Properties

Label 154.4.a.g
Level $154$
Weight $4$
Character orbit 154.a
Self dual yes
Analytic conductor $9.086$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [154,4,Mod(1,154)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(154, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("154.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 154 = 2 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 154.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.08629414088\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{37}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{37}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + (\beta + 3) q^{3} + 4 q^{4} + ( - \beta + 13) q^{5} + ( - 2 \beta - 6) q^{6} + 7 q^{7} - 8 q^{8} + (6 \beta + 19) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 2 q^{2} + (\beta + 3) q^{3} + 4 q^{4} + ( - \beta + 13) q^{5} + ( - 2 \beta - 6) q^{6} + 7 q^{7} - 8 q^{8} + (6 \beta + 19) q^{9} + (2 \beta - 26) q^{10} + 11 q^{11} + (4 \beta + 12) q^{12} + (\beta + 1) q^{13} - 14 q^{14} + (10 \beta + 2) q^{15} + 16 q^{16} + ( - 4 \beta - 44) q^{17} + ( - 12 \beta - 38) q^{18} + ( - 19 \beta + 21) q^{19} + ( - 4 \beta + 52) q^{20} + (7 \beta + 21) q^{21} - 22 q^{22} + (4 \beta + 80) q^{23} + ( - 8 \beta - 24) q^{24} + ( - 26 \beta + 81) q^{25} + ( - 2 \beta - 2) q^{26} + (10 \beta + 198) q^{27} + 28 q^{28} + (6 \beta + 12) q^{29} + ( - 20 \beta - 4) q^{30} + ( - 14 \beta + 124) q^{31} - 32 q^{32} + (11 \beta + 33) q^{33} + (8 \beta + 88) q^{34} + ( - 7 \beta + 91) q^{35} + (24 \beta + 76) q^{36} + (28 \beta - 26) q^{37} + (38 \beta - 42) q^{38} + (4 \beta + 40) q^{39} + (8 \beta - 104) q^{40} + (24 \beta + 264) q^{41} + ( - 14 \beta - 42) q^{42} + (14 \beta - 102) q^{43} + 44 q^{44} + (59 \beta + 25) q^{45} + ( - 8 \beta - 160) q^{46} + ( - 90 \beta + 12) q^{47} + (16 \beta + 48) q^{48} + 49 q^{49} + (52 \beta - 162) q^{50} + ( - 56 \beta - 280) q^{51} + (4 \beta + 4) q^{52} + ( - 46 \beta + 124) q^{53} + ( - 20 \beta - 396) q^{54} + ( - 11 \beta + 143) q^{55} - 56 q^{56} + ( - 36 \beta - 640) q^{57} + ( - 12 \beta - 24) q^{58} + (27 \beta + 285) q^{59} + (40 \beta + 8) q^{60} + (23 \beta - 669) q^{61} + (28 \beta - 248) q^{62} + (42 \beta + 133) q^{63} + 64 q^{64} + (12 \beta - 24) q^{65} + ( - 22 \beta - 66) q^{66} + ( - 34 \beta - 90) q^{67} + ( - 16 \beta - 176) q^{68} + (92 \beta + 388) q^{69} + (14 \beta - 182) q^{70} + ( - 150 \beta - 30) q^{71} + ( - 48 \beta - 152) q^{72} + ( - 14 \beta - 2) q^{73} + ( - 56 \beta + 52) q^{74} + (3 \beta - 719) q^{75} + ( - 76 \beta + 84) q^{76} + 77 q^{77} + ( - 8 \beta - 80) q^{78} + ( - 60 \beta - 964) q^{79} + ( - 16 \beta + 208) q^{80} + (66 \beta + 451) q^{81} + ( - 48 \beta - 528) q^{82} + (145 \beta - 271) q^{83} + (28 \beta + 84) q^{84} + ( - 8 \beta - 424) q^{85} + ( - 28 \beta + 204) q^{86} + (30 \beta + 258) q^{87} - 88 q^{88} + (208 \beta - 70) q^{89} + ( - 118 \beta - 50) q^{90} + (7 \beta + 7) q^{91} + (16 \beta + 320) q^{92} + (82 \beta - 146) q^{93} + (180 \beta - 24) q^{94} + ( - 268 \beta + 976) q^{95} + ( - 32 \beta - 96) q^{96} + ( - 82 \beta - 1356) q^{97} - 98 q^{98} + (66 \beta + 209) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 6 q^{3} + 8 q^{4} + 26 q^{5} - 12 q^{6} + 14 q^{7} - 16 q^{8} + 38 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{2} + 6 q^{3} + 8 q^{4} + 26 q^{5} - 12 q^{6} + 14 q^{7} - 16 q^{8} + 