Defining parameters
Level: | \( N \) | \(=\) | \( 156 = 2^{2} \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 156.h (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 156 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(56\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(156, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 32 | 32 | 0 |
Cusp forms | 24 | 24 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(156, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
156.2.h.a | $8$ | $1.246$ | 8.0.592240896.6 | \(\Q(\sqrt{-39}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{2}q^{2}-\beta _{3}q^{3}-\beta _{4}q^{4}+(-\beta _{6}-\beta _{7})q^{5}+\cdots\) |
156.2.h.b | $16$ | $1.246$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{9}q^{2}+\beta _{6}q^{3}-\beta _{12}q^{4}-\beta _{4}q^{5}+\cdots\) |