Properties

Label 1573.1.l.b
Level $1573$
Weight $1$
Character orbit 1573.l
Analytic conductor $0.785$
Analytic rank $0$
Dimension $4$
Projective image $D_{5}$
CM discriminant -143
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1573,1,Mod(233,1573)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1573, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([1, 5])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1573.233"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1573 = 11^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1573.l (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.785029264872\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 143)
Projective image: \(D_{5}\)
Projective field: Galois closure of 5.1.20449.1
Artin image: $C_5\times D_5$
Artin field: Galois closure of 10.0.875489472034463.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + (\zeta_{10}^{2} - \zeta_{10}) q^{2} + (\zeta_{10}^{4} + 1) q^{3} + (\zeta_{10}^{4} + \cdots + \zeta_{10}^{2}) q^{4} + (\zeta_{10}^{2} - 2 \zeta_{10} + 1) q^{6} + (\zeta_{10}^{4} + \zeta_{10}^{2}) q^{7}+ \cdots + (\zeta_{10}^{4} - \zeta_{10}^{3} + \cdots + 2) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 3 q^{3} - 3 q^{4} + q^{6} - 2 q^{7} + q^{8} + 2 q^{9} - 6 q^{12} - q^{13} + q^{14} + 4 q^{18} + 3 q^{19} - 4 q^{21} - 2 q^{23} + 2 q^{24} - q^{25} + 3 q^{26} + q^{27} - q^{28} + 4 q^{32}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1573\mathbb{Z}\right)^\times\).

\(n\) \(365\) \(1211\)
\(\chi(n)\) \(\zeta_{10}^{3}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
233.1
−0.309017 0.951057i
0.809017 0.587785i
0.809017 + 0.587785i
−0.309017 + 0.951057i
−0.500000 + 1.53884i 1.30902 0.951057i −1.30902 0.951057i 0 0.809017 + 2.48990i −0.500000 0.363271i 0.809017 0.587785i 0.500000 1.53884i 0
766.1 −0.500000 0.363271i 0.190983 0.587785i −0.190983 0.587785i 0 −0.309017 + 0.224514i −0.500000 1.53884i −0.309017 + 0.951057i 0.500000 + 0.363271i 0
844.1 −0.500000 + 0.363271i 0.190983 + 0.587785i −0.190983 + 0.587785i 0 −0.309017 0.224514i −0.500000 + 1.53884i −0.309017 0.951057i 0.500000 0.363271i 0
1546.1 −0.500000 1.53884i 1.30902 + 0.951057i −1.30902 + 0.951057i 0 0.809017 2.48990i −0.500000 + 0.363271i 0.809017 + 0.587785i 0.500000 + 1.53884i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
143.d odd 2 1 CM by \(\Q(\sqrt{-143}) \)
11.c even 5 1 inner
143.l odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1573.1.l.b 4
11.b odd 2 1 1573.1.l.c 4
11.c even 5 1 143.1.d.a 2
11.c even 5 1 inner 1573.1.l.b 4
11.c even 5 2 1573.1.l.d 4
11.d odd 10 1 143.1.d.b yes 2
11.d odd 10 2 1573.1.l.a 4
11.d odd 10 1 1573.1.l.c 4
13.b even 2 1 1573.1.l.c 4
33.f even 10 1 1287.1.g.a 2
33.h odd 10 1 1287.1.g.b 2
44.g even 10 1 2288.1.m.a 2
44.h odd 10 1 2288.1.m.b 2
55.h odd 10 1 3575.1.h.e 2
55.j even 10 1 3575.1.h.f 2
55.k odd 20 2 3575.1.c.d 4
55.l even 20 2 3575.1.c.c 4
143.d odd 2 1 CM 1573.1.l.b 4
143.l odd 10 1 143.1.d.a 2
143.l odd 10 1 inner 1573.1.l.b 4
143.l odd 10 2 1573.1.l.d 4
143.n even 10 1 143.1.d.b yes 2
143.n even 10 2 1573.1.l.a 4
143.n even 10 1 1573.1.l.c 4
143.q even 15 2 1859.1.i.b 4
143.r odd 20 2 1859.1.c.c 4
143.s even 20 2 1859.1.c.c 4
143.t odd 30 2 1859.1.i.a 4
143.u even 30 2 1859.1.i.a 4
143.v odd 30 2 1859.1.i.b 4
143.w even 60 4 1859.1.k.c 8
143.x odd 60 4 1859.1.k.c 8
429.v odd 10 1 1287.1.g.a 2
429.y even 10 1 1287.1.g.b 2
572.ba odd 10 1 2288.1.m.a 2
572.bb even 10 1 2288.1.m.b 2
715.bf even 10 1 3575.1.h.e 2
715.bi odd 10 1 3575.1.h.f 2
715.cb even 20 2 3575.1.c.d 4
715.ce odd 20 2 3575.1.c.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
143.1.d.a 2 11.c even 5 1
143.1.d.a 2 143.l odd 10 1
143.1.d.b yes 2 11.d odd 10 1
143.1.d.b yes 2 143.n even 10 1
1287.1.g.a 2 33.f even 10 1
1287.1.g.a 2 429.v odd 10 1
1287.1.g.b 2 33.h odd 10 1
1287.1.g.b 2 429.y even 10 1
1573.1.l.a 4 11.d odd 10 2
1573.1.l.a 4 143.n even 10 2
1573.1.l.b 4 1.a even 1 1 trivial
1573.1.l.b 4 11.c even 5 1 inner
1573.1.l.b 4 143.d odd 2 1 CM
1573.1.l.b 4 143.l odd 10 1 inner
1573.1.l.c 4 11.b odd 2 1
1573.1.l.c 4 11.d odd 10 1
1573.1.l.c 4 13.b even 2 1
1573.1.l.c 4 143.n even 10 1
1573.1.l.d 4 11.c even 5 2
1573.1.l.d 4 143.l odd 10 2
1859.1.c.c 4 143.r odd 20 2
1859.1.c.c 4 143.s even 20 2
1859.1.i.a 4 143.t odd 30 2
1859.1.i.a 4 143.u even 30 2
1859.1.i.b 4 143.q even 15 2
1859.1.i.b 4 143.v odd 30 2
1859.1.k.c 8 143.w even 60 4
1859.1.k.c 8 143.x odd 60 4
2288.1.m.a 2 44.g even 10 1
2288.1.m.a 2 572.ba odd 10 1
2288.1.m.b 2 44.h odd 10 1
2288.1.m.b 2 572.bb even 10 1
3575.1.c.c 4 55.l even 20 2
3575.1.c.c 4 715.ce odd 20 2
3575.1.c.d 4 55.k odd 20 2
3575.1.c.d 4 715.cb even 20 2
3575.1.h.e 2 55.h odd 10 1
3575.1.h.e 2 715.bf even 10 1
3575.1.h.f 2 55.j even 10 1
3575.1.h.f 2 715.bi odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 2T_{2}^{3} + 4T_{2}^{2} + 3T_{2} + 1 \) acting on \(S_{1}^{\mathrm{new}}(1573, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less