Properties

Label 1575.2.b.a.251.1
Level $1575$
Weight $2$
Character 1575.251
Analytic conductor $12.576$
Analytic rank $0$
Dimension $4$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,2,Mod(251,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.251");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1575.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5764383184\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 8x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 251.1
Root \(-2.57794i\) of defining polynomial
Character \(\chi\) \(=\) 1575.251
Dual form 1575.2.b.a.251.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.57794i q^{2} -4.64575 q^{4} -2.64575 q^{7} +6.82058i q^{8} +O(q^{10})\) \(q-2.57794i q^{2} -4.64575 q^{4} -2.64575 q^{7} +6.82058i q^{8} -0.913230i q^{11} +6.82058i q^{14} +8.29150 q^{16} -2.35425 q^{22} +9.39851i q^{23} +12.2915 q^{28} +6.06910i q^{29} -7.73381i q^{32} +10.5830 q^{37} -5.29150 q^{43} +4.24264i q^{44} +24.2288 q^{46} +7.00000 q^{49} -14.5544i q^{53} -18.0455i q^{56} +15.6458 q^{58} -3.35425 q^{64} +4.00000 q^{67} +7.57205i q^{71} -27.2823i q^{74} +2.41618i q^{77} +8.00000 q^{79} +13.6412i q^{86} +6.22876 q^{88} -43.6631i q^{92} -18.0455i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 8 q^{4} + 12 q^{16} - 20 q^{22} + 28 q^{28} + 44 q^{46} + 28 q^{49} + 52 q^{58} - 24 q^{64} + 16 q^{67} + 32 q^{79} - 28 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1575\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(1226\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.57794i − 1.82288i −0.411438 0.911438i \(-0.634973\pi\)
0.411438 0.911438i \(-0.365027\pi\)
\(3\) 0 0
\(4\) −4.64575 −2.32288
\(5\) 0 0
\(6\) 0 0
\(7\) −2.64575 −1.00000
\(8\) 6.82058i 2.41144i
\(9\) 0 0
\(10\) 0 0
\(11\) − 0.913230i − 0.275349i −0.990478 0.137675i \(-0.956037\pi\)
0.990478 0.137675i \(-0.0439628\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 6.82058i 1.82288i
\(15\) 0 0
\(16\) 8.29150 2.07288
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −2.35425 −0.501928
\(23\) 9.39851i 1.95973i 0.199673 + 0.979863i \(0.436012\pi\)
−0.199673 + 0.979863i \(0.563988\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 12.2915 2.32288
\(29\) 6.06910i 1.12700i 0.826115 + 0.563502i \(0.190546\pi\)
−0.826115 + 0.563502i \(0.809454\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) − 7.73381i − 1.36716i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10.5830 1.73984 0.869918 0.493197i \(-0.164172\pi\)
0.869918 + 0.493197i \(0.164172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −5.29150 −0.806947 −0.403473 0.914991i \(-0.632197\pi\)
−0.403473 + 0.914991i \(0.632197\pi\)
\(44\) 4.24264i 0.639602i
\(45\) 0 0
\(46\) 24.2288 3.57234
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 14.5544i − 1.99920i −0.0283132 0.999599i \(-0.509014\pi\)
0.0283132 0.999599i \(-0.490986\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) − 18.0455i − 2.41144i
\(57\) 0 0
\(58\) 15.6458 2.05439
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −3.35425 −0.419281
\(65\) 0 0
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.57205i 0.898637i 0.893372 + 0.449319i \(0.148333\pi\)
−0.893372 + 0.449319i \(0.851667\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) − 27.2823i − 3.17150i
\(75\) 0 0
\(76\) 0 0
\(77\) 2.41618i 0.275349i
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 13.6412i 1.47096i
\(87\) 0 0
\(88\) 6.22876 0.663988
