Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1568, [\chi])\).
|
Total |
New |
Old |
Modular forms
| 512 |
80 |
432 |
Cusp forms
| 384 |
80 |
304 |
Eisenstein series
| 128 |
0 |
128 |
Label |
Dim. |
\(A\) |
Field |
CM |
Traces |
$q$-expansion |
\(a_2\) |
\(a_3\) |
\(a_5\) |
\(a_7\) |
1568.2.i.a |
\(2\) |
\(12.521\) |
\(\Q(\sqrt{-3}) \) |
None |
\(0\) |
\(-2\) |
\(-2\) |
\(0\) |
\(q+(-2+2\zeta_{6})q^{3}-2\zeta_{6}q^{5}-\zeta_{6}q^{9}+\cdots\)
|
1568.2.i.b |
\(2\) |
\(12.521\) |
\(\Q(\sqrt{-3}) \) |
None |
\(0\) |
\(-2\) |
\(0\) |
\(0\) |
\(q+(-2+2\zeta_{6})q^{3}-\zeta_{6}q^{9}+(-4+4\zeta_{6})q^{11}+\cdots\)
|
1568.2.i.c |
\(2\) |
\(12.521\) |
\(\Q(\sqrt{-3}) \) |
None |
\(0\) |
\(-2\) |
\(0\) |
\(0\) |
\(q+(-2+2\zeta_{6})q^{3}-\zeta_{6}q^{9}+(4-4\zeta_{6})q^{11}+\cdots\)
|
1568.2.i.d |
\(2\) |
\(12.521\) |
\(\Q(\sqrt{-3}) \) |
None |
\(0\) |
\(-2\) |
\(2\) |
\(0\) |
\(q+(-2+2\zeta_{6})q^{3}+2\zeta_{6}q^{5}-\zeta_{6}q^{9}+\cdots\)
|
1568.2.i.e |
\(2\) |
\(12.521\) |
\(\Q(\sqrt{-3}) \) |
\(\Q(\sqrt{-1}) \) |
\(0\) |
\(0\) |
\(-4\) |
\(0\) |
\(q-4\zeta_{6}q^{5}+3\zeta_{6}q^{9}-4q^{13}+(-8+\cdots)q^{17}+\cdots\)
|
1568.2.i.f |
\(2\) |
\(12.521\) |
\(\Q(\sqrt{-3}) \) |
\(\Q(\sqrt{-1}) \) |
\(0\) |
\(0\) |
\(-2\) |
\(0\) |
\(q-2\zeta_{6}q^{5}+3\zeta_{6}q^{9}-6q^{13}+(2-2\zeta_{6})q^{17}+\cdots\)
|
1568.2.i.g |
\(2\) |
\(12.521\) |
\(\Q(\sqrt{-3}) \) |
\(\Q(\sqrt{-1}) \) |
\(0\) |
\(0\) |
\(2\) |
\(0\) |
\(q+2\zeta_{6}q^{5}+3\zeta_{6}q^{9}+6q^{13}+(-2+\cdots)q^{17}+\cdots\)
|
1568.2.i.h |
\(2\) |
\(12.521\) |
\(\Q(\sqrt{-3}) \) |
\(\Q(\sqrt{-1}) \) |
\(0\) |
\(0\) |
\(4\) |
\(0\) |
\(q+4\zeta_{6}q^{5}+3\zeta_{6}q^{9}+4q^{13}+(8-8\zeta_{6})q^{17}+\cdots\)
|
1568.2.i.i |
\(2\) |
\(12.521\) |
\(\Q(\sqrt{-3}) \) |
None |
\(0\) |
\(2\) |
\(-2\) |
\(0\) |
\(q+(2-2\zeta_{6})q^{3}-2\zeta_{6}q^{5}-\zeta_{6}q^{9}+(4+\cdots)q^{11}+\cdots\)
|
1568.2.i.j |
\(2\) |
\(12.521\) |
\(\Q(\sqrt{-3}) \) |
None |
\(0\) |
\(2\) |
\(0\) |
\(0\) |
\(q+(2-2\zeta_{6})q^{3}-\zeta_{6}q^{9}+(-4+4\zeta_{6})q^{11}+\cdots\)
|
1568.2.i.k |
\(2\) |
\(12.521\) |
\(\Q(\sqrt{-3}) \) |
None |
\(0\) |
\(2\) |
\(0\) |
\(0\) |
\(q+(2-2\zeta_{6})q^{3}-\zeta_{6}q^{9}+(4-4\zeta_{6})q^{11}+\cdots\)
|
1568.2.i.l |
\(2\) |
\(12.521\) |
\(\Q(\sqrt{-3}) \) |
None |
\(0\) |
\(2\) |
\(2\) |
\(0\) |
\(q+(2-2\zeta_{6})q^{3}+2\zeta_{6}q^{5}-\zeta_{6}q^{9}+(-4+\cdots)q^{11}+\cdots\)
|
1568.2.i.m |
\(4\) |
\(12.521\) |
\(\Q(\sqrt{-3}, \sqrt{5})\) |
None |
\(0\) |
\(-2\) |
\(-2\) |
\(0\) |
\(q+(-1-\beta _{1}-\beta _{2})q^{3}+(\beta _{1}-\beta _{2}-\beta _{3})q^{5}+\cdots\)
|
1568.2.i.n |
\(4\) |
\(12.521\) |
\(\Q(\sqrt{-3}, \sqrt{5})\) |
None |
\(0\) |
\(-2\) |
\(2\) |
\(0\) |
\(q+(-1-\beta _{1}-\beta _{2})q^{3}+(-\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)
|
1568.2.i.o |
\(4\) |
\(12.521\) |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
