Properties

Label 155.2.n
Level $155$
Weight $2$
Character orbit 155.n
Rep. character $\chi_{155}(4,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $56$
Newform subspaces $1$
Sturm bound $32$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 155 = 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 155.n (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 155 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(32\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(155, [\chi])\).

Total New Old
Modular forms 72 72 0
Cusp forms 56 56 0
Eisenstein series 16 16 0

Trace form

\( 56 q + 2 q^{4} - 10 q^{5} - 4 q^{6} + 8 q^{9} + 4 q^{10} - 14 q^{11} - 16 q^{14} + 21 q^{15} - 22 q^{16} - 2 q^{19} - 29 q^{20} - 38 q^{21} - 30 q^{24} - 10 q^{25} + 12 q^{26} + 20 q^{29} - 30 q^{30} + 26 q^{31}+ \cdots - 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(155, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
155.2.n.a 155.n 155.n $56$ $1.238$ None 155.2.n.a \(0\) \(0\) \(-10\) \(0\) $\mathrm{SU}(2)[C_{10}]$