Defining parameters
Level: | \( N \) | \(=\) | \( 154 = 2 \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 154.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 9 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(154))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 76 | 14 | 62 |
Cusp forms | 68 | 14 | 54 |
Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | \(11\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(1\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(2\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(3\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(3\) |
Plus space | \(+\) | \(9\) | ||
Minus space | \(-\) | \(5\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(154))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(154))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(154)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 2}\)