Newspace parameters
Level: | \( N \) | \(=\) | \( 155 = 5 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 155.q (of order \(15\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.23768123133\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(5\) over \(\Q(\zeta_{15})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{15}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
41.1 | −1.68173 | − | 1.22185i | 0.111961 | + | 1.06524i | 0.717276 | + | 2.20755i | −0.500000 | − | 0.866025i | 1.11327 | − | 1.92825i | 0.859323 | + | 0.182655i | 0.206298 | − | 0.634920i | 1.81225 | − | 0.385205i | −0.217287 | + | 2.06735i |
41.2 | −0.674820 | − | 0.490285i | −0.345257 | − | 3.28490i | −0.403032 | − | 1.24040i | −0.500000 | − | 0.866025i | −1.37755 | + | 2.38599i | 4.81427 | + | 1.02330i | −0.851695 | + | 2.62125i | −7.73691 | + | 1.64453i | −0.0871896 | + | 0.829554i |
41.3 | 0.302062 | + | 0.219461i | −0.0950600 | − | 0.904435i | −0.574956 | − | 1.76953i | −0.500000 | − | 0.866025i | 0.169774 | − | 0.294057i | −3.29862 | − | 0.701142i | 0.445425 | − | 1.37088i | 2.12548 | − | 0.451784i | 0.0390276 | − | 0.371323i |
41.4 | 1.59955 | + | 1.16214i | 0.217822 | + | 2.07244i | 0.589956 | + | 1.81570i | −0.500000 | − | 0.866025i | −2.06005 | + | 3.56811i | −2.00916 | − | 0.427061i | 0.0555144 | − | 0.170856i | −1.31311 | + | 0.279109i | 0.206669 | − | 1.96632i |
41.5 | 2.03762 | + | 1.48042i | −0.203052 | − | 1.93191i | 1.34222 | + | 4.13093i | −0.500000 | − | 0.866025i | 2.44628 | − | 4.23709i | 0.816826 | + | 0.173622i | −1.82396 | + | 5.61358i | −0.756592 | + | 0.160819i | 0.263269 | − | 2.50484i |
51.1 | −0.658531 | − | 2.02675i | −1.58243 | − | 1.75746i | −2.05602 | + | 1.49378i | −0.500000 | − | 0.866025i | −2.51986 | + | 4.36452i | −0.00518954 | − | 0.0493751i | 0.933366 | + | 0.678130i | −0.271016 | + | 2.57854i | −1.42595 | + | 1.58368i |
51.2 | −0.437416 | − | 1.34623i | 2.08671 | + | 2.31753i | −0.00296283 | + | 0.00215262i | −0.500000 | − | 0.866025i | 2.20716 | − | 3.82291i | −0.0992859 | − | 0.944642i | −2.28615 | − | 1.66098i | −0.702986 | + | 6.68846i | −0.947160 | + | 1.05193i |
51.3 | −0.113347 | − | 0.348848i | −0.527922 | − | 0.586317i | 1.50919 | − | 1.09649i | −0.500000 | − | 0.866025i | −0.144697 | + | 0.250622i | 0.101473 | + | 0.965447i | −1.14706 | − | 0.833391i | 0.248520 | − | 2.36451i | −0.245437 | + | 0.272586i |
51.4 | 0.335014 | + | 1.03107i | 1.33393 | + | 1.48148i | 0.667170 | − | 0.484727i | −0.500000 | − | 0.866025i | −1.08062 | + | 1.87168i | −0.0611663 | − | 0.581958i | 2.47745 | + | 1.79997i | −0.101824 | + | 0.968793i | 0.725423 | − | 0.805664i |
51.5 | 0.809678 | + | 2.49193i | 0.697102 | + | 0.774210i | −3.93612 | + | 2.85976i | −0.500000 | − | 0.866025i | −1.36485 | + | 2.36399i | 0.0288113 | + | 0.274121i | −6.07379 | − | 4.41287i | 0.200135 | − | 1.90416i | 1.75324 | − | 1.94717i |
71.1 | −0.533804 | + | 1.64288i | −1.18744 | − | 0.252397i | −0.796073 | − | 0.578381i | −0.500000 | − | 0.866025i | 1.04852 | − | 1.81608i | −4.30971 | + | 1.91880i | −1.41988 | + | 1.03160i | −1.39434 | − | 0.620799i | 1.68968 | − | 0.359152i |
