Defining parameters
Level: | \( N \) | = | \( 157 \) |
Weight: | \( k \) | = | \( 2 \) |
Character orbit: | \([\chi]\) | = | 157.a (trivial) |
Character field: | \(\Q\) | ||
Newforms: | \( 2 \) | ||
Sturm bound: | \(26\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(157))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 13 | 13 | 0 |
Cusp forms | 12 | 12 | 0 |
Eisenstein series | 1 | 1 | 0 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators.
\(157\) | Dim. |
---|---|
\(+\) | \(5\) |
\(-\) | \(7\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(157))\) into irreducible Hecke orbits
Label | Dim. | \(A\) | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | 157 | |||||||
157.2.a.a | \(5\) | \(1.254\) | 5.5.24217.1 | None | \(-5\) | \(-7\) | \(-3\) | \(-3\) | \(+\) | \(q+(-1+\beta _{3})q^{2}+(-1-\beta _{2})q^{3}+(1+\cdots)q^{4}+\cdots\) | |
157.2.a.b | \(7\) | \(1.254\) | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(5\) | \(5\) | \(-1\) | \(1\) | \(-\) | \(q+(1-\beta _{1})q^{2}+(1+\beta _{4})q^{3}+(1-\beta _{1}+\cdots)q^{4}+\cdots\) |