Defining parameters
Level: | \( N \) | \(=\) | \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1575.e (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 35 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(4\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1575, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 38 | 10 | 28 |
Cusp forms | 14 | 8 | 6 |
Eisenstein series | 24 | 2 | 22 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 8 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(1575, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
1575.1.e.a | $2$ | $0.786$ | \(\Q(\sqrt{-1}) \) | $D_{3}$ | \(\Q(\sqrt{-7}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-i q^{2}-i q^{7}-i q^{8}+q^{11}-q^{14}+\cdots\) |
1575.1.e.b | $2$ | $0.786$ | \(\Q(\sqrt{-1}) \) | $D_{2}$ | \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-7}) \) | \(\Q(\sqrt{21}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+q^{4}-i q^{7}+q^{16}-i q^{28}-2 i q^{37}+\cdots\) |
1575.1.e.c | $4$ | $0.786$ | \(\Q(\zeta_{12})\) | $D_{6}$ | \(\Q(\sqrt{-7}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\zeta_{12}^{2}-\zeta_{12}^{4})q^{2}+(-1-\zeta_{12}^{2}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(1575, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(1575, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 3}\)