Properties

Label 1575.1.e
Level $1575$
Weight $1$
Character orbit 1575.e
Rep. character $\chi_{1575}(874,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $3$
Sturm bound $240$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1575.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(240\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1575, [\chi])\).

Total New Old
Modular forms 38 10 28
Cusp forms 14 8 6
Eisenstein series 24 2 22

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 8 0 0 0

Trace form

\( 8 q - 6 q^{4} + 2 q^{11} - 2 q^{14} + 4 q^{16} - 2 q^{29} - 10 q^{46} - 8 q^{49} - 2 q^{56} + 4 q^{64} + 2 q^{71} + 2 q^{74} + 2 q^{79} - 2 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(1575, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1575.1.e.a 1575.e 35.c $2$ $0.786$ \(\Q(\sqrt{-1}) \) $D_{3}$ \(\Q(\sqrt{-7}) \) None 175.1.d.a \(0\) \(0\) \(0\) \(0\) \(q-i q^{2}-i q^{7}-i q^{8}+q^{11}-q^{14}+\cdots\)
1575.1.e.b 1575.e 35.c $2$ $0.786$ \(\Q(\sqrt{-1}) \) $D_{2}$ \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-7}) \) \(\Q(\sqrt{21}) \) 63.1.d.a \(0\) \(0\) \(0\) \(0\) \(q+q^{4}-i q^{7}+q^{16}-i q^{28}-2 i q^{37}+\cdots\)
1575.1.e.c 1575.e 35.c $4$ $0.786$ \(\Q(\zeta_{12})\) $D_{6}$ \(\Q(\sqrt{-7}) \) None 1575.1.h.d \(0\) \(0\) \(0\) \(0\) \(q+(-\zeta_{12}^{2}-\zeta_{12}^{4})q^{2}+(-1-\zeta_{12}^{2}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(1575, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(1575, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 3}\)