Properties

Label 154.2.n
Level $154$
Weight $2$
Character orbit 154.n
Rep. character $\chi_{154}(17,\cdot)$
Character field $\Q(\zeta_{30})$
Dimension $64$
Newform subspaces $1$
Sturm bound $48$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 154 = 2 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 154.n (of order \(30\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 77 \)
Character field: \(\Q(\zeta_{30})\)
Newform subspaces: \( 1 \)
Sturm bound: \(48\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(154, [\chi])\).

Total New Old
Modular forms 224 64 160
Cusp forms 160 64 96
Eisenstein series 64 0 64

Trace form

\( 64q - 8q^{4} + 12q^{5} - 10q^{7} + 4q^{9} + O(q^{10}) \) \( 64q - 8q^{4} + 12q^{5} - 10q^{7} + 4q^{9} - 8q^{11} - 2q^{14} - 12q^{15} + 8q^{16} - 30q^{17} + 8q^{22} - 16q^{23} - 20q^{25} - 24q^{26} + 10q^{28} + 20q^{29} - 18q^{31} - 126q^{33} + 30q^{35} - 32q^{36} + 16q^{37} - 12q^{38} + 20q^{39} - 30q^{40} - 2q^{42} - 2q^{44} + 108q^{45} - 24q^{47} - 78q^{49} - 60q^{51} + 8q^{53} + 4q^{56} - 80q^{57} - 28q^{58} - 60q^{59} + 4q^{60} + 30q^{61} + 50q^{63} + 16q^{64} + 72q^{66} - 32q^{67} + 30q^{68} - 10q^{70} - 8q^{71} + 20q^{72} + 90q^{73} + 20q^{74} + 180q^{75} + 46q^{77} + 96q^{78} + 30q^{79} + 18q^{80} + 48q^{81} + 60q^{82} + 40q^{84} + 140q^{85} + 10q^{86} + 14q^{88} - 36q^{89} + 106q^{91} + 28q^{92} + 94q^{93} - 120q^{94} - 70q^{95} + 104q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(154, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
154.2.n.a \(64\) \(1.230\) None \(0\) \(0\) \(12\) \(-10\)

Decomposition of \(S_{2}^{\mathrm{old}}(154, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(154, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 2}\)