Properties

Label 154.2.k
Level $154$
Weight $2$
Character orbit 154.k
Rep. character $\chi_{154}(13,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $32$
Newform subspaces $1$
Sturm bound $48$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 154 = 2 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 154.k (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 77 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(48\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(154, [\chi])\).

Total New Old
Modular forms 112 32 80
Cusp forms 80 32 48
Eisenstein series 32 0 32

Trace form

\( 32q + 8q^{4} + 10q^{7} - 4q^{9} + O(q^{10}) \) \( 32q + 8q^{4} + 10q^{7} - 4q^{9} - 4q^{11} + 2q^{14} - 24q^{15} - 8q^{16} + 4q^{22} - 32q^{23} + 20q^{25} - 10q^{28} - 20q^{29} - 60q^{35} - 16q^{36} + 8q^{37} - 20q^{39} + 14q^{42} - 16q^{44} - 60q^{51} + 16q^{53} + 8q^{56} + 80q^{57} - 56q^{58} - 16q^{60} + 40q^{63} + 8q^{64} - 16q^{67} + 16q^{70} + 104q^{71} + 40q^{72} + 40q^{74} - 4q^{77} + 60q^{79} + 60q^{81} + 20q^{84} - 80q^{85} + 44q^{86} + 16q^{88} + 44q^{91} - 28q^{92} + 32q^{93} + 100q^{95} - 68q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(154, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
154.2.k.a \(32\) \(1.230\) None \(0\) \(0\) \(0\) \(10\)

Decomposition of \(S_{2}^{\mathrm{old}}(154, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(154, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 2}\)