Properties

Label 1560.4.a
Level $1560$
Weight $4$
Character orbit 1560.a
Rep. character $\chi_{1560}(1,\cdot)$
Character field $\Q$
Dimension $72$
Newform subspaces $21$
Sturm bound $1344$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1560.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 21 \)
Sturm bound: \(1344\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1560))\).

Total New Old
Modular forms 1024 72 952
Cusp forms 992 72 920
Eisenstein series 32 0 32

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)\(13\)FrickeDim.
\(+\)\(+\)\(+\)\(+\)\(+\)\(4\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(5\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(5\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(4\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(5\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(4\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(5\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(4\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(4\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(5\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(6\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(3\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(6\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(3\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(3\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(6\)
Plus space\(+\)\(40\)
Minus space\(-\)\(32\)

Trace form

\( 72 q + 648 q^{9} + O(q^{10}) \) \( 72 q + 648 q^{9} - 52 q^{13} - 8 q^{17} + 1800 q^{25} + 280 q^{29} - 264 q^{33} - 632 q^{37} - 400 q^{41} + 4528 q^{49} + 1352 q^{53} - 456 q^{57} - 880 q^{59} - 120 q^{61} + 1112 q^{67} + 1200 q^{69} + 1568 q^{71} - 176 q^{73} - 1072 q^{77} - 1288 q^{79} + 5832 q^{81} + 1184 q^{83} - 680 q^{85} - 408 q^{87} - 1968 q^{89} + 72 q^{93} + 80 q^{95} - 304 q^{97} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1560))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5 13
1560.4.a.a 1560.a 1.a $1$ $92.043$ \(\Q\) None \(0\) \(-3\) \(-5\) \(-18\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}-5q^{5}-18q^{7}+9q^{9}+28q^{11}+\cdots\)
1560.4.a.b 1560.a 1.a $1$ $92.043$ \(\Q\) None \(0\) \(-3\) \(5\) \(-32\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+5q^{5}-2^{5}q^{7}+9q^{9}+60q^{11}+\cdots\)
1560.4.a.c 1560.a 1.a $1$ $92.043$ \(\Q\) None \(0\) \(-3\) \(5\) \(10\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+5q^{5}+10q^{7}+9q^{9}+24q^{11}+\cdots\)
1560.4.a.d 1560.a 1.a $1$ $92.043$ \(\Q\) None \(0\) \(3\) \(-5\) \(2\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}-5q^{5}+2q^{7}+9q^{9}-52q^{11}+\cdots\)
1560.4.a.e 1560.a 1.a $1$ $92.043$ \(\Q\) None \(0\) \(3\) \(-5\) \(24\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}-5q^{5}+24q^{7}+9q^{9}-8q^{11}+\cdots\)
1560.4.a.f 1560.a 1.a $2$ $92.043$ \(\Q(\sqrt{17}) \) None \(0\) \(-6\) \(10\) \(21\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+5q^{5}+(11-\beta )q^{7}+9q^{9}+\cdots\)
1560.4.a.g 1560.a 1.a $3$ $92.043$ 3.3.18257.1 None \(0\) \(-9\) \(-15\) \(29\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}-5q^{5}+(10+2\beta _{1}-\beta _{2})q^{7}+\cdots\)
1560.4.a.h 1560.a 1.a $3$ $92.043$ 3.3.9153.1 None \(0\) \(-9\) \(15\) \(15\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+5q^{5}+(5-\beta _{1}+2\beta _{2})q^{7}+\cdots\)
1560.4.a.i 1560.a 1.a $3$ $92.043$ 3.3.37133.1 None \(0\) \(9\) \(-15\) \(-20\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}-5q^{5}+(-7+\beta _{1}+\beta _{2})q^{7}+\cdots\)
1560.4.a.j 1560.a 1.a $3$ $92.043$ 3.3.2700.1 None \(0\) \(9\) \(-15\) \(-15\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}-5q^{5}+(-5-\beta _{1}+\beta _{2})q^{7}+\cdots\)
1560.4.a.k 1560.a 1.a $3$ $92.043$ 3.3.18257.1 None \(0\) \(9\) \(15\) \(-13\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}+5q^{5}+(-5+\beta _{1}+\beta _{2})q^{7}+\cdots\)
1560.4.a.l 1560.a 1.a $4$ $92.043$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None \(0\) \(-12\) \(-20\) \(-11\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}-5q^{5}+(-3-\beta _{3})q^{7}+9q^{9}+\cdots\)
1560.4.a.m 1560.a 1.a $4$ $92.043$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None \(0\) \(12\) \(-20\) \(15\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}-5q^{5}+(4+\beta _{1})q^{7}+9q^{9}+\cdots\)
1560.4.a.n 1560.a 1.a $4$ $92.043$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None \(0\) \(12\) \(20\) \(-34\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}+5q^{5}+(-8-\beta _{3})q^{7}+9q^{9}+\cdots\)
1560.4.a.o 1560.a 1.a $5$ $92.043$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None \(0\) \(-15\) \(-25\) \(-8\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}-5q^{5}+(-2+\beta _{1})q^{7}+9q^{9}+\cdots\)
1560.4.a.p 1560.a 1.a $5$ $92.043$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None \(0\) \(-15\) \(-25\) \(8\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}-5q^{5}+(2+\beta _{1})q^{7}+9q^{9}+\cdots\)
1560.4.a.q 1560.a 1.a $5$ $92.043$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None \(0\) \(-15\) \(25\) \(4\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}+5q^{5}+(1-\beta _{1})q^{7}+9q^{9}+\cdots\)
1560.4.a.r 1560.a 1.a $5$ $92.043$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None \(0\) \(15\) \(25\) \(27\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}+5q^{5}+(5+\beta _{1})q^{7}+9q^{9}+\cdots\)
1560.4.a.s 1560.a 1.a $6$ $92.043$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(0\) \(-18\) \(30\) \(-18\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}+5q^{5}+(-3+\beta _{2})q^{7}+9q^{9}+\cdots\)
1560.4.a.t 1560.a 1.a $6$ $92.043$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(0\) \(18\) \(-30\) \(-6\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}-5q^{5}+(-1+\beta _{1})q^{7}+9q^{9}+\cdots\)
1560.4.a.u 1560.a 1.a $6$ $92.043$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(0\) \(18\) \(30\) \(20\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}+5q^{5}+(3+\beta _{2})q^{7}+9q^{9}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1560))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(1560)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(60))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(195))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(260))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(312))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(390))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(520))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(780))\)\(^{\oplus 2}\)