006 + 0.265881i \(0.0856627\pi\)
−0.964006 + 0.265881i \(0.914337\pi\)
\(758\) 25.7538i 0.935420i
\(759\) 0 0
\(760\) 0 0
\(761\) −31.7538 −1.15107 −0.575537 0.817776i \(-0.695207\pi\)
−0.575537 + 0.817776i \(0.695207\pi\)
\(762\) 0 0
\(763\) 17.6847i 0.640228i
\(764\) −4.13826 −0.149717
\(765\) 0 0
\(766\) −16.0000 −0.578103
\(767\) 18.2462i 0.658833i
\(768\) 0 0
\(769\) 9.50758 0.342852 0.171426 0.985197i \(-0.445163\pi\)
0.171426 + 0.985197i \(0.445163\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 2.35416i − 0.0847281i
\(773\) 8.06913i 0.290226i 0.989415 + 0.145113i \(0.0463546\pi\)
−0.989415 + 0.145113i \(0.953645\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −36.1080 −1.29620
\(777\) 0 0
\(778\) − 6.13826i − 0.220067i
\(779\) −3.50758 −0.125672
\(780\) 0 0
\(781\) 20.4924 0.733277
\(782\) − 36.4924i − 1.30497i
\(783\) 0 0
\(784\) 4.68466 0.167309
\(785\) 0 0
\(786\) 0 0
\(787\) − 3.82292i − 0.136272i −0.997676 0.0681362i \(-0.978295\pi\)
0.997676 0.0681362i \(-0.0217052\pi\)
\(788\) − 3.12311i − 0.111256i
\(789\) 0 0
\(790\) 0 0
\(791\) −14.0000 −0.497783
\(792\) 0 0
\(793\) 42.7386i 1.51769i
\(794\) 36.6004 1.29890
\(795\) 0 0
\(796\) −8.00000 −0.283552
\(797\) 13.0540i 0.462396i 0.972907 + 0.231198i \(0.0742644\pi\)
−0.972907 + 0.231198i \(0.925736\pi\)
\(798\) 0 0
\(799\) 16.8078 0.594616
\(800\) 0 0
\(801\) 0 0
\(802\) 42.8466i 1.51297i
\(803\) 10.8769i 0.383837i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0.600373i 0.0211211i
\(809\) −53.5464 −1.88259 −0.941296 0.337584i \(-0.890390\pi\)
−0.941296 + 0.337584i \(0.890390\pi\)
\(810\) 0 0
\(811\) −21.6155 −0.759024 −0.379512 0.925187i \(-0.623908\pi\)
−0.379512 + 0.925187i \(0.623908\pi\)
\(812\) − 2.49242i − 0.0874669i
\(813\) 0 0
\(814\) −24.0000 −0.841200
\(815\) 0 0
\(816\) 0 0
\(817\) 10.2462i 0.358470i
\(818\) − 41.3693i − 1.44644i
\(819\) 0 0
\(820\) 0 0
\(821\) −40.4233 −1.41078 −0.705391 0.708818i \(-0.749229\pi\)
−0.705391 + 0.708818i \(0.749229\pi\)
\(822\) 0 0
\(823\) 3.50758i 0.122266i 0.998130 + 0.0611332i \(0.0194715\pi\)
−0.998130 + 0.0611332i \(0.980529\pi\)
\(824\) −3.50758 −0.122192
\(825\) 0 0
\(826\) 6.24621 0.217333
\(827\) − 19.3693i − 0.673537i −0.941587 0.336769i \(-0.890666\pi\)
0.941587 0.336769i \(-0.109334\pi\)
\(828\) 0 0
\(829\) −43.1231 −1.49773 −0.748864 0.662724i \(-0.769400\pi\)
−0.748864 + 0.662724i \(0.769400\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 25.3693i 0.879523i
\(833\) − 4.56155i − 0.158048i
\(834\) 0 0
\(835\) 0 0
\(836\) −1.26137 −0.0436253
\(837\) 0 0
\(838\) − 15.2311i − 0.526148i
\(839\) −37.1231 −1.28163 −0.640816 0.767695i \(-0.721404\pi\)
−0.640816 + 0.767695i \(0.721404\pi\)
\(840\) 0 0
\(841\) 3.31534 0.114322
\(842\) − 15.1231i − 0.521177i
\(843\) 0 0
\(844\) 10.1080 0.347930
\(845\) 0 0
\(846\) 0 0
\(847\) 4.43845i 0.152507i
\(848\) − 14.6307i − 0.502420i
\(849\) 0 0
\(850\) 0 0
\(851\) 30.7386 1.05371
\(852\) 0 0
\(853\) 56.7386i 1.94269i 0.237666 + 0.971347i \(0.423618\pi\)
−0.237666 + 0.971347i \(0.576382\pi\)
\(854\) 14.6307 0.500652
\(855\) 0 0
\(856\) 27.7235 0.947569