71.2 | −0.0791076 | + | 0.243468i | −3.22924 | − | 0.686396i | 1.56502 | + | 1.13705i | −0.500000 | − | 0.866025i | 0.422573 | − | 0.731918i | 2.97452 | − | 1.32434i | −0.814853 | + | 0.592025i | 7.21620 | + | 3.21286i | 0.250404 | − | 0.0532249i |
71.3 | −0.0597895 | + | 0.184013i | 1.06671 | + | 0.226736i | 1.58775 | + | 1.15357i | −0.500000 | − | 0.866025i | −0.105500 | + | 0.182732i | 1.34512 | − | 0.598885i | −0.620264 | + | 0.450648i | −1.65418 | − | 0.736487i | 0.189255 | − | 0.0402273i |
71.4 | 0.494524 | − | 1.52199i | 2.08260 | + | 0.442670i | −0.453859 | − | 0.329748i | −0.500000 | − | 0.866025i | 1.70363 | − | 2.95078i | −3.40184 | + | 1.51460i | 1.86304 | − | 1.35358i | 1.40063 | + | 0.623601i | −1.56534 | + | 0.332724i |
71.5 | 0.742779 | − | 2.28604i | −1.66708 | − | 0.354348i | −3.05622 | − | 2.22048i | −0.500000 | − | 0.866025i | −2.04833 | + | 3.54780i | 0.691197 | − | 0.307741i | −3.45695 | + | 2.51162i | −0.0870493 | − | 0.0387568i | −2.35116 | + | 0.499754i |
76.1 | −0.658531 | + | 2.02675i | −1.58243 | + | 1.75746i | −2.05602 | − | 1.49378i | −0.500000 | + | 0.866025i | −2.51986 | − | 4.36452i | −0.00518954 | + | 0.0493751i | 0.933366 | − | 0.678130i | −0.271016 | − | 2.57854i | −1.42595 | − | 1.58368i |
76.2 | −0.437416 | + | 1.34623i | 2.08671 | − | 2.31753i | −0.00296283 | − | 0.00215262i | −0.500000 | + | 0.866025i | 2.20716 | + | 3.82291i | −0.0992859 | + | 0.944642i | −2.28615 | + | 1.66098i | −0.702986 | − | 6.68846i | −0.947160 | − | 1.05193i |
76.3 | −0.113347 | + | 0.348848i | −0.527922 | + | 0.586317i | 1.50919 | + | 1.09649i | −0.500000 | + | 0.866025i | −0.144697 | − | 0.250622i | 0.101473 | − | 0.965447i | −1.14706 | + | 0.833391i | 0.248520 | + | 2.36451i | −0.245437 | − | 0.272586i |
76.4 | 0.335014 | − | 1.03107i | 1.33393 | − | 1.48148i | 0.667170 | + | 0.484727i | −0.500000 | + | 0.866025i | −1.08062 | − | 1.87168i | −0.0611663 | + | 0.581958i | 2.47745 | − | 1.79997i | −0.101824 | − | 0.968793i | 0.725423 | + | 0.805664i |
76.5 | 0.809678 | − | 2.49193i | 0.697102 | − | 0.774210i | −3.93612 | − | 2.85976i | −0.500000 | + | 0.866025i | −1.36485 | − | 2.36399i | 0.0288113 | − | 0.274121i | −6.07379 | + | 4.41287i | 0.200135 | + | 1.90416i | 1.75324 | + | 1.94717i |
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
31.g | even | 15 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 155.2.q.b | ✓ | 40 |
5.b | even | 2 | 1 | 775.2.bl.b | 40 | ||
5.c | odd | 4 | 2 | 775.2.ck.b | 80 | ||
31.g | even | 15 | 1 | inner | 155.2.q.b | ✓ | 40 |
31.g | even | 15 | 1 | 4805.2.a.ba | 20 | ||
31.h | odd | 30 | 1 | 4805.2.a.z | 20 | ||
155.u | even | 30 | 1 | 775.2.bl.b | 40 | ||
155.w | odd | 60 | 2 | 775.2.ck.b | 80 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
155.2.q.b | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
155.2.q.b | ✓ | 40 | 31.g | even | 15 | 1 | inner |
775.2.bl.b | 40 | 5.b | even | 2 | 1 | ||
775.2.bl.b | 40 | 155.u | even | 30 | 1 | ||
775.2.ck.b | 80 | 5.c | odd | 4 | 2 | ||
775.2.ck.b | 80 | 155.w | odd | 60 | 2 | ||
4805.2.a.z | 20 | 31.h | odd | 30 | 1 | ||
4805.2.a.ba | 20 | 31.g | even | 15 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{40} - 2 T_{2}^{39} + 13 T_{2}^{38} - 9 T_{2}^{37} + 104 T_{2}^{36} - 35 T_{2}^{35} + 934 T_{2}^{34} + \cdots + 841 \)
acting on \(S_{2}^{\mathrm{new}}(155, [\chi])\).