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) − 43.6631i − 4.55220i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) − 18.0455i − 1.82288i
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −37.5203 −3.64429
\(107\) 17.8838i 1.72889i 0.502726 + 0.864446i \(0.332330\pi\)
−0.502726 + 0.864446i \(0.667670\pi\)
\(108\) 0 0
\(109\) −10.5830 −1.01367 −0.506834 0.862044i \(-0.669184\pi\)
−0.506834 + 0.862044i \(0.669184\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −21.9373 −2.07288
\(113\) 16.3808i 1.54098i 0.637452 + 0.770490i \(0.279988\pi\)
−0.637452 + 0.770490i \(0.720012\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) − 28.1955i − 2.61789i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 10.1660 0.924183
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 16.0000 1.41977 0.709885 0.704317i \(-0.248747\pi\)
0.709885 + 0.704317i \(0.248747\pi\)
\(128\) − 6.82058i − 0.602859i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) − 10.3117i − 0.890799i
\(135\) 0 0
\(136\) 0 0
\(137\) 7.89556i 0.674563i 0.941404 + 0.337282i \(0.109507\pi\)
−0.941404 + 0.337282i \(0.890493\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 19.5203 1.63810
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −49.1660 −4.04142
\(149\) 23.0397i 1.88748i 0.330684 + 0.943741i \(0.392720\pi\)
−0.330684 + 0.943741i \(0.607280\pi\)
\(150\) 0 0
\(151\) 5.29150 0.430616 0.215308 0.976546i \(-0.430924\pi\)
0.215308 + 0.976546i \(0.430924\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 6.22876 0.501928
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) − 20.6235i − 1.64072i
\(159\) 0 0
\(160\) 0 0
\(161\) − 24.8661i − 1.95973i
\(162\) 0 0
\(163\) −20.0000 −1.56652 −0.783260 0.621694i \(-0.786445\pi\)
−0.783260 + 0.621694i \(0.786445\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 24.5830 1.87444
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 7.57205i − 0.570765i
\(177\) 0 0
\(178\) 0 0
\(179\) 21.5367i 1.60973i 0.593458 + 0.804865i \(0.297762\pi\)
−0.593458 + 0.804865i \(0.702238\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −64.1033 −4.72576
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.0514i 0.944369i 0.881500 + 0.472184i \(0.156534\pi\)
−0.881500 + 0.472184i \(0.843466\pi\)
\(192\) 0 0
\(193\) −21.1660 −1.52356 −0.761781 0.647834i \(-0.775675\pi\)
−0.761781 + 0.647834i \(0.775675\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −32.5203 −2.32288
\(197\) 10.9015i 0.776697i 0.921513 + 0.388348i \(0.126954\pi\)
−0.921513 + 0.388348i \(0.873046\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 16.0573i − 1.12700i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −26.4575 −1.82141 −0.910705 0.413057i \(-0.864461\pi\)
−0.910705 + 0.413057i \(0.864461\pi\)
\(212\) 67.6160i 4.64389i
\(213\) 0 0
\(214\) 46.1033 3.15155
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 27.2823i 1.84779i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 20.4617i 1.36716i
\(225\) 0 0
\(226\) 42.2288 2.80902
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −41.3948 −2.71770
\(233\) − 0.589720i − 0.0386338i −0.999813 0.0193169i \(-0.993851\pi\)
0.999813 0.0193169i \(-0.00614915\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 30.0220i 1.94196i 0.239158 + 0.970981i \(0.423129\pi\)
−0.239158 + 0.970981i \(0.576871\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) − 26.2073i − 1.68467i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 8.58301 0.539609