\(857\) 32.2462i 1.10151i 0.834667 + 0.550755i \(0.185660\pi\)
−0.834667 + 0.550755i \(0.814340\pi\)
\(858\) 0 0
\(859\) −16.4924 −0.562714 −0.281357 0.959603i \(-0.590785\pi\)
−0.281357 + 0.959603i \(0.590785\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 1.26137i 0.0429623i
\(863\) − 42.2462i − 1.43808i −0.694970 0.719039i \(-0.744582\pi\)
0.694970 0.719039i \(-0.255418\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 12.8769 0.437575
\(867\) 0 0
\(868\) 0 0
\(869\) −16.8078 −0.570164
\(870\) 0 0
\(871\) −28.4924 −0.965429
\(872\) 43.1231i 1.46033i
\(873\) 0 0
\(874\) 8.98485 0.303917
\(875\) 0 0
\(876\) 0 0
\(877\) − 23.7538i − 0.802108i −0.916054 0.401054i \(-0.868644\pi\)
0.916054 0.401054i \(-0.131356\pi\)
\(878\) − 24.0000i − 0.809961i
\(879\) 0 0
\(880\) 0 0
\(881\) −45.8617 −1.54512 −0.772561 0.634941i \(-0.781024\pi\)
−0.772561 + 0.634941i \(0.781024\pi\)
\(882\) 0 0
\(883\) − 24.4924i − 0.824236i −0.911131 0.412118i \(-0.864789\pi\)
0.911131 0.412118i \(-0.135211\pi\)
\(884\) −9.12311 −0.306843
\(885\) 0 0
\(886\) −42.7386 −1.43583
\(887\) 12.4924i 0.419454i 0.977760 + 0.209727i \(0.0672576\pi\)
−0.977760 + 0.209727i \(0.932742\pi\)
\(888\) 0 0
\(889\) 10.2462 0.343647
\(890\) 0 0
\(891\) 0 0
\(892\) − 2.87689i − 0.0963255i
\(893\) 4.13826i 0.138482i
\(894\) 0 0
\(895\) 0 0
\(896\) 13.5616 0.453060
\(897\) 0 0
\(898\) − 29.3693i − 0.980067i
\(899\) 0 0
\(900\) 0 0
\(901\) −14.2462 −0.474610
\(902\) 12.4924i 0.415952i
\(903\) 0 0
\(904\) −34.1383 −1.13542
\(905\) 0 0
\(906\) 0 0
\(907\) 50.1080i 1.66381i 0.554920 + 0.831904i \(0.312749\pi\)
−0.554920 + 0.831904i \(0.687251\pi\)
\(908\) 10.3845i 0.344621i
\(909\) 0 0
\(910\) 0 0
\(911\) −4.49242 −0.148841 −0.0744203 0.997227i \(-0.523711\pi\)
−0.0744203 + 0.997227i \(0.523711\pi\)
\(912\) 0 0
\(913\) − 10.2462i − 0.339100i
\(914\) −13.8617 −0.458506
\(915\) 0 0
\(916\) 8.38447 0.277031
\(917\) − 9.12311i − 0.301271i
\(918\) 0 0
\(919\) 13.3002 0.438733 0.219366 0.975643i \(-0.429601\pi\)
0.219366 + 0.975643i \(0.429601\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 7.61553i − 0.250804i
\(923\) 36.4924i 1.20116i
\(924\) 0 0
\(925\) 0 0
\(926\) 32.0000 1.05159
\(927\) 0 0
\(928\) − 13.8617i − 0.455034i
\(929\) −52.1080 −1.70961 −0.854803 0.518952i \(-0.826322\pi\)
−0.854803 + 0.518952i \(0.826322\pi\)
\(930\) 0 0
\(931\) 1.12311 0.0368083
\(932\) 1.36932i 0.0448535i
\(933\) 0 0
\(934\) −41.4773 −1.35718
\(935\) 0 0
\(936\) 0 0
\(937\) 22.6695i 0.740580i 0.928916 + 0.370290i \(0.120742\pi\)
−0.928916 + 0.370290i \(0.879258\pi\)
\(938\) 9.75379i 0.318472i
\(939\) 0 0
\(940\) 0 0
\(941\) 13.8617 0.451880 0.225940 0.974141i \(-0.427455\pi\)
0.225940 + 0.974141i \(0.427455\pi\)
\(942\) 0 0
\(943\) − 16.0000i − 0.521032i
\(944\) 18.7386 0.609891
\(945\) 0 0
\(946\) 36.4924 1.18647
\(947\) − 4.00000i − 0.129983i −0.997886 0.0649913i \(-0.979298\pi\)
0.997886 0.0649913i \(-0.0207020\pi\)
\(948\) 0 0
\(949\) −19.3693 −0.628755
\(950\) 0 0
\(951\) 0 0
\(952\) − 11.1231i − 0.360502i
\(953\) − 24.8769i − 0.805842i −0.915235 0.402921i \(-0.867995\pi\)
0.915235 0.402921i \(-0.132005\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0.354162 0.0114544
