Properties

Label 156.2.h
Level $156$
Weight $2$
Character orbit 156.h
Rep. character $\chi_{156}(155,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $2$
Sturm bound $56$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 156 = 2^{2} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 156.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 156 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(56\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(156, [\chi])\).

Total New Old
Modular forms 32 32 0
Cusp forms 24 24 0
Eisenstein series 8 8 0

Trace form

\( 24 q - 4 q^{4} - 4 q^{9} - 8 q^{10} - 2 q^{12} - 8 q^{13} - 8 q^{16} + 20 q^{22} - 18 q^{30} - 22 q^{36} - 34 q^{42} + 46 q^{48} - 32 q^{49} + 20 q^{52} - 16 q^{61} - 4 q^{64} + 32 q^{66} + 34 q^{78} + 12 q^{81}+ \cdots + 80 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(156, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
156.2.h.a 156.h 156.h $8$ $1.246$ 8.0.592240896.6 \(\Q(\sqrt{-39}) \) 156.2.h.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{2}q^{2}-\beta _{3}q^{3}-\beta _{4}q^{4}+(-\beta _{6}-\beta _{7})q^{5}+\cdots\)
156.2.h.b 156.h 156.h $16$ $1.246$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 156.2.h.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{9}q^{2}+\beta _{6}q^{3}-\beta _{12}q^{4}-\beta _{4}q^{5}+\cdots\)