# Properties

 Label 1575.2.a.v Level $1575$ Weight $2$ Character orbit 1575.a Self dual yes Analytic conductor $12.576$ Analytic rank $0$ Dimension $2$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1575 = 3^{2} \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1575.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$12.5764383184$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{5})$$ Defining polynomial: $$x^{2} - x - 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 525) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \frac{1}{2}(1 + \sqrt{5})$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( 1 + \beta ) q^{2} + 3 \beta q^{4} + q^{7} + ( 1 + 4 \beta ) q^{8} +O(q^{10})$$ $$q + ( 1 + \beta ) q^{2} + 3 \beta q^{4} + q^{7} + ( 1 + 4 \beta ) q^{8} + ( -1 + 4 \beta ) q^{11} + ( -4 + 2 \beta ) q^{13} + ( 1 + \beta ) q^{14} + ( 5 + 3 \beta ) q^{16} + ( 2 - 6 \beta ) q^{17} -2 \beta q^{19} + ( 3 + 7 \beta ) q^{22} + 5 q^{23} -2 q^{26} + 3 \beta q^{28} + ( 5 - 6 \beta ) q^{29} + ( -2 + 4 \beta ) q^{31} + ( 6 + 3 \beta ) q^{32} + ( -4 - 10 \beta ) q^{34} + ( 1 - 4 \beta ) q^{37} + ( -2 - 4 \beta ) q^{38} + 8 q^{41} + ( -5 - 2 \beta ) q^{43} + ( 12 + 9 \beta ) q^{44} + ( 5 + 5 \beta ) q^{46} + ( 4 + 2 \beta ) q^{47} + q^{49} + ( 6 - 6 \beta ) q^{52} + ( -6 + 4 \beta ) q^{53} + ( 1 + 4 \beta ) q^{56} + ( -1 - 7 \beta ) q^{58} + ( 4 - 2 \beta ) q^{59} + ( 4 - 12 \beta ) q^{61} + ( 2 + 6 \beta ) q^{62} + ( -1 + 6 \beta ) q^{64} + ( -7 + 6 \beta ) q^{67} + ( -18 - 12 \beta ) q^{68} + ( 7 - 4 \beta ) q^{71} + ( 2 - 2 \beta ) q^{73} + ( -3 - 7 \beta ) q^{74} + ( -6 - 6 \beta ) q^{76} + ( -1 + 4 \beta ) q^{77} + ( 5 - 2 \beta ) q^{79} + ( 8 + 8 \beta ) q^{82} + ( 6 + 4 \beta ) q^{83} + ( -7 - 9 \beta ) q^{86} + ( 15 + 16 \beta ) q^{88} + ( -4 + 6 \beta ) q^{89} + ( -4 + 2 \beta ) q^{91} + 15 \beta q^{92} + ( 6 + 8 \beta ) q^{94} + ( -6 - 4 \beta ) q^{97} + ( 1 + \beta ) q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + 3q^{2} + 3q^{4} + 2q^{7} + 6q^{8} + O(q^{10})$$ $$2q + 3q^{2} + 3q^{4} + 2q^{7} + 6q^{8} + 2q^{11} - 6q^{13} + 3q^{14} + 13q^{16} - 2q^{17} - 2q^{19} + 13q^{22} + 10q^{23} - 4q^{26} + 3q^{28} + 4q^{29} + 15q^{32} - 18q^{34} - 2q^{37} - 8q^{38} + 16q^{41} - 12q^{43} + 33q^{44} + 15q^{46} + 10q^{47} + 2q^{49} + 6q^{52} - 8q^{53} + 6q^{56} - 9q^{58} + 6q^{59} - 4q^{61} + 10q^{62} + 4q^{64} - 8q^{67} - 48q^{68} + 10q^{71} + 2q^{73} - 13q^{74} - 18q^{76} + 2q^{77} + 8q^{79} + 24q^{82} + 16q^{83} - 23q^{86} + 46q^{88} - 2q^{89} - 6q^{91} + 15q^{92} + 20q^{94} - 16q^{97} + 3q^{98} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −0.618034 1.61803
0.381966 0 −1.85410 0 0 1.00000 −1.47214 0 0
1.2 2.61803 0 4.85410 0 0 1.00000 7.47214 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$-1$$
$$5$$ $$-1$$
$$7$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1575.2.a.v 2
3.b odd 2 1 525.2.a.e 2
5.b even 2 1 1575.2.a.l 2
5.c odd 4 2 1575.2.d.f 4
12.b even 2 1 8400.2.a.da 2
15.d odd 2 1 525.2.a.i yes 2
15.e even 4 2 525.2.d.e 4
21.c even 2 1 3675.2.a.r 2
60.h even 2 1 8400.2.a.cy 2
105.g even 2 1 3675.2.a.bh 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
525.2.a.e 2 3.b odd 2 1
525.2.a.i yes 2 15.d odd 2 1
525.2.d.e 4 15.e even 4 2
1575.2.a.l 2 5.b even 2 1
1575.2.a.v 2 1.a even 1 1 trivial
1575.2.d.f 4 5.c odd 4 2
3675.2.a.r 2 21.c even 2 1
3675.2.a.bh 2 105.g even 2 1
8400.2.a.cy 2 60.h even 2 1
8400.2.a.da 2 12.b even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1575))$$:

 $$T_{2}^{2} - 3 T_{2} + 1$$ $$T_{11}^{2} - 2 T_{11} - 19$$ $$T_{13}^{2} + 6 T_{13} + 4$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 - 3 T + T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2}$$
$7$ $$( -1 + T )^{2}$$
$11$ $$-19 - 2 T + T^{2}$$
$13$ $$4 + 6 T + T^{2}$$
$17$ $$-44 + 2 T + T^{2}$$
$19$ $$-4 + 2 T + T^{2}$$
$23$ $$( -5 + T )^{2}$$
$29$ $$-41 - 4 T + T^{2}$$
$31$ $$-20 + T^{2}$$
$37$ $$-19 + 2 T + T^{2}$$
$41$ $$( -8 + T )^{2}$$
$43$ $$31 + 12 T + T^{2}$$
$47$ $$20 - 10 T + T^{2}$$
$53$ $$-4 + 8 T + T^{2}$$
$59$ $$4 - 6 T + T^{2}$$
$61$ $$-176 + 4 T + T^{2}$$
$67$ $$-29 + 8 T + T^{2}$$
$71$ $$5 - 10 T + T^{2}$$
$73$ $$-4 - 2 T + T^{2}$$
$79$ $$11 - 8 T + T^{2}$$
$83$ $$44 - 16 T + T^{2}$$
$89$ $$-44 + 2 T + T^{2}$$
$97$ $$44 + 16 T + T^{2}$$