Properties

Label 154.2.i.a.87.2
Level $154$
Weight $2$
Character 154.87
Analytic conductor $1.230$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 154 = 2 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 154.i (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.22969619113\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \( x^{16} - 6 x^{15} + 18 x^{14} - 36 x^{13} + 34 x^{12} + 18 x^{11} - 72 x^{10} + 132 x^{9} - 93 x^{8} - 102 x^{7} + 144 x^{6} - 432 x^{5} + 502 x^{4} + 288 x^{3} + 72 x^{2} + 12 x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 87.2
Root \(1.60599 - 0.430324i\) of defining polynomial
Character \(\chi\) \(=\) 154.87
Dual form 154.2.i.a.131.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(-0.889740 - 0.513691i) q^{3} +(0.500000 - 0.866025i) q^{4} +(1.09005 - 0.629341i) q^{5} +1.02738 q^{6} +(-2.11465 - 1.59005i) q^{7} +1.00000i q^{8} +(-0.972242 - 1.68397i) q^{9} +O(q^{10})\) \(q+(-0.866025 + 0.500000i) q^{2} +(-0.889740 - 0.513691i) q^{3} +(0.500000 - 0.866025i) q^{4} +(1.09005 - 0.629341i) q^{5} +1.02738 q^{6} +(-2.11465 - 1.59005i) q^{7} +1.00000i q^{8} +(-0.972242 - 1.68397i) q^{9} +(-0.629341 + 1.09005i) q^{10} +(1.85817 - 2.74722i) q^{11} +(-0.889740 + 0.513691i) q^{12} +4.08338 q^{13} +(2.62636 + 0.319700i) q^{14} -1.29315 q^{15} +(-0.500000 - 0.866025i) q^{16} +(1.60096 - 2.77294i) q^{17} +(1.68397 + 0.972242i) q^{18} +(-3.81407 - 6.60616i) q^{19} -1.25868i q^{20} +(1.06469 + 2.50101i) q^{21} +(-0.235617 + 3.30824i) q^{22} +(4.12636 + 7.14707i) q^{23} +(0.513691 - 0.889740i) q^{24} +(-1.70786 + 2.95810i) q^{25} +(-3.53631 + 2.04169i) q^{26} +5.07988i q^{27} +(-2.43435 + 1.03631i) q^{28} +3.54386i q^{29} +(1.11990 - 0.646574i) q^{30} +(-7.95304 - 4.59169i) q^{31} +(0.866025 + 0.500000i) q^{32} +(-3.06451 + 1.48978i) q^{33} +3.20191i q^{34} +(-3.30576 - 0.402401i) q^{35} -1.94448 q^{36} +(0.154122 + 0.266948i) q^{37} +(6.60616 + 3.81407i) q^{38} +(-3.63315 - 2.09760i) q^{39} +(0.629341 + 1.09005i) q^{40} +6.05276 q^{41} +(-2.17255 - 1.63359i) q^{42} +7.57607i q^{43} +(-1.45007 - 2.98283i) q^{44} +(-2.11959 - 1.22374i) q^{45} +(-7.14707 - 4.12636i) q^{46} +(4.07263 - 2.35133i) q^{47} +1.02738i q^{48} +(1.94348 + 6.72480i) q^{49} -3.41572i q^{50} +(-2.84887 + 1.64480i) q^{51} +(2.04169 - 3.53631i) q^{52} +(2.39830 - 4.15397i) q^{53} +(-2.53994 - 4.39930i) q^{54} +(0.296567 - 4.16403i) q^{55} +(1.59005 - 2.11465i) q^{56} +7.83701i q^{57} +(-1.77193 - 3.06907i) q^{58} +(2.36710 + 1.36664i) q^{59} +(-0.646574 + 1.11990i) q^{60} +(0.755050 + 1.30779i) q^{61} +9.18338 q^{62} +(-0.621652 + 5.10693i) q^{63} -1.00000 q^{64} +(4.45110 - 2.56984i) q^{65} +(1.90905 - 2.82244i) q^{66} +(-1.69044 + 2.92792i) q^{67} +(-1.60096 - 2.77294i) q^{68} -8.47871i q^{69} +(3.06407 - 1.30439i) q^{70} +3.50810 q^{71} +(1.68397 - 0.972242i) q^{72} +(-0.483428 + 0.837321i) q^{73} +(-0.266948 - 0.154122i) q^{74} +(3.03910 - 1.75463i) q^{75} -7.62813 q^{76} +(-8.29760 + 2.85481i) q^{77} +4.19520 q^{78} +(13.5212 - 7.80647i) q^{79} +(-1.09005 - 0.629341i) q^{80} +(-0.307237 + 0.532150i) q^{81} +(-5.24185 + 3.02638i) q^{82} +1.32998 q^{83} +(2.69828 + 0.328454i) q^{84} -4.03019i q^{85} +(-3.78804 - 6.56107i) q^{86} +(1.82045 - 3.15311i) q^{87} +(2.74722 + 1.85817i) q^{88} +(9.22296 - 5.32488i) q^{89} +2.44749 q^{90} +(-8.63492 - 6.49279i) q^{91} +8.25273 q^{92} +(4.71742 + 8.17082i) q^{93} +(-2.35133 + 4.07263i) q^{94} +(-8.31505 - 4.80070i) q^{95} +(-0.513691 - 0.889740i) q^{96} -10.6748i q^{97} +(-5.04550 - 4.85211i) q^{98} +(-6.43283 - 0.458154i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} - 12 q^{5} + 16 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 8 q^{4} - 12 q^{5} + 16 q^{9} + 8 q^{11} - 8 q^{14} - 8 q^{15} - 8 q^{16} - 8 q^{22} + 16 q^{23} - 36 q^{26} - 12 q^{31} - 24 q^{33} + 32 q^{36} - 16 q^{37} + 12 q^{38} + 12 q^{42} - 8 q^{44} - 108 q^{45} + 24 q^{47} + 8 q^{49} - 28 q^{53} - 4 q^{56} - 12 q^{58} + 60 q^{59} - 4 q^{60} - 16 q^{64} + 48 q^{66} + 12 q^{67} + 60 q^{70} + 8 q^{71} + 60 q^{75} + 44 q^{77} - 16 q^{78} + 12 q^{80} - 8 q^{81} + 20 q^{86} - 4 q^{88} + 96 q^{89} - 36 q^{91} + 32 q^{92} - 44 q^{93} + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/154\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) −0.889740 0.513691i −0.513691 0.296580i 0.220658 0.975351i \(-0.429179\pi\)
−0.734350 + 0.678771i \(0.762513\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.09005 0.629341i 0.487486 0.281450i −0.236045 0.971742i \(-0.575851\pi\)
0.723531 + 0.690292i \(0.242518\pi\)
\(6\) 1.02738 0.419427
\(7\) −2.11465 1.59005i −0.799262 0.600983i
\(8\) 1.00000i 0.353553i
\(9\) −0.972242 1.68397i −0.324081 0.561324i
\(10\) −0.629341 + 1.09005i −0.199015 + 0.344704i
\(11\) 1.85817 2.74722i 0.560260 0.828317i
\(12\) −0.889740 + 0.513691i −0.256846 + 0.148290i
