Defining parameters
Level: | \( N \) | \(=\) | \( 156 = 2^{2} \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 156.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(56\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(156))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 34 | 2 | 32 |
Cusp forms | 23 | 2 | 21 |
Eisenstein series | 11 | 0 | 11 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(13\) | Fricke | Dim |
---|---|---|---|---|
\(-\) | \(+\) | \(-\) | \(+\) | \(1\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(1\) |
Plus space | \(+\) | \(1\) | ||
Minus space | \(-\) | \(1\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(156))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 13 | |||||||
156.2.a.a | $1$ | $1.246$ | \(\Q\) | None | \(0\) | \(-1\) | \(-4\) | \(-2\) | $-$ | $+$ | $-$ | \(q-q^{3}-4q^{5}-2q^{7}+q^{9}-4q^{11}+\cdots\) | |
156.2.a.b | $1$ | $1.246$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(2\) | $-$ | $-$ | $-$ | \(q+q^{3}+2q^{7}+q^{9}+q^{13}-6q^{17}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(156))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(156)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 2}\)