\(254\) − 41.2470i − 2.58806i
\(255\) 0 0
\(256\) −24.2915 −1.51822
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) −28.0000 −1.73984
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 26.3691i 1.62599i 0.582273 + 0.812993i \(0.302164\pi\)
−0.582273 + 0.812993i \(0.697836\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −18.5830 −1.13514
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 20.3542 1.22965
\(275\) 0 0
\(276\) 0 0
\(277\) 10.0000 0.600842 0.300421 0.953807i \(-0.402873\pi\)
0.300421 + 0.953807i \(0.402873\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 33.3514i − 1.98958i −0.101955 0.994789i \(-0.532510\pi\)
0.101955 0.994789i \(-0.467490\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) − 35.1779i − 2.08742i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 72.1822i 4.19550i
\(297\) 0 0
\(298\) 59.3948 3.44065
\(299\) 0 0
\(300\) 0 0
\(301\) 14.0000 0.806947
\(302\) − 13.6412i − 0.784960i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) − 11.2250i − 0.639602i
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −37.1660 −2.09075
\(317\) − 31.5249i − 1.77062i −0.465004 0.885309i \(-0.653947\pi\)
0.465004 0.885309i \(-0.346053\pi\)
\(318\) 0 0
\(319\) 5.54249 0.310320
\(320\) 0 0
\(321\) 0 0
\(322\) −64.1033 −3.57234
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 51.5587i 2.85557i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 5.29150 0.290847 0.145424 0.989369i \(-0.453545\pi\)
0.145424 + 0.989369i \(0.453545\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −21.1660 −1.15299 −0.576493 0.817102i \(-0.695579\pi\)
−0.576493 + 0.817102i \(0.695579\pi\)
\(338\) − 33.5132i − 1.82288i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −18.5203 −1.00000
\(344\) − 36.0911i − 1.94590i
\(345\) 0 0
\(346\) 0 0
\(347\) 23.3632i 1.25420i 0.778938 + 0.627100i \(0.215758\pi\)
−0.778938 + 0.627100i \(0.784242\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −7.06275 −0.376446
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 55.5203 2.93434
\(359\) − 31.8485i − 1.68090i −0.541891 0.840449i \(-0.682292\pi\)
0.541891 0.840449i \(-0.317708\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 77.9278i 4.06227i
\(369\) 0 0
\(370\) 0 0
\(371\) 38.5073i 1.99920i
\(372\) 0 0
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 37.0405 1.90264 0.951322 0.308199i \(-0.0997264\pi\)
0.951322 + 0.308199i \(0.0997264\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 33.6458 1.72147
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 54.5646i 2.77727i
\(387\) 0 0
\(388\) 0 0
\(389\) − 19.3867i − 0.982947i −0.870893 0.491473i \(-0.836458\pi\)
0.870893 0.491473i \(-0.163542\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 47.7440i 2.41144i
\(393\) 0 0
\(394\) 28.1033 1.41582
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9.07500i 0.453184i 0.973990 + 0.226592i \(0.0727584\pi\)
−0.973990 + 0.226592i \(0.927242\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) −41.3948 −2.05439
\(407\) − 9.66472i − 0.479062i
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 26.0000 1.26716 0.633581 0.773676i \(-0.281584\pi\)
0.633581 + 0.773676i \(0.281584\pi\)
\(422\) 68.2058i 3.32020i
\(423\) 0 0
\(424\) 99.2693 4.82094
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) − 83.0837i − 4.01600i
\(429\) 0 0
\(430\) 0 0
\(431\) − 3.91913i − 0.188778i −0.995535 0.0943889i \(-0.969910\pi\)
