Defining parameters
Level: | \( N \) | \(=\) | \( 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1560.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 21 \) | ||
Sturm bound: | \(1344\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1560))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1024 | 72 | 952 |
Cusp forms | 992 | 72 | 920 |
Eisenstein series | 32 | 0 | 32 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(13\) | Fricke | Dim. |
---|---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(4\) |
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(5\) |
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(5\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(4\) |
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(5\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(4\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(5\) |
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(4\) |
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(4\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(5\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(6\) |
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(3\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(6\) |
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(3\) |
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(3\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(6\) |
Plus space | \(+\) | \(40\) | |||
Minus space | \(-\) | \(32\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1560))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1560))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(1560)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(60))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(195))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(260))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(312))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(390))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(520))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(780))\)\(^{\oplus 2}\)