None |
\(0\) |
\(-2\) |
\(2\) |
\(0\) |
\(q+(-1+\beta _{1}-\beta _{2})q^{3}+(2\beta _{1}-\beta _{2}+2\beta _{3})q^{5}+\cdots\)
|
1568.2.i.p |
\(4\) |
\(12.521\) |
\(\Q(\sqrt{-3}, \sqrt{7})\) |
None |
\(0\) |
\(0\) |
\(-6\) |
\(0\) |
\(q+\beta _{1}q^{3}+3\beta _{2}q^{5}+4\beta _{2}q^{9}+\beta _{1}q^{11}+\cdots\)
|
1568.2.i.q |
\(4\) |
\(12.521\) |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
None |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
\(q+\beta _{1}q^{3}-\beta _{2}q^{9}+(-2-2\beta _{2})q^{11}+\cdots\)
|
1568.2.i.r |
\(4\) |
\(12.521\) |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
None |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
\(q+\beta _{1}q^{3}-\beta _{2}q^{9}+(2+2\beta _{2})q^{11}-2\beta _{3}q^{13}+\cdots\)
|
1568.2.i.s |
\(4\) |
\(12.521\) |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
\(\Q(\sqrt{-1}) \) |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
\(q+3\beta _{1}q^{5}+(3+3\beta _{2})q^{9}+5\beta _{3}q^{13}+\cdots\)
|
1568.2.i.t |
\(4\) |
\(12.521\) |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
\(\Q(\sqrt{-1}) \) |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
\(q-\beta _{1}q^{5}+(3+3\beta _{2})q^{9}+\beta _{3}q^{13}+(-5\beta _{1}+\cdots)q^{17}+\cdots\)
|
1568.2.i.u |
\(4\) |
\(12.521\) |
\(\Q(\zeta_{12})\) |
None |
\(0\) |
\(0\) |
\(2\) |
\(0\) |
\(q-\zeta_{12}^{2}q^{3}+(1-\zeta_{12})q^{5}+3\zeta_{12}^{2}q^{11}+\cdots\)
|
1568.2.i.v |
\(4\) |
\(12.521\) |
\(\Q(\sqrt{-3}, \sqrt{5})\) |
None |
\(0\) |
\(2\) |
\(-2\) |
\(0\) |
\(q+(1+\beta _{1}+\beta _{2})q^{3}+(\beta _{1}-\beta _{2}-\beta _{3})q^{5}+\cdots\)
|
1568.2.i.w |
\(4\) |
\(12.521\) |
\(\Q(\sqrt{-3}, \sqrt{5})\) |
None |
\(0\) |
\(2\) |
\(2\) |
\(0\) |
\(q+(1+\beta _{1}+\beta _{2})q^{3}+(-\beta _{1}+\beta _{2}+\beta _{3})q^{5}+\cdots\)
|
1568.2.i.x |
\(4\) |
\(12.521\) |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
None |
\(0\) |
\(2\) |
\(2\) |
\(0\) |
\(q+(1+\beta _{1}+\beta _{2})q^{3}+(-2\beta _{1}-\beta _{2}-2\beta _{3})q^{5}+\cdots\)
|
1568.2.i.y |
\(8\) |
\(12.521\) |
8.0.207360000.1 |
None |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
\(q-\beta _{2}q^{3}+(-2\beta _{1}+2\beta _{4})q^{5}-7\beta _{3}q^{9}+\cdots\)
|
\( S_{2}^{\mathrm{old}}(1568, [\chi]) \cong \)
\(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 8}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 6}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 6}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(98, [\chi])\)\(^{\oplus 5}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 4}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(196, [\chi])\)\(^{\oplus 4}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 2}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(392, [\chi])\)\(^{\oplus 3}\)\(\oplus\)
\(S_{2}^{\mathrm{new}}(784, [\chi])\)\(^{\oplus 2}\)