\(13\) 4.08338 1.13253 0.566263 0.824224i \(-0.308388\pi\)
0.566263 + 0.824224i \(0.308388\pi\)
\(14\) 2.62636 + 0.319700i 0.701926 + 0.0854435i
\(15\) −1.29315 −0.333890
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.60096 2.77294i 0.388289 0.672537i −0.603930 0.797037i \(-0.706400\pi\)
0.992220 + 0.124501i \(0.0397329\pi\)
\(18\) 1.68397 + 0.972242i 0.396916 + 0.229160i
\(19\) −3.81407 6.60616i −0.875007 1.51556i −0.856756 0.515723i \(-0.827524\pi\)
−0.0182510 0.999833i \(-0.505810\pi\)
\(20\) 1.25868i 0.281450i
\(21\) 1.06469 + 2.50101i 0.232335 + 0.545765i
\(22\) −0.235617 + 3.30824i −0.0502337 + 0.705320i
\(23\) 4.12636 + 7.14707i 0.860407 + 1.49027i 0.871537 + 0.490330i \(0.163124\pi\)
−0.0111305 + 0.999938i \(0.503543\pi\)
\(24\) 0.513691 0.889740i 0.104857 0.181617i
\(25\) −1.70786 + 2.95810i −0.341572 + 0.591620i
\(26\) −3.53631 + 2.04169i −0.693528 + 0.400409i
\(27\) 5.07988i 0.977623i
\(28\) −2.43435 + 1.03631i −0.460049 + 0.195845i
\(29\) 3.54386i 0.658079i 0.944316 + 0.329039i \(0.106725\pi\)
−0.944316 + 0.329039i \(0.893275\pi\)
\(30\) 1.11990 0.646574i 0.204465 0.118048i
\(31\) −7.95304 4.59169i −1.42841 0.824692i −0.431413 0.902155i \(-0.641985\pi\)
−0.996995 + 0.0774626i \(0.975318\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) −3.06451 + 1.48978i −0.533463 + 0.259337i
\(34\) 3.20191i 0.549124i
\(35\) −3.30576 0.402401i −0.558775 0.0680182i
\(36\) −1.94448 −0.324081
\(37\) 0.154122 + 0.266948i 0.0253376 + 0.0438860i 0.878416 0.477896i \(-0.158601\pi\)
−0.853079 + 0.521782i \(0.825267\pi\)
\(38\) 6.60616 + 3.81407i 1.07166 + 0.618723i
\(39\) −3.63315 2.09760i −0.581769 0.335885i
\(40\) 0.629341 + 1.09005i 0.0995076 + 0.172352i
\(41\) 6.05276 0.945283 0.472641 0.881255i \(-0.343301\pi\)
0.472641 + 0.881255i \(0.343301\pi\)
\(42\) −2.17255 1.63359i −0.335232 0.252069i
\(43\) 7.57607i 1.15534i 0.816270 + 0.577670i \(0.196038\pi\)
−0.816270 + 0.577670i \(0.803962\pi\)
\(44\) −1.45007 2.98283i −0.218607 0.449679i
\(45\) −2.11959 1.22374i −0.315969 0.182425i
\(46\) −7.14707 4.12636i −1.05378 0.608399i
\(47\) 4.07263 2.35133i 0.594054 0.342977i −0.172645 0.984984i \(-0.555231\pi\)
0.766699 + 0.642007i \(0.221898\pi\)
\(48\) 1.02738i 0.148290i
\(49\) 1.94348 + 6.72480i 0.277640 + 0.960685i
\(50\) 3.41572i 0.483056i
\(51\) −2.84887 + 1.64480i −0.398922 + 0.230317i
\(52\) 2.04169 3.53631i 0.283132 0.490399i
\(53\) 2.39830 4.15397i 0.329431 0.570592i −0.652968 0.757386i \(-0.726476\pi\)
0.982399 + 0.186794i \(0.0598097\pi\)
\(54\) −2.53994 4.39930i −0.345642 0.598669i
\(55\) 0.296567 4.16403i 0.0399891 0.561478i
\(56\) 1.59005 2.11465i 0.212479 0.282582i
\(57\) 7.83701i 1.03804i
\(58\) −1.77193 3.06907i −0.232666 0.402989i
\(59\) 2.36710 + 1.36664i 0.308170 + 0.177922i 0.646107 0.763247i \(-0.276396\pi\)
−0.337938 + 0.941169i \(0.609729\pi\)
\(60\) −0.646574 + 1.11990i −0.0834724 + 0.144578i
\(61\) 0.755050 + 1.30779i 0.0966743 + 0.167445i 0.910306 0.413936i \(-0.135846\pi\)
−0.813632 + 0.581380i \(0.802513\pi\)
\(62\) 9.18338 1.16629
\(63\) −0.621652 + 5.10693i −0.0783208 + 0.643412i
\(64\) −1.00000 −0.125000
\(65\) 4.45110 2.56984i 0.552090 0.318750i
\(66\) 1.90905 2.82244i 0.234988 0.347419i
\(67\) −1.69044 + 2.92792i −0.206520 + 0.357703i −0.950616 0.310370i \(-0.899547\pi\)
0.744096 + 0.668073i \(0.232880\pi\)
\(68\) −1.60096 2.77294i −0.194145 0.336268i
\(69\) 8.47871i 1.02072i
\(70\) 3.06407 1.30439i 0.366227 0.155904i
\(71\) 3.50810 0.416334 0.208167 0.978093i \(-0.433250\pi\)
0.208167 + 0.978093i \(0.433250\pi\)
\(72\) 1.68397 0.972242i 0.198458 0.114580i
\(73\) −0.483428 + 0.837321i −0.0565809 + 0.0980011i −0.892929 0.450198i \(-0.851353\pi\)
0.836348 + 0.548200i \(0.184687\pi\)
\(74\) −0.266948 0.154122i −0.0310321 0.0179164i
\(75\) 3.03910 1.75463i 0.350925 0.202607i
\(76\) −7.62813 −0.875007
\(77\) −8.29760 + 2.85481i −0.945599 + 0.325335i
\(78\) 4.19520 0.475013
\(79\) 13.5212 7.80647i 1.52125 0.878296i 0.521568 0.853210i \(-0.325347\pi\)
0.999685 0.0250865i \(-0.00798611\pi\)
\(80\) −1.09005 0.629341i −0.121871 0.0703625i
\(81\) −0.307237 + 0.532150i −0.0341374 + 0.0591278i
\(82\) −5.24185 + 3.02638i −0.578865 + 0.334208i
\(83\) 1.32998 0.145984 0.0729921 0.997333i \(-0.476745\pi\)
0.0729921 + 0.997333i \(0.476745\pi\)
\(84\) 2.69828 + 0.328454i 0.294407 + 0.0358373i
\(85\) 4.03019i 0.437136i
\(86\) −3.78804 6.56107i −0.408474 0.707498i
\(87\) 1.82045 3.15311i 0.195173 0.338049i
\(88\) 2.74722 + 1.85817i 0.292854 + 0.198082i
\(89\) 9.22296 5.32488i 0.977631 0.564436i 0.0760772 0.997102i \(-0.475760\pi\)
0.901554 + 0.432666i \(0.142427\pi\)
\(90\) 2.44749 0.257988
\(91\) −8.63492 6.49279i −0.905186 0.680629i
\(92\) 8.25273 0.860407
\(93\) 4.71742 + 8.17082i 0.489174 + 0.847274i
\(94\) −2.35133 + 4.07263i −0.242521 + 0.420059i
\(95\) −8.31505 4.80070i −0.853106 0.492541i