0.995535 0.0943889i \(-0.0300897\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 49.1660 2.35462
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 40.3337i 1.91631i 0.286244 + 0.958157i \(0.407593\pi\)
−0.286244 + 0.958157i \(0.592407\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 8.87451 0.419281
\(449\) 28.5190i 1.34590i 0.739689 + 0.672948i \(0.234972\pi\)
−0.739689 + 0.672948i \(0.765028\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) − 76.1013i − 3.57951i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 42.3320 1.98021 0.990104 0.140334i \(-0.0448177\pi\)
0.990104 + 0.140334i \(0.0448177\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 40.0000 1.85896 0.929479 0.368875i \(-0.120257\pi\)
0.929479 + 0.368875i \(0.120257\pi\)
\(464\) 50.3220i 2.33614i
\(465\) 0 0
\(466\) −1.52026 −0.0704246
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) −10.5830 −0.488678
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.83236i 0.222192i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 77.3948 3.53995
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −47.2288 −2.14676
\(485\) 0 0
\(486\) 0 0
\(487\) −37.0405 −1.67847 −0.839233 0.543772i \(-0.816996\pi\)
−0.839233 + 0.543772i \(0.816996\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 34.8544i − 1.57296i −0.617619 0.786478i \(-0.711903\pi\)
0.617619 0.786478i \(-0.288097\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 20.0338i − 0.898637i
\(498\) 0 0
\(499\) −26.4575 −1.18440 −0.592200 0.805791i \(-0.701741\pi\)
−0.592200 + 0.805791i \(0.701741\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) − 22.1264i − 0.983640i
\(507\) 0 0
\(508\) −74.3320 −3.29795
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 48.9808i 2.16466i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 72.1822i 3.17150i
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 67.9778 2.96397
\(527\) 0 0
\(528\) 0 0
\(529\) −65.3320 −2.84052
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 27.2823i 1.17842i
\(537\) 0 0
\(538\) 0 0
\(539\) − 6.39261i − 0.275349i
\(540\) 0 0
\(541\) −34.0000 −1.46177 −0.730887 0.682498i \(-0.760893\pi\)
−0.730887 + 0.682498i \(0.760893\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −44.0000 −1.88130 −0.940652 0.339372i \(-0.889785\pi\)
−0.940652 + 0.339372i \(0.889785\pi\)
\(548\) − 36.6808i − 1.56693i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −21.1660 −0.900070
\(554\) − 25.7794i − 1.09526i
\(555\) 0 0
\(556\) 0 0
\(557\) − 40.0102i − 1.69529i −0.530566 0.847644i \(-0.678020\pi\)
0.530566 0.847644i \(-0.321980\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −85.9778 −3.62675
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) −51.6458 −2.16701
\(569\) 45.4896i 1.90702i 0.301356 + 0.953512i \(0.402561\pi\)
−0.301356 + 0.953512i \(0.597439\pi\)
\(570\) 0 0
\(571\) −4.00000 −0.167395 −0.0836974 0.996491i \(-0.526673\pi\)
−0.0836974 + 0.996491i \(0.526673\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 43.8249i 1.82288i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −13.2915 −0.550478
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 87.7490 3.60646
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) − 107.037i − 4.38439i
\(597\) 0 0
\(598\) 0 0
\(599\) − 48.8190i − 1.99469i −0.0728143 0.997346i \(-0.523198\pi\)
0.0728143 0.997346i \(-0.476802\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) − 36.0911i − 1.47096i
\(603\) 0 0