\(957\) 0 0
\(958\) − 20.4924i − 0.662080i
\(959\) 8.87689 0.286650
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) − 42.7386i − 1.37795i
\(963\) 0 0
\(964\) −5.36932 −0.172934
\(965\) 0 0
\(966\) 0 0
\(967\) − 26.8769i − 0.864303i −0.901801 0.432151i \(-0.857755\pi\)
0.901801 0.432151i \(-0.142245\pi\)
\(968\) 10.8229i 0.347862i
\(969\) 0 0
\(970\) 0 0
\(971\) 49.4773 1.58780 0.793901 0.608048i \(-0.208047\pi\)
0.793901 + 0.608048i \(0.208047\pi\)
\(972\) 0 0
\(973\) − 6.87689i − 0.220463i
\(974\) 8.00000 0.256337
\(975\) 0 0
\(976\) 43.8920 1.40495
\(977\) 49.2311i 1.57504i 0.616288 + 0.787521i \(0.288636\pi\)
−0.616288 + 0.787521i \(0.711364\pi\)
\(978\) 0 0
\(979\) −18.2462 −0.583151
\(980\) 0 0
\(981\) 0 0
\(982\) 6.52273i 0.208149i
\(983\) − 10.4233i − 0.332451i −0.986088 0.166226i \(-0.946842\pi\)
0.986088 0.166226i \(-0.0531580\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −40.4924 −1.28954
\(987\) 0 0
\(988\) − 2.24621i − 0.0714615i
\(989\) −46.7386 −1.48620
\(990\) 0 0
\(991\) −20.4924 −0.650963 −0.325482 0.945548i \(-0.605526\pi\)
−0.325482 + 0.945548i \(0.605526\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 12.4924 0.396236
\(995\) 0 0
\(996\) 0 0
\(997\) 9.68466i 0.306716i 0.988171 + 0.153358i \(0.0490088\pi\)
−0.988171 + 0.153358i \(0.950991\pi\)
\(998\) − 6.52273i − 0.206473i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.2.d.e.1324.2 4
3.2 odd 2 175.2.b.b.99.3 4
5.2 odd 4 1575.2.a.p.1.2 2
5.3 odd 4 315.2.a.e.1.1 2
5.4 even 2 inner 1575.2.d.e.1324.3 4
12.11 even 2 2800.2.g.t.449.1 4
15.2 even 4 175.2.a.f.1.1 2
15.8 even 4 35.2.a.b.1.2 2
15.14 odd 2 175.2.b.b.99.2 4
20.3 even 4 5040.2.a.bt.1.2 2
21.20 even 2 1225.2.b.f.99.3 4
35.13 even 4 2205.2.a.x.1.1 2
60.23 odd 4 560.2.a.i.1.2 2
60.47 odd 4 2800.2.a.bi.1.1 2
60.59 even 2 2800.2.g.t.449.4 4
105.23 even 12 245.2.e.i.116.1 4
105.38 odd 12 245.2.e.h.226.1 4
105.53 even 12 245.2.e.i.226.1 4
105.62 odd 4 1225.2.a.s.1.1 2
105.68 odd 12 245.2.e.h.116.1 4
105.83 odd 4 245.2.a.d.1.2 2
105.104 even 2 1225.2.b.f.99.2 4
120.53 even 4 2240.2.a.bh.1.2 2
120.83 odd 4 2240.2.a.bd.1.1 2
165.98 odd 4 4235.2.a.m.1.1 2
195.38 even 4 5915.2.a.l.1.1 2
420.83 even 4 3920.2.a.bs.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.2.a.b.1.2 2 15.8 even 4
175.2.a.f.1.1 2 15.2 even 4
175.2.b.b.99.2 4 15.14 odd 2
175.2.b.b.99.3 4 3.2 odd 2
245.2.a.d.1.2 2 105.83 odd 4
245.2.e.h.116.1 4 105.68 odd 12
245.2.e.h.226.1 4 105.38 odd 12
245.2.e.i.116.1 4 105.23 even 12
245.2.e.i.226.1 4 105.53 even 12
315.2.a.e.1.1 2 5.3 odd 4
560.2.a.i.1.2 2 60.23 odd 4
1225.2.a.s.1.1 2 105.62 odd 4
1225.2.b.f.99.2 4 105.104 even 2
1225.2.b.f.99.3 4 21.20 even 2
1575.2.a.p.1.2 2 5.2 odd 4
1575.2.d.e.1324.2 4 1.1 even 1 trivial
1575.2.d.e.1324.3 4 5.4 even 2 inner
2205.2.a.x.1.1 2 35.13 even 4
2240.2.a.bd.1.1 2 120.83 odd 4
2240.2.a.bh.1.2 2 120.53 even 4
2800.2.a.bi.1.1 2 60.47 odd 4
2800.2.g.t.449.1 4 12.11 even 2
2800.2.g.t.449.4 4 60.59 even 2
3920.2.a.bs.1.1 2 420.83 even 4
4235.2.a.m.1.1 2 165.98 odd 4
5040.2.a.bt.1.2 2 20.3 even 4
5915.2.a.l.1.1 2 195.38 even 4