\(96\) −0.513691 0.889740i −0.0524284 0.0908087i
\(97\) 10.6748i 1.08386i −0.840424 0.541930i \(-0.817694\pi\)
0.840424 0.541930i \(-0.182306\pi\)
\(98\) −5.04550 4.85211i −0.509672 0.490137i
\(99\) −6.43283 0.458154i −0.646524 0.0460462i
\(100\) 1.70786 + 2.95810i 0.170786 + 0.295810i
\(101\) −5.03242 + 8.71642i −0.500745 + 0.867316i 0.499255 + 0.866455i \(0.333607\pi\)
−1.00000 0.000860457i \(0.999726\pi\)
\(102\) 1.64480 2.84887i 0.162859 0.282080i
\(103\) 2.49868 1.44261i 0.246202 0.142145i −0.371822 0.928304i \(-0.621267\pi\)
0.618024 + 0.786159i \(0.287933\pi\)
\(104\) 4.08338i 0.400409i
\(105\) 2.73455 + 2.05617i 0.266865 + 0.200662i
\(106\) 4.79659i 0.465886i
\(107\) −14.1162 + 8.15002i −1.36467 + 0.787892i −0.990241 0.139364i \(-0.955494\pi\)
−0.374428 + 0.927256i \(0.622161\pi\)
\(108\) 4.39930 + 2.53994i 0.423323 + 0.244406i
\(109\) 9.96227 + 5.75172i 0.954213 + 0.550915i 0.894387 0.447294i \(-0.147612\pi\)
0.0598257 + 0.998209i \(0.480946\pi\)
\(110\) 1.82518 + 3.75444i 0.174024 + 0.357972i
\(111\) 0.316686i 0.0300585i
\(112\) −0.319700 + 2.62636i −0.0302088 + 0.248168i
\(113\) 0.558958 0.0525824 0.0262912 0.999654i \(-0.491630\pi\)
0.0262912 + 0.999654i \(0.491630\pi\)
\(114\) −3.91851 6.78705i −0.367002 0.635666i
\(115\) 8.99589 + 5.19378i 0.838872 + 0.484323i
\(116\) 3.06907 + 1.77193i 0.284956 + 0.164520i
\(117\) −3.97004 6.87631i −0.367030 0.635715i
\(118\) −2.73329 −0.251619
\(119\) −7.79458 + 3.31819i −0.714528 + 0.304178i
\(120\) 1.29315i 0.118048i
\(121\) −4.09439 10.2096i −0.372217 0.928146i
\(122\) −1.30779 0.755050i −0.118401 0.0683590i
\(123\) −5.38538 3.10925i −0.485584 0.280352i
\(124\) −7.95304 + 4.59169i −0.714204 + 0.412346i
\(125\) 10.5927i 0.947441i
\(126\) −2.01510 4.73355i −0.179519 0.421698i
\(127\) 11.2829i 1.00120i −0.865679 0.500599i \(-0.833113\pi\)
0.865679 0.500599i \(-0.166887\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 3.89176 6.74073i 0.342651 0.593488i
\(130\) −2.56984 + 4.45110i −0.225390 + 0.390387i
\(131\) 3.51694 + 6.09152i 0.307276 + 0.532218i 0.977766 0.209701i \(-0.0672490\pi\)
−0.670489 + 0.741919i \(0.733916\pi\)
\(132\) −0.242069 + 3.39883i −0.0210694 + 0.295831i
\(133\) −2.43871 + 20.0343i −0.211463 + 1.73719i
\(134\) 3.38087i 0.292063i
\(135\) 3.19698 + 5.53733i 0.275152 + 0.476577i
\(136\) 2.77294 + 1.60096i 0.237778 + 0.137281i
\(137\) −4.54487 + 7.87195i −0.388294 + 0.672546i −0.992220 0.124495i \(-0.960269\pi\)
0.603926 + 0.797041i \(0.293602\pi\)
\(138\) 4.23936 + 7.34278i 0.360878 + 0.625059i
\(139\) −7.86546 −0.667140 −0.333570 0.942725i \(-0.608253\pi\)
−0.333570 + 0.942725i \(0.608253\pi\)
\(140\) −2.00137 + 2.66167i −0.169147 + 0.224952i
\(141\) −4.83144 −0.406880
\(142\) −3.03810 + 1.75405i −0.254952 + 0.147196i
\(143\) 7.58763 11.2179i 0.634510 0.938091i
\(144\) −0.972242 + 1.68397i −0.0810202 + 0.140331i
\(145\) 2.23030 + 3.86299i 0.185216 + 0.320804i
\(146\) 0.966855i 0.0800175i
\(147\) 1.72528 6.98167i 0.142299 0.575838i
\(148\) 0.308245 0.0253376
\(149\) −5.39617 + 3.11548i −0.442072 + 0.255230i −0.704476 0.709728i \(-0.748818\pi\)
0.262404 + 0.964958i \(0.415485\pi\)
\(150\) −1.75463 + 3.03910i −0.143265 + 0.248142i
\(151\) 15.1642 + 8.75506i 1.23405 + 0.712476i 0.967871 0.251448i \(-0.0809069\pi\)
0.266175 + 0.963925i \(0.414240\pi\)
\(152\) 6.60616 3.81407i 0.535830 0.309362i
\(153\) −6.22607 −0.503348
\(154\) 5.75853 6.62113i 0.464035 0.533546i
\(155\) −11.5590 −0.928438
\(156\) −3.63315 + 2.09760i −0.290885 + 0.167942i
\(157\) −6.73252 3.88702i −0.537314 0.310218i 0.206676 0.978409i \(-0.433735\pi\)
−0.743989 + 0.668191i \(0.767069\pi\)
\(158\) −7.80647 + 13.5212i −0.621049 + 1.07569i
\(159\) −4.26772 + 2.46397i −0.338452 + 0.195405i
\(160\) 1.25868 0.0995076
\(161\) 2.63840 21.6747i 0.207935 1.70820i
\(162\) 0.614474i 0.0482776i
\(163\) 9.10616 + 15.7723i 0.713249 + 1.23538i 0.963631 + 0.267237i \(0.0861105\pi\)
−0.250382 + 0.968147i \(0.580556\pi\)
\(164\) 3.02638 5.24185i 0.236321 0.409319i
\(165\) −2.40289 + 3.55256i −0.187065 + 0.276566i
\(166\) −1.15180 + 0.664990i −0.0893967 + 0.0516132i
\(167\) 14.3653 1.11162 0.555809 0.831310i \(-0.312409\pi\)
0.555809 + 0.831310i \(0.312409\pi\)
\(168\) −2.50101 + 1.06469i −0.192957 + 0.0821427i
\(169\) 3.67402 0.282617
\(170\) 2.01510 + 3.49025i 0.154551 + 0.267690i
\(171\) −7.41639 + 12.8456i −0.567146 + 0.982325i
\(172\) 6.56107 + 3.78804i 0.500277 + 0.288835i
\(173\) 2.38160 + 4.12505i 0.181069 + 0.313621i 0.942245 0.334924i \(-0.108711\pi\)
−0.761176 + 0.648546i \(0.775377\pi\)
\(174\) 3.64090i 0.276016i
\(175\) 8.31505 3.53976i 0.628559 0.267580i
\(176\) −3.30824 0.235617i −0.249368 0.0177603i
\(177\) −1.40407 2.43191i −0.105536 0.182794i
\(178\) −5.32488 + 9.22296i −0.399116 + 0.691290i
\(179\) 1.94526 3.36928i 0.145395 0.251832i −0.784125 0.620603i \(-0.786888\pi\)
