# Properties

 Label 1550.2.a.a Level $1550$ Weight $2$ Character orbit 1550.a Self dual yes Analytic conductor $12.377$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1550,2,Mod(1,1550)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1550, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1550.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1550 = 2 \cdot 5^{2} \cdot 31$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1550.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$12.3768123133$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 310) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{2} - 2 q^{3} + q^{4} + 2 q^{6} - q^{8} + q^{9}+O(q^{10})$$ q - q^2 - 2 * q^3 + q^4 + 2 * q^6 - q^8 + q^9 $$q - q^{2} - 2 q^{3} + q^{4} + 2 q^{6} - q^{8} + q^{9} + 2 q^{11} - 2 q^{12} + q^{16} - 2 q^{17} - q^{18} - 4 q^{19} - 2 q^{22} + 4 q^{23} + 2 q^{24} + 4 q^{27} - 4 q^{29} - q^{31} - q^{32} - 4 q^{33} + 2 q^{34} + q^{36} + 8 q^{37} + 4 q^{38} + 6 q^{41} - 2 q^{43} + 2 q^{44} - 4 q^{46} - 2 q^{48} - 7 q^{49} + 4 q^{51} - 8 q^{53} - 4 q^{54} + 8 q^{57} + 4 q^{58} + 8 q^{59} + q^{62} + q^{64} + 4 q^{66} - 4 q^{67} - 2 q^{68} - 8 q^{69} - q^{72} - 6 q^{73} - 8 q^{74} - 4 q^{76} - 4 q^{79} - 11 q^{81} - 6 q^{82} - 6 q^{83} + 2 q^{86} + 8 q^{87} - 2 q^{88} - 6 q^{89} + 4 q^{92} + 2 q^{93} + 2 q^{96} + 2 q^{97} + 7 q^{98} + 2 q^{99}+O(q^{100})$$ q - q^2 - 2 * q^3 + q^4 + 2 * q^6 - q^8 + q^9 + 2 * q^11 - 2 * q^12 + q^16 - 2 * q^17 - q^18 - 4 * q^19 - 2 * q^22 + 4 * q^23 + 2 * q^24 + 4 * q^27 - 4 * q^29 - q^31 - q^32 - 4 * q^33 + 2 * q^34 + q^36 + 8 * q^37 + 4 * q^38 + 6 * q^41 - 2 * q^43 + 2 * q^44 - 4 * q^46 - 2 * q^48 - 7 * q^49 + 4 * q^51 - 8 * q^53 - 4 * q^54 + 8 * q^57 + 4 * q^58 + 8 * q^59 + q^62 + q^64 + 4 * q^66 - 4 * q^67 - 2 * q^68 - 8 * q^69 - q^72 - 6 * q^73 - 8 * q^74 - 4 * q^76 - 4 * q^79 - 11 * q^81 - 6 * q^82 - 6 * q^83 + 2 * q^86 + 8 * q^87 - 2 * q^88 - 6 * q^89 + 4 * q^92 + 2 * q^93 + 2 * q^96 + 2 * q^97 + 7 * q^98 + 2 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
−1.00000 −2.00000 1.00000 0 2.00000 0 −1.00000 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$5$$ $$1$$
$$31$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1550.2.a.a 1
5.b even 2 1 310.2.a.b 1
5.c odd 4 2 1550.2.b.e 2
15.d odd 2 1 2790.2.a.h 1
20.d odd 2 1 2480.2.a.c 1
40.e odd 2 1 9920.2.a.bg 1
40.f even 2 1 9920.2.a.d 1
155.c odd 2 1 9610.2.a.a 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
310.2.a.b 1 5.b even 2 1
1550.2.a.a 1 1.a even 1 1 trivial
1550.2.b.e 2 5.c odd 4 2
2480.2.a.c 1 20.d odd 2 1
2790.2.a.h 1 15.d odd 2 1
9610.2.a.a 1 155.c odd 2 1
9920.2.a.d 1 40.f even 2 1
9920.2.a.bg 1 40.e odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1550))$$:

 $$T_{3} + 2$$ T3 + 2 $$T_{7}$$ T7

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T + 1$$
$3$ $$T + 2$$
$5$ $$T$$
$7$ $$T$$
$11$ $$T - 2$$
$13$ $$T$$
$17$ $$T + 2$$
$19$ $$T + 4$$
$23$ $$T - 4$$
$29$ $$T + 4$$
$31$ $$T + 1$$
$37$ $$T - 8$$
$41$ $$T - 6$$
$43$ $$T + 2$$
$47$ $$T$$
$53$ $$T + 8$$
$59$ $$T - 8$$
$61$ $$T$$
$67$ $$T + 4$$
$71$ $$T$$
$73$ $$T + 6$$
$79$ $$T + 4$$
$83$ $$T + 6$$
$89$ $$T + 6$$
$97$ $$T - 2$$