38 q^{9} - 52 q^{10} + 22 q^{11} + 24 q^{12} + 2 q^{13} - 28 q^{14} + 4 q^{15} + 32 q^{16} - 88 q^{17} - 76 q^{18} + 42 q^{19} + 104 q^{20} + 42 q^{21} - 44 q^{22} + 160 q^{23} - 48 q^{24} + 162 q^{25} - 4 q^{26} + 396 q^{27} + 56 q^{28} + 24 q^{29} - 8 q^{30} + 248 q^{31} - 64 q^{32} + 66 q^{33} + 176 q^{34} + 182 q^{35} + 152 q^{36} - 52 q^{37} - 84 q^{38} + 80 q^{39} - 208 q^{40} + 528 q^{41} - 84 q^{42} - 204 q^{43} + 88 q^{44} + 50 q^{45} - 320 q^{46} + 24 q^{47} + 96 q^{48} + 98 q^{49} - 324 q^{50} - 560 q^{51} + 8 q^{52} + 248 q^{53} - 792 q^{54} + 286 q^{55} - 112 q^{56} - 1280 q^{57} - 48 q^{58} + 570 q^{59} + 16 q^{60} - 1338 q^{61} - 496 q^{62} + 266 q^{63} + 128 q^{64} - 48 q^{65} - 132 q^{66} - 180 q^{67} - 352 q^{68} + 776 q^{69} - 364 q^{70} - 60 q^{71} - 304 q^{72} - 4 q^{73} + 104 q^{74} - 1438 q^{75} + 168 q^{76} + 154 q^{77} - 160 q^{78} - 1928 q^{79} + 416 q^{80} + 902 q^{81} - 1056 q^{82} - 542 q^{83} + 168 q^{84} - 848 q^{85} + 408 q^{86} + 516 q^{87} - 176 q^{88} - 140 q^{89} - 100 q^{90} + 14 q^{91} + 640 q^{92} - 292 q^{93} - 48 q^{94} + 1952 q^{95} - 192 q^{96} - 2712 q^{97} - 196 q^{98} + 418 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.54138
3.54138
−2.00000 −3.08276 4.00000 19.0828 6.16553 7.00000 −8.00000 −17.4966 −38.1655
1.2 −2.00000 9.08276 4.00000 6.91724 −18.1655 7.00000 −8.00000 55.4966 −13.8345
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 154.4.a.g 2
3.b odd 2 1 1386.4.a.u 2
4.b odd 2 1 1232.4.a.j 2
7.b odd 2 1 1078.4.a.i 2
11.b odd 2 1 1694.4.a.p 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
154.4.a.g 2 1.a even 1 1 trivial
1078.4.a.i 2 7.b odd 2 1
1232.4.a.j 2 4.b odd 2 1
1386.4.a.u 2 3.b odd 2 1
1694.4.a.p 2 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 6T_{3} - 28 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(154))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 6T - 28 \) Copy content Toggle raw display
$5$ \( T^{2} - 26T + 132 \) Copy content Toggle raw display
$7$ \( (T - 7)^{2} \) Copy content Toggle raw display
$11$ \( (T - 11)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 2T - 36 \) Copy content Toggle raw display
$17$ \( T^{2} + 88T + 1344 \) Copy content Toggle raw display
$19$ \( T^{2} - 42T - 12916 \) Copy content Toggle raw display
$23$ \( T^{2} - 160T + 5808 \) Copy content Toggle raw display
$29$ \( T^{2} - 24T - 1188 \) Copy content Toggle raw display
$31$ \( T^{2} - 248T + 8124 \) Copy content Toggle raw display
$37$ \( T^{2} + 52T - 28332 \) Copy content Toggle raw display
$41$ \( T^{2} - 528T + 48384 \) Copy content Toggle raw display
$43$ \( T^{2} + 204T + 3152 \) Copy content Toggle raw display
$47$ \( T^{2} - 24T - 299556 \) Copy content Toggle raw display
$53$ \( T^{2} - 248T - 62916 \) Copy content Toggle raw display
$59$ \( T^{2} - 570T + 54252 \) Copy content Toggle raw display
$61$ \( T^{2} + 1338 T + 427988 \) Copy content Toggle raw display
$67$ \( T^{2} + 180T - 34672 \) Copy content Toggle raw display
$71$ \( T^{2} + 60T - 831600 \) Copy content Toggle raw display
$73$ \( T^{2} + 4T - 7248 \) Copy content Toggle raw display
$79$ \( T^{2} + 1928 T + 796096 \) Copy content Toggle raw display
$83$ \( T^{2} + 542T - 704484 \) Copy content Toggle raw display
$89$ \( T^{2} + 140 T - 1595868 \) Copy content Toggle raw display
$97$ \( T^{2} + 2712 T + 1589948 \) Copy content Toggle raw display
show more
show less