0.929520 + 0.368771i \(0.120221\pi\)
\(180\) −2.11959 + 1.22374i −0.157985 + 0.0912125i
\(181\) 13.0698i 0.971474i −0.874105 0.485737i \(-0.838551\pi\)
0.874105 0.485737i \(-0.161449\pi\)
\(182\) 10.7245 + 1.30546i 0.794949 + 0.0967670i
\(183\) 1.55145i 0.114687i
\(184\) −7.14707 + 4.12636i −0.526889 + 0.304200i
\(185\) 0.336003 + 0.193991i 0.0247034 + 0.0142625i
\(186\) −8.17082 4.71742i −0.599113 0.345898i
\(187\) −4.64301 9.55077i −0.339530 0.698422i
\(188\) 4.70267i 0.342977i
\(189\) 8.07727 10.7422i 0.587535 0.781377i
\(190\) 9.60139 0.696558
\(191\) −3.00000 5.19615i −0.217072 0.375980i 0.736839 0.676068i \(-0.236317\pi\)
−0.953912 + 0.300088i \(0.902984\pi\)
\(192\) 0.889740 + 0.513691i 0.0642114 + 0.0370725i
\(193\) −8.12582 4.69144i −0.584909 0.337698i 0.178173 0.983999i \(-0.442981\pi\)
−0.763082 + 0.646302i \(0.776315\pi\)
\(194\) 5.33739 + 9.24463i 0.383202 + 0.663726i
\(195\) −5.28042 −0.378139
\(196\) 6.79558 + 1.67930i 0.485399 + 0.119950i
\(197\) 17.3471i 1.23593i −0.786205 0.617966i \(-0.787957\pi\)
0.786205 0.617966i \(-0.212043\pi\)
\(198\) 5.80007 2.81964i 0.412193 0.200383i
\(199\) 2.53353 + 1.46273i 0.179597 + 0.103690i 0.587103 0.809512i \(-0.300268\pi\)
−0.407506 + 0.913202i \(0.633602\pi\)
\(200\) −2.95810 1.70786i −0.209169 0.120764i
\(201\) 3.00810 1.73673i 0.212175 0.122499i
\(202\) 10.0648i 0.708160i
\(203\) 5.63492 7.49402i 0.395494 0.525977i
\(204\) 3.28959i 0.230317i
\(205\) 6.59782 3.80925i 0.460812 0.266050i
\(206\) −1.44261 + 2.49868i −0.100512 + 0.174091i
\(207\) 8.02365 13.8974i 0.557682 0.965934i
\(208\) −2.04169 3.53631i −0.141566 0.245199i
\(209\) −25.2357 1.79732i −1.74559 0.124323i
\(210\) −3.39628 0.413420i −0.234366 0.0285287i
\(211\) 0.252729i 0.0173986i −0.999962 0.00869931i \(-0.997231\pi\)
0.999962 0.00869931i \(-0.00276911\pi\)
\(212\) −2.39830 4.15397i −0.164716 0.285296i
\(213\) −3.12129 1.80208i −0.213867 0.123476i
\(214\) 8.15002 14.1162i 0.557124 0.964967i
\(215\) 4.76793 + 8.25830i 0.325170 + 0.563212i
\(216\) −5.07988 −0.345642
\(217\) 9.51686 + 22.3556i 0.646047 + 1.51759i
\(218\) −11.5034 −0.779111
\(219\) 0.860250 0.496665i 0.0581303 0.0335615i
\(220\) −3.45787 2.33885i −0.233130 0.157685i
\(221\) 6.53732 11.3230i 0.439748 0.761666i
\(222\) 0.158343 + 0.274258i 0.0106273 + 0.0184070i
\(223\) 19.0370i 1.27482i 0.770527 + 0.637408i \(0.219993\pi\)
−0.770527 + 0.637408i \(0.780007\pi\)
\(224\) −1.03631 2.43435i −0.0692416 0.162652i
\(225\) 6.64181 0.442788
\(226\) −0.484072 + 0.279479i −0.0322000 + 0.0185907i
\(227\) −9.20350 + 15.9409i −0.610858 + 1.05804i 0.380238 + 0.924888i \(0.375842\pi\)
−0.991096 + 0.133148i \(0.957491\pi\)
\(228\) 6.78705 + 3.91851i 0.449483 + 0.259509i
\(229\) −4.59674 + 2.65393i −0.303761 + 0.175377i −0.644131 0.764915i \(-0.722781\pi\)
0.340370 + 0.940292i \(0.389448\pi\)
\(230\) −10.3876 −0.684936
\(231\) 8.84919 + 1.72237i 0.582234 + 0.113324i
\(232\) −3.54386 −0.232666
\(233\) −18.4629 + 10.6596i −1.20955 + 0.698332i −0.962660 0.270712i \(-0.912741\pi\)
−0.246887 + 0.969044i \(0.579408\pi\)
\(234\) 6.87631 + 3.97004i 0.449518 + 0.259530i
\(235\) 2.95958 5.12614i 0.193062 0.334393i
\(236\) 2.36710 1.36664i 0.154085 0.0889609i
\(237\) −16.0405 −1.04194
\(238\) 5.09121 6.77092i 0.330014 0.438894i
\(239\) 7.25163i 0.469069i −0.972108 0.234535i \(-0.924643\pi\)
0.972108 0.234535i \(-0.0753566\pi\)
\(240\) 0.646574 + 1.11990i 0.0417362 + 0.0722892i
\(241\) 1.77705 3.07794i 0.114470 0.198267i −0.803098 0.595847i \(-0.796816\pi\)
0.917568 + 0.397580i \(0.130150\pi\)
\(242\) 8.65064 + 6.79458i 0.556084 + 0.436772i
\(243\) 13.7446 7.93547i 0.881719 0.509060i
\(244\) 1.51010 0.0966743
\(245\) 6.35068 + 6.10726i 0.405730 + 0.390179i
\(246\) 6.21850 0.396477
\(247\) −15.5743 26.9755i −0.990968 1.71641i
\(248\) 4.59169 7.95304i 0.291573 0.505019i
\(249\) −1.18334 0.683199i −0.0749908 0.0432960i
\(250\) −5.29636 9.17356i −0.334971 0.580187i
\(251\) 0.735728i 0.0464387i 0.999730 + 0.0232194i \(0.00739162\pi\)
−0.999730 + 0.0232194i \(0.992608\pi\)
\(252\) 4.11190 + 3.09183i 0.259025 + 0.194767i
\(253\) 27.3021 + 1.94448i 1.71647 + 0.122249i
\(254\) 5.64146 + 9.77130i 0.353977 + 0.613106i
\(255\) −2.07028 + 3.58582i −0.129646 + 0.224553i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −14.0352 + 8.10325i −0.875494 + 0.505467i −0.869170 0.494513i \(-0.835346\pi\)
−0.00632378 + 0.999980i \(0.502013\pi\)
\(258\) 7.78352i 0.484581i
\(259\) 0.0985460 0.809564i 0.00612335 0.0503038i
\(260\) 5.13968i 0.318750i
\(261\) 5.96777 3.44549i 0.369396 0.213271i
\(262\) −6.09152 3.51694i −0.376335 0.217277i
\(263\) 21.0462 + 12.1510i 1.29776 + 0.749264i 0.980017 0.198911i \(-0.0637406\pi\)
0.317746 + 0.948176i \(0.397074\pi\)
\(264\) −1.48978 3.06451i −0.0916896 0.188608i
\(265\) 6.03738i 0.370874i
\(266\) −7.90514 18.5695i −0.484695 1.13857i
