Properties

Label 155.1
Level 155
Weight 1
Dimension 3
Nonzero newspaces 1
Newforms 2
Sturm bound 1920
Trace bound 0

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 155 = 5 \cdot 31 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 1 \)
Newforms: \( 2 \)
Sturm bound: \(1920\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(155))\).

Total New Old
Modular forms 125 89 36
Cusp forms 5 3 2
Eisenstein series 120 86 34

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 3 0 0 0

Trace form

\( 3q - 3q^{4} - 3q^{9} + O(q^{10}) \) \( 3q - 3q^{4} - 3q^{9} - 3q^{10} + 6q^{14} + 3q^{16} - 3q^{20} - 3q^{31} + 3q^{35} + 3q^{36} + 3q^{40} - 3q^{49} - 3q^{50} - 6q^{56} + 3q^{64} + 3q^{70} - 6q^{76} + 3q^{81} + 3q^{90} + 3q^{95} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(155))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
155.1.c \(\chi_{155}(154, \cdot)\) 155.1.c.a 1 1
155.1.c.b 2
155.1.d \(\chi_{155}(61, \cdot)\) None 0 1
155.1.g \(\chi_{155}(32, \cdot)\) None 0 2
155.1.i \(\chi_{155}(99, \cdot)\) None 0 2
155.1.k \(\chi_{155}(6, \cdot)\) None 0 2
155.1.l \(\chi_{155}(46, \cdot)\) None 0 4
155.1.m \(\chi_{155}(29, \cdot)\) None 0 4
155.1.o \(\chi_{155}(67, \cdot)\) None 0 4
155.1.s \(\chi_{155}(2, \cdot)\) None 0 8
155.1.t \(\chi_{155}(11, \cdot)\) None 0 8
155.1.v \(\chi_{155}(24, \cdot)\) None 0 8
155.1.w \(\chi_{155}(7, \cdot)\) None 0 16

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(155))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(155)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(31))\)\(^{\oplus 2}\)