Defining parameters
Level: | \( N \) | \(=\) | \( 156 = 2^{2} \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 156.q (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(56\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(156, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 68 | 6 | 62 |
Cusp forms | 44 | 6 | 38 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(156, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
156.2.q.a | $2$ | $1.246$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(1\) | \(0\) | \(6\) | \(q+(1-\zeta_{6})q^{3}+(-1+2\zeta_{6})q^{5}+(4-2\zeta_{6})q^{7}+\cdots\) |
156.2.q.b | $4$ | $1.246$ | \(\Q(\sqrt{-3}, \sqrt{-43})\) | None | \(0\) | \(-2\) | \(0\) | \(-3\) | \(q+(-1+\beta _{2})q^{3}+(\beta _{1}-\beta _{2}-\beta _{3})q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(156, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(156, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 2}\)