\(267\) −10.9414 −0.669601
\(268\) 1.69044 + 2.92792i 0.103260 + 0.178851i
\(269\) −23.4246 13.5242i −1.42822 0.824586i −0.431244 0.902236i \(-0.641925\pi\)
−0.996981 + 0.0776498i \(0.975258\pi\)
\(270\) −5.53733 3.19698i −0.336991 0.194562i
\(271\) 5.22166 + 9.04417i 0.317193 + 0.549394i 0.979901 0.199483i \(-0.0639264\pi\)
−0.662708 + 0.748878i \(0.730593\pi\)
\(272\) −3.20191 −0.194145
\(273\) 4.34754 + 10.2126i 0.263125 + 0.618093i
\(274\) 9.08974i 0.549131i
\(275\) 4.95304 + 10.1885i 0.298679 + 0.614391i
\(276\) −7.34278 4.23936i −0.441983 0.255179i
\(277\) −17.6675 10.2003i −1.06153 0.612877i −0.135678 0.990753i \(-0.543321\pi\)
−0.925856 + 0.377876i \(0.876655\pi\)
\(278\) 6.81169 3.93273i 0.408538 0.235869i
\(279\) 17.8569i 1.06907i
\(280\) 0.402401 3.30576i 0.0240481 0.197557i
\(281\) 9.99535i 0.596272i −0.954523 0.298136i \(-0.903635\pi\)
0.954523 0.298136i \(-0.0963650\pi\)
\(282\) 4.18415 2.41572i 0.249162 0.143854i
\(283\) 1.74448 3.02153i 0.103699 0.179611i −0.809507 0.587110i \(-0.800266\pi\)
0.913206 + 0.407499i \(0.133599\pi\)
\(284\) 1.75405 3.03810i 0.104084 0.180278i
\(285\) 4.93215 + 8.54274i 0.292156 + 0.506028i
\(286\) −0.962115 + 13.5088i −0.0568911 + 0.798794i
\(287\) −12.7995 9.62420i −0.755529 0.568099i
\(288\) 1.94448i 0.114580i
\(289\) 3.37387 + 5.84372i 0.198463 + 0.343748i
\(290\) −3.86299 2.23030i −0.226843 0.130968i
\(291\) −5.48354 + 9.49778i −0.321451 + 0.556770i
\(292\) 0.483428 + 0.837321i 0.0282905 + 0.0490005i
\(293\) 17.3549 1.01388 0.506942 0.861980i \(-0.330776\pi\)
0.506942 + 0.861980i \(0.330776\pi\)
\(294\) 1.99669 + 6.90894i 0.116450 + 0.402938i
\(295\) 3.44034 0.200304
\(296\) −0.266948 + 0.154122i −0.0155160 + 0.00895819i
\(297\) 13.9555 + 9.43929i 0.809781 + 0.547723i
\(298\) 3.11548 5.39617i 0.180475 0.312592i
\(299\) 16.8495 + 29.1842i 0.974433 + 1.68777i
\(300\) 3.50925i 0.202607i
\(301\) 12.0463 16.0207i 0.694339 0.923419i
\(302\) −17.5101 −1.00759
\(303\) 8.95510 5.17023i 0.514457 0.297022i
\(304\) −3.81407 + 6.60616i −0.218752 + 0.378889i
\(305\) 1.64609 + 0.950368i 0.0942546 + 0.0544179i
\(306\) 5.39194 3.11304i 0.308237 0.177960i
\(307\) −22.6829 −1.29458 −0.647290 0.762244i \(-0.724098\pi\)
−0.647290 + 0.762244i \(0.724098\pi\)
\(308\) −1.67646 + 8.61333i −0.0955253 + 0.490790i
\(309\) −2.96423 −0.168629
\(310\) 10.0104 5.77948i 0.568550 0.328252i
\(311\) 5.75141 + 3.32058i 0.326133 + 0.188293i 0.654123 0.756388i \(-0.273038\pi\)
−0.327990 + 0.944681i \(0.606371\pi\)
\(312\) 2.09760 3.63315i 0.118753 0.205687i
\(313\) −0.435583 + 0.251484i −0.0246206 + 0.0142147i −0.512260 0.858831i \(-0.671191\pi\)
0.487639 + 0.873045i \(0.337858\pi\)
\(314\) 7.77404 0.438715
\(315\) 2.53637 + 5.95804i 0.142908 + 0.335698i
\(316\) 15.6129i 0.878296i
\(317\) 5.27437 + 9.13547i 0.296238 + 0.513099i 0.975272 0.221008i \(-0.0709345\pi\)
−0.679034 + 0.734107i \(0.737601\pi\)
\(318\) 2.46397 4.26772i 0.138172 0.239322i
\(319\) 9.73575 + 6.58511i 0.545098 + 0.368695i
\(320\) −1.09005 + 0.629341i −0.0609357 + 0.0351812i
\(321\) 16.7464 0.934692
\(322\) 8.55242 + 20.0900i 0.476608 + 1.11957i
\(323\) −24.4246 −1.35902
\(324\) 0.307237 + 0.532150i 0.0170687 + 0.0295639i
\(325\) −6.97385 + 12.0791i −0.386839 + 0.670025i
\(326\) −15.7723 9.10616i −0.873548 0.504343i
\(327\) −5.90922 10.2351i −0.326781 0.566001i
\(328\) 6.05276i 0.334208i
\(329\) −12.3509 1.50344i −0.680928 0.0828875i
\(330\) 0.304688 4.27805i 0.0167725 0.235499i
\(331\) 2.89029 + 5.00613i 0.158865 + 0.275162i 0.934460 0.356069i \(-0.115883\pi\)
−0.775595 + 0.631231i \(0.782550\pi\)
\(332\) 0.664990 1.15180i 0.0364960 0.0632130i
\(333\) 0.299689 0.519076i 0.0164228 0.0284452i
\(334\) −12.4407 + 7.18264i −0.680724 + 0.393016i
\(335\) 4.25544i 0.232500i
\(336\) 1.63359 2.17255i 0.0891197 0.118523i
\(337\) 11.1226i 0.605885i −0.953009 0.302943i \(-0.902031\pi\)
0.953009 0.302943i \(-0.0979690\pi\)
\(338\) −3.18180 + 1.83701i −0.173067 + 0.0999202i
\(339\) −0.497327 0.287132i −0.0270111 0.0155949i
\(340\) −3.49025 2.01510i −0.189285 0.109284i
\(341\) −27.3925 + 13.3166i −1.48339 + 0.721132i
\(342\) 14.8328i 0.802065i
\(343\) 6.58300 17.3108i 0.355449 0.934696i
\(344\) −7.57607 −0.408474
\(345\) −5.33600 9.24223i −0.287281 0.497585i
\(346\) −4.12505 2.38160i −0.221764 0.128035i
\(347\) 12.7058 + 7.33569i 0.682083 + 0.393801i 0.800639 0.599147i \(-0.204493\pi\)
−0.118557 + 0.992947i \(0.537827\pi\)
\(348\) −1.82045 3.15311i −0.0975864 0.169025i
\(349\) −24.6769 −1.32093 −0.660463 0.750859i \(-0.729640\pi\)
−0.660463 + 0.750859i \(0.729640\pi\)
\(350\) −5.43117 + 7.22304i −0.290308 + 0.386088i
\(351\) 20.7431i 1.10718i
\(352\) 2.98283 1.45007i 0.158986 0.0772891i
\(353\) −16.6664 9.62237i −0.887065 0.512147i −0.0140834 0.999901i \(-0.504483\pi\)
−0.872981 + 0.487754i \(0.837816\pi\)
\(354\) 2.43191 + 1.40407i 0.129255 + 0.0746252i