\(604\) −24.5830 −1.00027
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −38.0000 −1.53481 −0.767403 0.641165i \(-0.778451\pi\)
−0.767403 + 0.641165i \(0.778451\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −16.4797 −0.663988
\(617\) − 11.5485i − 0.464924i −0.972605 0.232462i \(-0.925322\pi\)
0.972605 0.232462i \(-0.0746782\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 54.5646i 2.17046i
\(633\) 0 0
\(634\) −81.2693 −3.22762
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) − 14.2882i − 0.565674i
\(639\) 0 0
\(640\) 0 0
\(641\) 17.5603i 0.693589i 0.937941 + 0.346795i \(0.112730\pi\)
−0.937941 + 0.346795i \(0.887270\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 115.522i 4.55220i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 92.9150 3.63883
\(653\) 27.8720i 1.09072i 0.838203 + 0.545358i \(0.183606\pi\)
−0.838203 + 0.545358i \(0.816394\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 12.4044i − 0.483207i −0.970375 0.241604i \(-0.922327\pi\)
0.970375 0.241604i \(-0.0776734\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) − 13.6412i − 0.530178i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −57.0405 −2.20862
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 42.3320 1.63178 0.815890 0.578208i \(-0.196248\pi\)
0.815890 + 0.578208i \(0.196248\pi\)
\(674\) 54.5646i 2.10175i
\(675\) 0 0
\(676\) −60.3948 −2.32288
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 33.0279i − 1.26378i −0.775059 0.631889i \(-0.782280\pi\)
0.775059 0.631889i \(-0.217720\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 47.7440i 1.82288i
\(687\) 0 0
\(688\) −43.8745 −1.67270
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 60.2288 2.28625
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 38.8308i − 1.46662i −0.679895 0.733309i \(-0.737975\pi\)
0.679895 0.733309i \(-0.262025\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 3.06320i 0.115449i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 52.9150 1.98727 0.993633 0.112667i \(-0.0359394\pi\)
0.993633 + 0.112667i \(0.0359394\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) − 100.054i − 3.73920i
\(717\) 0 0
\(718\) −82.1033 −3.06407
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) − 48.9808i − 1.82288i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 72.6863 2.67925
\(737\) − 3.65292i − 0.134557i
\(738\) 0 0
\(739\) −52.0000 −1.91285 −0.956425 0.291977i \(-0.905687\pi\)
−0.956425 + 0.291977i \(0.905687\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 99.2693 3.64429
\(743\) − 2.09267i − 0.0767726i −0.999263 0.0383863i \(-0.987778\pi\)
0.999263 0.0383863i \(-0.0122217\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) − 56.7146i − 2.07647i
\(747\) 0 0
\(748\) 0 0
\(749\) − 47.3161i − 1.72889i
\(750\) 0 0
\(751\) −26.4575 −0.965448 −0.482724 0.875772i \(-0.660353\pi\)
−0.482724 + 0.875772i \(0.660353\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 10.5830 0.384646 0.192323 0.981332i \(-0.438398\pi\)
0.192323 + 0.981332i \(0.438398\pi\)
\(758\) − 95.4881i − 3.46828i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 28.0000 1.01367
\(764\) − 60.6337i − 2.19365i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 98.3320 3.53905
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −49.9778 −1.79179
\(779\) 0 0
\(780\) 0 0
\(781\) 6.91503 0.247439
\(782\) 0 0
\(783\) 0 0
\(784\) 58.0405 2.07288
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) − 50.6455i − 1.80417i
