Properties

Label 154.4.a.d
Level $154$
Weight $4$
Character orbit 154.a
Self dual yes
Analytic conductor $9.086$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [154,4,Mod(1,154)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(154, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("154.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 154 = 2 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 154.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.08629414088\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{2} - 2 q^{3} + 4 q^{4} + 18 q^{5} - 4 q^{6} + 7 q^{7} + 8 q^{8} - 23 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 2 q^{2} - 2 q^{3} + 4 q^{4} + 18 q^{5} - 4 q^{6} + 7 q^{7} + 8 q^{8} - 23 q^{9} + 36 q^{10} - 11 q^{11} - 8 q^{12} + 56 q^{13} + 14 q^{14} - 36 q^{15} + 16 q^{16} + 36 q^{17} - 46 q^{18} - 28 q^{19} + 72 q^{20} - 14 q^{21} - 22 q^{22} + 180 q^{23} - 16 q^{24} + 199 q^{25} + 112 q^{26} + 100 q^{27} + 28 q^{28} - 54 q^{29} - 72 q^{30} - 334 q^{31} + 32 q^{32} + 22 q^{33} + 72 q^{34} + 126 q^{35} - 92 q^{36} + 386 q^{37} - 56 q^{38} - 112 q^{39} + 144 q^{40} - 444 q^{41} - 28 q^{42} - 316 q^{43} - 44 q^{44} - 414 q^{45} + 360 q^{46} - 402 q^{47} - 32 q^{48} + 49 q^{49} + 398 q^{50} - 72 q^{51} + 224 q^{52} - 486 q^{53} + 200 q^{54} - 198 q^{55} + 56 q^{56} + 56 q^{57} - 108 q^{58} - 282 q^{59} - 144 q^{60} + 380 q^{61} - 668 q^{62} - 161 q^{63} + 64 q^{64} + 1008 q^{65} + 44 q^{66} + 176 q^{67} + 144 q^{68} - 360 q^{69} + 252 q^{70} - 324 q^{71} - 184 q^{72} + 800 q^{73} + 772 q^{74} - 398 q^{75} - 112 q^{76} - 77 q^{77} - 224 q^{78} - 1144 q^{79} + 288 q^{80} + 421 q^{81} - 888 q^{82} + 468 q^{83} - 56 q^{84} + 648 q^{85} - 632 q^{86} + 108 q^{87} - 88 q^{88} - 870 q^{89} - 828 q^{90} + 392 q^{91} + 720 q^{92} + 668 q^{93} - 804 q^{94} - 504 q^{95} - 64 q^{96} - 1330 q^{97} + 98 q^{98} + 253 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 −2.00000 4.00000 18.0000 −4.00000 7.00000 8.00000 −23.0000 36.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 154.4.a.d 1
3.b odd 2 1 1386.4.a.a 1
4.b odd 2 1 1232.4.a.f 1
7.b odd 2 1 1078.4.a.g 1
11.b odd 2 1 1694.4.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
154.4.a.d 1 1.a even 1 1 trivial
1078.4.a.g 1 7.b odd 2 1
1232.4.a.f 1 4.b odd 2 1
1386.4.a.a 1 3.b odd 2 1
1694.4.a.c 1 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 2 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(154))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 2 \) Copy content Toggle raw display
$3$ \( T + 2 \) Copy content Toggle raw display
$5$ \( T - 18 \) Copy content Toggle raw display
$7$ \( T - 7 \) Copy content Toggle raw display
$11$ \( T + 11 \) Copy content Toggle raw display
$13$ \( T - 56 \) Copy content Toggle raw display
$17$ \( T - 36 \) Copy content Toggle raw display
$19$ \( T + 28 \) Copy content Toggle raw display
$23$ \( T - 180 \) Copy content Toggle raw display
$29$ \( T + 54 \) Copy content Toggle raw display
$31$ \( T + 334 \) Copy content Toggle raw display
$37$ \( T - 386 \) Copy content Toggle raw display
$41$ \( T + 444 \) Copy content Toggle raw display
$43$ \( T + 316 \) Copy content Toggle raw display
$47$ \( T + 402 \) Copy content Toggle raw display
$53$ \( T + 486 \) Copy content Toggle raw display
$59$ \( T + 282 \) Copy content Toggle raw display
$61$ \( T - 380 \) Copy content Toggle raw display
$67$ \( T - 176 \) Copy content Toggle raw display
$71$ \( T + 324 \) Copy content Toggle raw display
$73$ \( T - 800 \) Copy content Toggle raw display
$79$ \( T + 1144 \) Copy content Toggle raw display
$83$ \( T - 468 \) Copy content Toggle raw display
$89$ \( T + 870 \) Copy content Toggle raw display
$97$ \( T + 1330 \) Copy content Toggle raw display
show more
show less