\(355\) 3.82400 2.20779i 0.202957 0.117177i
\(356\) 10.6498i 0.564436i
\(357\) 8.63967 + 1.05168i 0.457260 + 0.0556610i
\(358\) 3.89051i 0.205620i
\(359\) −2.85275 + 1.64703i −0.150562 + 0.0869271i −0.573388 0.819284i \(-0.694371\pi\)
0.422826 + 0.906211i \(0.361038\pi\)
\(360\) 1.22374 2.11959i 0.0644970 0.111712i
\(361\) −19.5942 + 33.9381i −1.03127 + 1.78622i
\(362\) 6.53492 + 11.3188i 0.343468 + 0.594904i
\(363\) −1.60165 + 11.1871i −0.0840647 + 0.587173i
\(364\) −9.94038 + 4.23167i −0.521017 + 0.221800i
\(365\) 1.21696i 0.0636988i
\(366\) 0.775726 + 1.34360i 0.0405478 + 0.0702309i
\(367\) 26.7957 + 15.4705i 1.39873 + 0.807555i 0.994259 0.106998i \(-0.0341238\pi\)
0.404467 + 0.914553i \(0.367457\pi\)
\(368\) 4.12636 7.14707i 0.215102 0.372567i
\(369\) −5.88475 10.1927i −0.306348 0.530610i
\(370\) −0.387982 −0.0201702
\(371\) −11.6766 + 4.97077i −0.606218 + 0.258070i
\(372\) 9.43485 0.489174
\(373\) −0.832767 + 0.480798i −0.0431191 + 0.0248948i −0.521405 0.853310i \(-0.674592\pi\)
0.478286 + 0.878204i \(0.341258\pi\)
\(374\) 8.79635 + 5.94971i 0.454848 + 0.307652i
\(375\) 5.44139 9.42476i 0.280992 0.486692i
\(376\) 2.35133 + 4.07263i 0.121261 + 0.210030i
\(377\) 14.4709i 0.745292i
\(378\) −1.62404 + 13.3416i −0.0835315 + 0.686219i
\(379\) −1.41216 −0.0725379 −0.0362689 0.999342i \(-0.511547\pi\)
−0.0362689 + 0.999342i \(0.511547\pi\)
\(380\) −8.31505 + 4.80070i −0.426553 + 0.246271i
\(381\) −5.79594 + 10.0389i −0.296935 + 0.514307i
\(382\) 5.19615 + 3.00000i 0.265858 + 0.153493i
\(383\) 3.27426 1.89039i 0.167307 0.0965946i −0.414009 0.910273i \(-0.635872\pi\)
0.581315 + 0.813678i \(0.302538\pi\)
\(384\) −1.02738 −0.0524284
\(385\) −7.24815 + 8.33390i −0.369400 + 0.424735i
\(386\) 9.38289 0.477576
\(387\) 12.7579 7.36578i 0.648520 0.374423i
\(388\) −9.24463 5.33739i −0.469325 0.270965i
\(389\) 1.68943 2.92618i 0.0856574 0.148363i −0.820014 0.572344i \(-0.806034\pi\)
0.905671 + 0.423981i \(0.139368\pi\)
\(390\) 4.57298 2.64021i 0.231562 0.133692i
\(391\) 26.4245 1.33635
\(392\) −6.72480 + 1.94348i −0.339654 + 0.0981604i
\(393\) 7.22649i 0.364528i
\(394\) 8.67356 + 15.0230i 0.436968 + 0.756850i
\(395\) 9.82586 17.0189i 0.494393 0.856313i
\(396\) −3.61319 + 5.34192i −0.181570 + 0.268441i
\(397\) −9.98525 + 5.76499i −0.501145 + 0.289336i −0.729186 0.684315i \(-0.760101\pi\)
0.228041 + 0.973652i \(0.426768\pi\)
\(398\) −2.92547 −0.146640
\(399\) 12.4612 16.5725i 0.623843 0.829664i
\(400\) 3.41572 0.170786
\(401\) −13.0261 22.5619i −0.650494 1.12669i −0.983003 0.183588i \(-0.941229\pi\)
0.332509 0.943100i \(-0.392105\pi\)
\(402\) −1.73673 + 3.00810i −0.0866200 + 0.150030i
\(403\) −32.4753 18.7496i −1.61771 0.933986i
\(404\) 5.03242 + 8.71642i 0.250372 + 0.433658i
\(405\) 0.773427i 0.0384319i
\(406\) −1.13297 + 9.30747i −0.0562285 + 0.461922i
\(407\) 1.01975 + 0.0726278i 0.0505471 + 0.00360003i
\(408\) −1.64480 2.84887i −0.0814295 0.141040i
\(409\) −17.5109 + 30.3297i −0.865856 + 1.49971i 0.000338063 1.00000i \(0.499892\pi\)
−0.866194 + 0.499707i \(0.833441\pi\)
\(410\) −3.80925 + 6.59782i −0.188126 + 0.325843i
\(411\) 8.08750 4.66932i 0.398927 0.230321i
\(412\) 2.88523i 0.142145i
\(413\) −2.83254 6.65377i −0.139380 0.327411i
\(414\) 16.0473i 0.788682i
\(415\) 1.44974 0.837011i 0.0711652 0.0410872i
\(416\) 3.53631 + 2.04169i 0.173382 + 0.100102i
\(417\) 6.99821 + 4.04042i 0.342704 + 0.197860i
\(418\) 22.7534 11.0613i 1.11291 0.541028i
\(419\) 12.1242i 0.592307i −0.955140 0.296154i \(-0.904296\pi\)
0.955140 0.296154i \(-0.0957040\pi\)
\(420\) 3.14797 1.34011i 0.153605 0.0653906i
\(421\) 18.6940 0.911089 0.455545 0.890213i \(-0.349445\pi\)
0.455545 + 0.890213i \(0.349445\pi\)
\(422\) 0.126365 + 0.218870i 0.00615134 + 0.0106544i
\(423\) −7.91916 4.57213i −0.385043 0.222305i
\(424\) 4.15397 + 2.39830i 0.201735 + 0.116472i
\(425\) 5.46842 + 9.47158i 0.265257 + 0.459439i
\(426\) 3.60416 0.174622
\(427\) 0.482779 3.96607i 0.0233633 0.191932i
\(428\) 16.3000i 0.787892i
\(429\) −12.5136 + 6.08334i −0.604161 + 0.293706i
\(430\) −8.25830 4.76793i −0.398251 0.229930i
\(431\) −29.3945 16.9709i −1.41588 0.817461i −0.419949 0.907548i \(-0.637952\pi\)
−0.995934 + 0.0900869i \(0.971286\pi\)
\(432\) 4.39930 2.53994i 0.211662 0.122203i
\(433\) 27.0949i 1.30210i −0.759037 0.651048i \(-0.774330\pi\)
0.759037 0.651048i \(-0.225670\pi\)
\(434\) −19.4196 14.6020i −0.932172 0.700920i
\(435\) 4.58274i 0.219726i
\(436\) 9.96227 5.75172i 0.477106 0.275458i
\(437\) 31.4765 54.5188i 1.50572 2.60799i
\(438\) −0.496665 + 0.860250i −0.0237316 + 0.0411043i
\(439\) −10.2269 17.7135i −0.488104 0.845421i 0.511802 0.859103i \(-0.328978\pi\)
−0.999906 + 0.0136821i \(0.995645\pi\)
\(440\) 4.16403 + 0.296567i 0.198512 + 0.0141383i
\(441\) 9.43485 9.81089i 0.449278 0.467185i
\(442\) 13.0746i 0.621897i