\(789\) 0 0
\(790\) 0 0
\(791\) − 43.3396i − 1.54098i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 23.3948 0.826098
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 3.06320i 0.107696i 0.998549 + 0.0538482i \(0.0171487\pi\)
−0.998549 + 0.0538482i \(0.982851\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 74.5984i 2.61789i
\(813\) 0 0
\(814\) −24.9150 −0.873271
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 21.8602i − 0.762927i −0.924384 0.381464i \(-0.875420\pi\)
0.924384 0.381464i \(-0.124580\pi\)
\(822\) 0 0
\(823\) −32.0000 −1.11545 −0.557725 0.830026i \(-0.688326\pi\)
−0.557725 + 0.830026i \(0.688326\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 57.3043i 1.99267i 0.0855616 + 0.996333i \(0.472732\pi\)
−0.0855616 + 0.996333i \(0.527268\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −7.83399 −0.270138
\(842\) − 67.0263i − 2.30988i
\(843\) 0 0
\(844\) 122.915 4.23091
\(845\) 0 0
\(846\) 0 0
\(847\) −26.8967 −0.924183
\(848\) − 120.678i − 4.14409i
\(849\) 0 0
\(850\) 0 0
\(851\) 99.4645i 3.40960i
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −121.978 −4.16911
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −10.1033 −0.344119
\(863\) − 35.5014i − 1.20848i −0.796802 0.604240i \(-0.793477\pi\)
0.796802 0.604240i \(-0.206523\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 7.30584i − 0.247834i
\(870\) 0 0
\(871\) 0 0
\(872\) − 72.1822i − 2.44440i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −50.0000 −1.68838 −0.844190 0.536044i \(-0.819918\pi\)
−0.844190 + 0.536044i \(0.819918\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 58.2065 1.95881 0.979403 0.201916i \(-0.0647168\pi\)
0.979403 + 0.201916i \(0.0647168\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 103.978 3.49320
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) −42.3320 −1.41977
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 18.0455i 0.602859i
\(897\) 0 0
\(898\) 73.5203 2.45340
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −111.727 −3.71598
\(905\) 0 0
\(906\) 0 0
\(907\) −5.29150 −0.175701 −0.0878507 0.996134i \(-0.528000\pi\)
−0.0878507 + 0.996134i \(0.528000\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 52.4719i 1.73847i 0.494397 + 0.869236i \(0.335389\pi\)
−0.494397 + 0.869236i \(0.664611\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) − 109.129i − 3.60967i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 37.0405 1.22185 0.610927 0.791687i \(-0.290797\pi\)
0.610927 + 0.791687i \(0.290797\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) − 103.117i − 3.38865i
\(927\) 0 0
\(928\) 46.9373 1.54079
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 2.73969i 0.0897416i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 27.2823i 0.890799i
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 12.4575 0.405029
\(947\) − 27.0161i − 0.877905i −0.898510 0.438953i \(-0.855350\pi\)
0.898510 0.438953i \(-0.144650\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 26.0456i − 0.843699i −0.906666 0.421849i \(-0.861381\pi\)
0.906666 0.421849i \(-0.138619\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) − 139.475i − 4.51093i
\(957\) 0 0
\(958\) 0 0
\(959\) − 20.8897i − 0.674563i
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 40.0000 1.28631 0.643157 0.765735i \(-0.277624\pi\)
0.643157 + 0.765735i \(0.277624\pi\)
\(968\) 69.3380i 2.22861i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 95.4881i 3.05963i
