Properties

Label 1575.2.ba
Level 1575
Weight 2
Character orbit ba
Rep. character \(\chi_{1575}(524,\cdot)\)
Character field \(\Q(\zeta_{6})\)
Dimension 280
Sturm bound 480

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 1575.ba (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 315 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(480\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1575, [\chi])\).

Total New Old
Modular forms 504 296 208
Cusp forms 456 280 176
Eisenstein series 48 16 32

Trace form

\( 280q - 132q^{4} - 8q^{9} + O(q^{10}) \) \( 280q - 132q^{4} - 8q^{9} - 24q^{11} + 18q^{14} - 124q^{16} - 6q^{21} + 84q^{29} + 84q^{36} - 48q^{39} + 16q^{46} + 14q^{49} + 12q^{51} - 96q^{56} + 224q^{64} + 36q^{74} + 40q^{79} - 40q^{81} + 54q^{84} - 288q^{86} - 36q^{91} + 116q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1575, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1575, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1575, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(315, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database