\(443\) 1.79868 + 3.11541i 0.0854579 + 0.148017i 0.905586 0.424162i \(-0.139431\pi\)
−0.820128 + 0.572180i \(0.806098\pi\)
\(444\) −0.274258 0.158343i −0.0130157 0.00751462i
\(445\) 6.70233 11.6088i 0.317721 0.550309i
\(446\) −9.51852 16.4866i −0.450715 0.780662i
\(447\) 6.40159 0.302785
\(448\) 2.11465 + 1.59005i 0.0999078 + 0.0751228i
\(449\) 37.0664 1.74927 0.874637 0.484779i \(-0.161100\pi\)
0.874637 + 0.484779i \(0.161100\pi\)
\(450\) −5.75198 + 3.32091i −0.271151 + 0.156549i
\(451\) 11.2471 16.6282i 0.529604 0.782993i
\(452\) 0.279479 0.484072i 0.0131456 0.0227688i
\(453\) −8.99479 15.5794i −0.422612 0.731986i
\(454\) 18.4070i 0.863883i
\(455\) −13.4987 1.64316i −0.632828 0.0770324i
\(456\) −7.83701 −0.367002
\(457\) −15.7194 + 9.07561i −0.735323 + 0.424539i −0.820366 0.571838i \(-0.806231\pi\)
0.0850431 + 0.996377i \(0.472897\pi\)
\(458\) 2.65393 4.59674i 0.124010 0.214792i
\(459\) 14.0862 + 8.13267i 0.657487 + 0.379600i
\(460\) 8.99589 5.19378i 0.419436 0.242161i
\(461\) 22.4278 1.04457 0.522284 0.852772i \(-0.325080\pi\)
0.522284 + 0.852772i \(0.325080\pi\)
\(462\) −8.52481 + 2.93298i −0.396610 + 0.136455i
\(463\) −15.6274 −0.726267 −0.363134 0.931737i \(-0.618293\pi\)
−0.363134 + 0.931737i \(0.618293\pi\)
\(464\) 3.06907 1.77193i 0.142478 0.0822598i
\(465\) 10.2845 + 5.93774i 0.476931 + 0.275356i
\(466\) 10.6596 18.4629i 0.493796 0.855279i
\(467\) −5.27860 + 3.04760i −0.244264 + 0.141026i −0.617135 0.786857i \(-0.711707\pi\)
0.372871 + 0.927883i \(0.378374\pi\)
\(468\) −7.94008 −0.367030
\(469\) 8.23022 3.50365i 0.380036 0.161783i
\(470\) 5.91916i 0.273031i
\(471\) 3.99346 + 6.91688i 0.184009 + 0.318713i
\(472\) −1.36664 + 2.36710i −0.0629048 + 0.108954i
\(473\) 20.8131 + 14.0776i 0.956987 + 0.647291i
\(474\) 13.8914 8.02023i 0.638055 0.368381i
\(475\) 26.0556 1.19551
\(476\) −1.02365 + 8.40939i −0.0469190 + 0.385444i
\(477\) −9.32690 −0.427049
\(478\) 3.62582 + 6.28010i 0.165841 + 0.287245i
\(479\) 15.3138 26.5242i 0.699704 1.21192i −0.268865 0.963178i \(-0.586648\pi\)
0.968569 0.248745i \(-0.0800182\pi\)
\(480\) −1.11990 0.646574i −0.0511162 0.0295119i
\(481\) 0.629341 + 1.09005i 0.0286955 + 0.0497020i
\(482\) 3.55410i 0.161885i
\(483\) −13.4816 + 17.9295i −0.613433 + 0.815820i
\(484\) −10.8890 1.55896i −0.494953 0.0708617i
\(485\) −6.71808 11.6361i −0.305052 0.528366i
\(486\) −7.93547 + 13.7446i −0.359960 + 0.623469i
\(487\) 1.58726 2.74922i 0.0719258 0.124579i −0.827819 0.560995i \(-0.810419\pi\)
0.899745 + 0.436415i \(0.143752\pi\)
\(488\) −1.30779 + 0.755050i −0.0592007 + 0.0341795i
\(489\) 18.7110i 0.846141i
\(490\) −8.55348 2.11370i −0.386407 0.0954874i
\(491\) 32.6507i 1.47351i 0.676162 + 0.736753i \(0.263642\pi\)
−0.676162 + 0.736753i \(0.736358\pi\)
\(492\) −5.38538 + 3.10925i −0.242792 + 0.140176i
\(493\) 9.82691 + 5.67357i 0.442582 + 0.255525i
\(494\) 26.9755 + 15.5743i 1.21368 + 0.700721i
\(495\) −7.30045 + 3.54903i −0.328131 + 0.159517i
\(496\) 9.18338i 0.412346i
\(497\) −7.41839 5.57805i −0.332760 0.250210i
\(498\) 1.36640 0.0612297
\(499\) −14.2274 24.6426i −0.636906 1.10315i −0.986108 0.166106i \(-0.946881\pi\)
0.349202 0.937048i \(-0.386453\pi\)
\(500\) 9.17356 + 5.29636i 0.410254 + 0.236860i
\(501\) −12.7814 7.37932i −0.571029 0.329684i
\(502\) −0.367864 0.637159i −0.0164186 0.0284378i
\(503\) −22.5058 −1.00348 −0.501741 0.865018i \(-0.667307\pi\)
−0.501741 + 0.865018i \(0.667307\pi\)
\(504\) −5.10693 0.621652i −0.227481 0.0276906i
\(505\) 12.6684i 0.563739i
\(506\) −24.6165 + 11.9671i −1.09434 + 0.532000i
\(507\) −3.26892 1.88731i −0.145178 0.0838185i
\(508\) −9.77130 5.64146i −0.433531 0.250299i
\(509\) −11.6437 + 6.72249i −0.516098 + 0.297969i −0.735337 0.677702i \(-0.762976\pi\)
0.219239 + 0.975671i \(0.429643\pi\)
\(510\) 4.14055i 0.183347i
\(511\) 2.35366 1.00197i 0.104120 0.0443244i
\(512\) 1.00000i 0.0441942i
\(513\) 33.5585 19.3750i 1.48164 0.855427i
\(514\) 8.10325 14.0352i 0.357419 0.619068i
\(515\) 1.81579 3.14505i 0.0800134 0.138587i
\(516\) −3.89176 6.74073i −0.171325 0.296744i
\(517\) 1.10803 15.5576i 0.0487310 0.684221i
\(518\) 0.319439 + 0.750376i 0.0140353 + 0.0329696i
\(519\) 4.89362i 0.214806i
\(520\) 2.56984 + 4.45110i 0.112695 + 0.195193i
\(521\) 34.2339 + 19.7649i 1.49981 + 0.865918i 1.00000 0.000215610i \(-6.86308e-5\pi\)
0.499813 + 0.866133i \(0.333402\pi\)
\(522\) −3.44549 + 5.96777i −0.150805 + 0.261202i
\(523\) −14.8061 25.6449i −0.647425 1.12137i −0.983736 0.179622i \(-0.942512\pi\)
0.336310 0.941751i \(-0.390821\pi\)
\(524\) 7.03388 0.307276
\(525\) −9.21657 1.12191i −0.402244 0.0489641i
\(526\) −24.3021 −1.05962
\(527\) −25.4650 + 14.7022i −1.10927 + 0.640438i
\(528\) 2.82244 + 1.90905i 0.122831 + 0.0830810i
\(529\) −22.5538 + 39.0643i −0.980599 + 1.69845i
\(530\) 3.01869 + 5.22853i 0.131124 + 0.227113i
\(531\) 5.31483i 0.230644i
\(532\) 16.1308 + 12.1291i 0.699360 + 0.525864i