\(975\) 0 0
\(976\) 0 0
\(977\) − 62.4602i − 1.99828i −0.0414892 0.999139i \(-0.513210\pi\)
0.0414892 0.999139i \(-0.486790\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −89.8523 −2.86730
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 49.7322i − 1.58139i
\(990\) 0 0
\(991\) −58.2065 −1.84899 −0.924496 0.381193i \(-0.875513\pi\)
−0.924496 + 0.381193i \(0.875513\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −51.6458 −1.63810
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 68.2058i 2.15902i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.2.b.a.251.1 4
3.2 odd 2 inner 1575.2.b.a.251.4 4
5.2 odd 4 1575.2.g.d.1574.7 8
5.3 odd 4 1575.2.g.d.1574.2 8
5.4 even 2 63.2.c.a.62.4 yes 4
7.6 odd 2 CM 1575.2.b.a.251.1 4
15.2 even 4 1575.2.g.d.1574.1 8
15.8 even 4 1575.2.g.d.1574.8 8
15.14 odd 2 63.2.c.a.62.1 4
20.19 odd 2 1008.2.k.a.881.2 4
21.20 even 2 inner 1575.2.b.a.251.4 4
35.4 even 6 441.2.p.b.215.1 8
35.9 even 6 441.2.p.b.80.4 8
35.13 even 4 1575.2.g.d.1574.2 8
35.19 odd 6 441.2.p.b.80.4 8
35.24 odd 6 441.2.p.b.215.1 8
35.27 even 4 1575.2.g.d.1574.7 8
35.34 odd 2 63.2.c.a.62.4 yes 4
40.19 odd 2 4032.2.k.b.3905.1 4
40.29 even 2 4032.2.k.c.3905.4 4
45.4 even 6 567.2.o.f.188.1 8
45.14 odd 6 567.2.o.f.188.4 8
45.29 odd 6 567.2.o.f.377.1 8
45.34 even 6 567.2.o.f.377.4 8
60.59 even 2 1008.2.k.a.881.1 4
105.44 odd 6 441.2.p.b.80.1 8
105.59 even 6 441.2.p.b.215.4 8
105.62 odd 4 1575.2.g.d.1574.1 8
105.74 odd 6 441.2.p.b.215.4 8
105.83 odd 4 1575.2.g.d.1574.8 8
105.89 even 6 441.2.p.b.80.1 8
105.104 even 2 63.2.c.a.62.1 4
120.29 odd 2 4032.2.k.c.3905.3 4
120.59 even 2 4032.2.k.b.3905.2 4
140.139 even 2 1008.2.k.a.881.2 4
280.69 odd 2 4032.2.k.c.3905.4 4
280.139 even 2 4032.2.k.b.3905.1 4
315.34 odd 6 567.2.o.f.377.4 8
315.104 even 6 567.2.o.f.188.4 8
315.139 odd 6 567.2.o.f.188.1 8
315.209 even 6 567.2.o.f.377.1 8
420.419 odd 2 1008.2.k.a.881.1 4
840.419 odd 2 4032.2.k.b.3905.2 4
840.629 even 2 4032.2.k.c.3905.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.c.a.62.1 4 15.14 odd 2
63.2.c.a.62.1 4 105.104 even 2
63.2.c.a.62.4 yes 4 5.4 even 2
63.2.c.a.62.4 yes 4 35.34 odd 2
441.2.p.b.80.1 8 105.44 odd 6
441.2.p.b.80.1 8 105.89 even 6
441.2.p.b.80.4 8 35.9 even 6
441.2.p.b.80.4 8 35.19 odd 6
441.2.p.b.215.1 8 35.4 even 6
441.2.p.b.215.1 8 35.24 odd 6
441.2.p.b.215.4 8 105.59 even 6
441.2.p.b.215.4 8 105.74 odd 6
567.2.o.f.188.1 8 45.4 even 6
567.2.o.f.188.1 8 315.139 odd 6
567.2.o.f.188.4 8 45.14 odd 6
567.2.o.f.188.4 8 315.104 even 6
567.2.o.f.377.1 8 45.29 odd 6
567.2.o.f.377.1 8 315.209 even 6
567.2.o.f.377.4 8 45.34 even 6
567.2.o.f.377.4 8 315.34 odd 6
1008.2.k.a.881.1 4 60.59 even 2
1008.2.k.a.881.1 4 420.419 odd 2
1008.2.k.a.881.2 4 20.19 odd 2
1008.2.k.a.881.2 4 140.139 even 2
1575.2.b.a.251.1 4 1.1 even 1 trivial
1575.2.b.a.251.1 4 7.6 odd 2 CM
1575.2.b.a.251.4 4 3.2 odd 2 inner
1575.2.b.a.251.4 4 21.20 even 2 inner
1575.2.g.d.1574.1 8 15.2 even 4
1575.2.g.d.1574.1 8 105.62 odd 4
1575.2.g.d.1574.2 8 5.3 odd 4
1575.2.g.d.1574.2 8 35.13 even 4
1575.2.g.d.1574.7 8 5.2 odd 4
1575.2.g.d.1574.7 8 35.27 even 4
1575.2.g.d.1574.8 8 15.8 even 4
1575.2.g.d.1574.8 8 105.83 odd 4
4032.2.k.b.3905.1 4 40.19 odd 2
4032.2.k.b.3905.1 4 280.139 even 2
4032.2.k.b.3905.2 4 120.59 even 2
4032.2.k.b.3905.2 4 840.419 odd 2
4032.2.k.c.3905.3 4 120.29 odd 2
4032.2.k.c.3905.3 4 840.629 even 2
4032.2.k.c.3905.4 4 40.29 even 2
4032.2.k.c.3905.4 4 280.69 odd 2