Properties

Label 1575.2.a.r
Level $1575$
Weight $2$
Character orbit 1575.a
Self dual yes
Analytic conductor $12.576$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1575.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(12.5764383184\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Defining polynomial: \(x^{2} - x - 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{5}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta q^{2} + 3 q^{4} - q^{7} -\beta q^{8} +O(q^{10})\) \( q -\beta q^{2} + 3 q^{4} - q^{7} -\beta q^{8} + ( -2 - 2 \beta ) q^{11} -2 \beta q^{13} + \beta q^{14} - q^{16} -2 q^{17} + ( 2 - 2 \beta ) q^{19} + ( 10 + 2 \beta ) q^{22} + 4 q^{23} + 10 q^{26} -3 q^{28} + 2 q^{29} + ( 6 - 2 \beta ) q^{31} + 3 \beta q^{32} + 2 \beta q^{34} + ( -2 + 4 \beta ) q^{37} + ( 10 - 2 \beta ) q^{38} + 2 q^{41} -4 \beta q^{43} + ( -6 - 6 \beta ) q^{44} -4 \beta q^{46} + ( 4 + 4 \beta ) q^{47} + q^{49} -6 \beta q^{52} + ( -8 + 2 \beta ) q^{53} + \beta q^{56} -2 \beta q^{58} + 4 \beta q^{59} -2 q^{61} + ( 10 - 6 \beta ) q^{62} -13 q^{64} + 4 q^{67} -6 q^{68} + ( -10 + 2 \beta ) q^{71} + ( 8 + 2 \beta ) q^{73} + ( -20 + 2 \beta ) q^{74} + ( 6 - 6 \beta ) q^{76} + ( 2 + 2 \beta ) q^{77} + ( 4 + 4 \beta ) q^{79} -2 \beta q^{82} + ( -8 - 4 \beta ) q^{83} + 20 q^{86} + ( 10 + 2 \beta ) q^{88} + 2 q^{89} + 2 \beta q^{91} + 12 q^{92} + ( -20 - 4 \beta ) q^{94} + ( -4 - 2 \beta ) q^{97} -\beta q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 6q^{4} - 2q^{7} + O(q^{10}) \) \( 2q + 6q^{4} - 2q^{7} - 4q^{11} - 2q^{16} - 4q^{17} + 4q^{19} + 20q^{22} + 8q^{23} + 20q^{26} - 6q^{28} + 4q^{29} + 12q^{31} - 4q^{37} + 20q^{38} + 4q^{41} - 12q^{44} + 8q^{47} + 2q^{49} - 16q^{53} - 4q^{61} + 20q^{62} - 26q^{64} + 8q^{67} - 12q^{68} - 20q^{71} + 16q^{73} - 40q^{74} + 12q^{76} + 4q^{77} + 8q^{79} - 16q^{83} + 40q^{86} + 20q^{88} + 4q^{89} + 24q^{92} - 40q^{94} - 8q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
−2.23607 0 3.00000 0 0 −1.00000 −2.23607 0 0
1.2 2.23607 0 3.00000 0 0 −1.00000 2.23607 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(5\) \(1\)
\(7\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1575.2.a.r 2
3.b odd 2 1 525.2.a.g 2
5.b even 2 1 315.2.a.d 2
5.c odd 4 2 1575.2.d.d 4
12.b even 2 1 8400.2.a.cx 2
15.d odd 2 1 105.2.a.b 2
15.e even 4 2 525.2.d.c 4
20.d odd 2 1 5040.2.a.bw 2
21.c even 2 1 3675.2.a.y 2
35.c odd 2 1 2205.2.a.w 2
60.h even 2 1 1680.2.a.v 2
105.g even 2 1 735.2.a.k 2
105.o odd 6 2 735.2.i.k 4
105.p even 6 2 735.2.i.i 4
120.i odd 2 1 6720.2.a.cx 2
120.m even 2 1 6720.2.a.cs 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.2.a.b 2 15.d odd 2 1
315.2.a.d 2 5.b even 2 1
525.2.a.g 2 3.b odd 2 1
525.2.d.c 4 15.e even 4 2
735.2.a.k 2 105.g even 2 1
735.2.i.i 4 105.p even 6 2
735.2.i.k 4 105.o odd 6 2
1575.2.a.r 2 1.a even 1 1 trivial
1575.2.d.d 4 5.c odd 4 2
1680.2.a.v 2 60.h even 2 1
2205.2.a.w 2 35.c odd 2 1
3675.2.a.y 2 21.c even 2 1
5040.2.a.bw 2 20.d odd 2 1
6720.2.a.cs 2 120.m even 2 1
6720.2.a.cx 2 120.i odd 2 1
8400.2.a.cx 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1575))\):

\( T_{2}^{2} - 5 \)
\( T_{11}^{2} + 4 T_{11} - 16 \)
\( T_{13}^{2} - 20 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -5 + T^{2} \)
$3$ \( T^{2} \)
$5$ \( T^{2} \)
$7$ \( ( 1 + T )^{2} \)
$11$ \( -16 + 4 T + T^{2} \)
$13$ \( -20 + T^{2} \)
$17$ \( ( 2 + T )^{2} \)
$19$ \( -16 - 4 T + T^{2} \)
$23$ \( ( -4 + T )^{2} \)
$29$ \( ( -2 + T )^{2} \)
$31$ \( 16 - 12 T + T^{2} \)
$37$ \( -76 + 4 T + T^{2} \)
$41$ \( ( -2 + T )^{2} \)
$43$ \( -80 + T^{2} \)
$47$ \( -64 - 8 T + T^{2} \)
$53$ \( 44 + 16 T + T^{2} \)
$59$ \( -80 + T^{2} \)
$61$ \( ( 2 + T )^{2} \)
$67$ \( ( -4 + T )^{2} \)
$71$ \( 80 + 20 T + T^{2} \)
$73$ \( 44 - 16 T + T^{2} \)
$79$ \( -64 - 8 T + T^{2} \)
$83$ \( -16 + 16 T + T^{2} \)
$89$ \( ( -2 + T )^{2} \)
$97$ \( -4 + 8 T + T^{2} \)
show more
show less