\(533\) 24.7158 1.07056
\(534\) 9.47551 5.47069i 0.410045 0.236740i
\(535\) −10.2583 + 17.7679i −0.443504 + 0.768172i
\(536\) −2.92792 1.69044i −0.126467 0.0730157i
\(537\) −3.46154 + 1.99852i −0.149377 + 0.0862426i
\(538\) 27.0484 1.16614
\(539\) 22.0858 + 7.15669i 0.951302 + 0.308260i
\(540\) 6.39395 0.275152
\(541\) 15.1111 8.72442i 0.649679 0.375092i −0.138654 0.990341i \(-0.544278\pi\)
0.788333 + 0.615249i \(0.210944\pi\)
\(542\) −9.04417 5.22166i −0.388480 0.224289i
\(543\) −6.71387 + 11.6288i −0.288120 + 0.499038i
\(544\) 2.77294 1.60096i 0.118889 0.0686405i
\(545\) 14.4792 0.620220
\(546\) −8.87137 6.67058i −0.379660 0.285474i
\(547\) 1.16878i 0.0499734i 0.999688 + 0.0249867i \(0.00795434\pi\)
−0.999688 + 0.0249867i \(0.992046\pi\)
\(548\) 4.54487 + 7.87195i 0.194147 + 0.336273i
\(549\) 1.46818 2.54297i 0.0626605 0.108531i
\(550\) −9.38372 6.34700i −0.400123 0.270637i
\(551\) 23.4113 13.5165i 0.997355 0.575823i
\(552\) 8.47871 0.360878
\(553\) −41.0053 4.99146i −1.74372 0.212258i
\(554\) 20.4006 0.866739
\(555\) −0.199303 0.345203i −0.00845995 0.0146531i
\(556\) −3.93273 + 6.81169i −0.166785 + 0.288880i
\(557\) 4.20151 + 2.42574i 0.178024 + 0.102782i 0.586364 0.810048i \(-0.300559\pi\)
−0.408340 + 0.912830i \(0.633892\pi\)
\(558\) −8.92847 15.4646i −0.377972 0.654667i
\(559\) 30.9360i 1.30845i
\(560\) 1.30439 + 3.06407i 0.0551205 + 0.129481i
\(561\) −0.775084 + 10.8828i −0.0327241 + 0.459471i
\(562\) 4.99767 + 8.65622i 0.210814 + 0.365141i
\(563\) −13.0572 + 22.6158i −0.550297 + 0.953143i 0.447956 + 0.894056i \(0.352152\pi\)
−0.998253 + 0.0590869i \(0.981181\pi\)
\(564\) −2.41572 + 4.18415i −0.101720 + 0.176184i
\(565\) 0.609293 0.351776i 0.0256332 0.0147993i
\(566\) 3.48896i 0.146652i
\(567\) 1.49584 0.636788i 0.0628195 0.0267426i
\(568\) 3.50810i 0.147196i
\(569\) −6.47913 + 3.74073i −0.271619 + 0.156820i −0.629623 0.776901i \(-0.716791\pi\)
0.358004 + 0.933720i \(0.383457\pi\)
\(570\) −8.54274 4.93215i −0.357816 0.206585i
\(571\) −28.5249 16.4688i −1.19373 0.689199i −0.234578 0.972097i \(-0.575371\pi\)
−0.959150 + 0.282898i \(0.908704\pi\)
\(572\) −5.92120 12.1801i −0.247578 0.509273i
\(573\) 6.16430i 0.257517i
\(574\) 15.8968 + 1.93507i 0.663518 + 0.0807682i
\(575\) −28.1890 −1.17556
\(576\) 0.972242 + 1.68397i 0.0405101 + 0.0701655i
\(577\) 1.34703 + 0.777711i 0.0560778 + 0.0323765i 0.527777 0.849383i \(-0.323026\pi\)
−0.471699 + 0.881760i \(0.656359\pi\)
\(578\) −5.84372 3.37387i −0.243067 0.140335i
\(579\) 4.81991 + 8.34833i 0.200309 + 0.346945i
\(580\) 4.46060 0.185216
\(581\) −2.81244 2.11473i −0.116680 0.0877340i
\(582\) 10.9671i 0.454600i
\(583\) −6.95540 14.3074i −0.288063 0.592553i
\(584\) −0.837321 0.483428i −0.0346486 0.0200044i
\(585\) −8.65509 4.99702i −0.357844 0.206601i
\(586\) −15.0298 + 8.67744i −0.620874 + 0.358462i
\(587\) 42.8124i 1.76706i 0.468376 + 0.883529i \(0.344839\pi\)
−0.468376 + 0.883529i \(0.655161\pi\)
\(588\) −5.18366 4.98497i −0.213770 0.205577i
\(589\) 70.0520i 2.88644i
\(590\) −2.97942 + 1.72017i −0.122661 + 0.0708183i
\(591\) −8.91107 + 15.4344i −0.366552 + 0.634887i
\(592\) 0.154122 0.266948i 0.00633439 0.0109715i
\(593\) −16.7711 29.0484i −0.688707 1.19288i −0.972256 0.233918i \(-0.924845\pi\)
0.283549 0.958958i \(-0.408488\pi\)
\(594\) −16.8055 1.19691i −0.689537 0.0491097i
\(595\) −6.40821 + 8.52244i −0.262711 + 0.349386i
\(596\) 6.23096i 0.255230i
\(597\) −1.50279 2.60290i −0.0615050 0.106530i
\(598\) −29.1842 16.8495i −1.19343 0.689029i
\(599\) −7.00856 + 12.1392i −0.286362 + 0.495993i −0.972939 0.231064i \(-0.925779\pi\)
0.686577 + 0.727057i \(0.259113\pi\)
\(600\) 1.75463 + 3.03910i 0.0716323 + 0.124071i
\(601\) 36.1513 1.47464 0.737322 0.675542i \(-0.236090\pi\)
0.737322 + 0.675542i \(0.236090\pi\)
\(602\) −2.42207 + 19.8975i −0.0987163 + 0.810963i
\(603\) 6.57405 0.267716
\(604\) 15.1642 8.75506i 0.617023 0.356238i
\(605\) −10.8884 8.55222i −0.442677 0.347697i
\(606\) −5.17023 + 8.95510i −0.210026 + 0.363776i
\(607\) −14.8196 25.6684i −0.601511 1.04185i −0.992593 0.121491i \(-0.961232\pi\)
0.391082 0.920356i \(-0.372101\pi\)
\(608\) 7.62813i 0.309362i
\(609\) −8.86323 + 3.77312i −0.359156 + 0.152894i
\(610\) −1.90074 −0.0769586
\(611\) 16.6301 9.60139i 0.672782 0.388431i
\(612\) −3.11304 + 5.39194i −0.125837 + 0.217956i
\(613\) 28.9964 + 16.7411i 1.17115 + 0.676166i 0.953951 0.299961i \(-0.0969737\pi\)
0.217202 + 0.976127i \(0.430307\pi\)
\(614\) 19.6439 11.3414i 0.792765 0.457703i
\(615\) −7.82712 −0.315620
\(616\) −2.85481 8.29760i −0.115023 0.334320i
\(617\) 8.79395 0.354031 0.177016 0.984208i \(-0.443356\pi\)
0.177016 + 0.984208i \(0.443356\pi\)
\(618\) 2.56710 1.48212i 0.103264 0.0596195i
\(619\) 24.2445 + 13.9976i 0.974469 + 0.562610i 0.900596 0.434657i \(-0.143131\pi\)
0.0738736 + 0.997268i \(0.476464\pi\)
\(620\) −5.77948 + 10.0104i −0.232109 + 0.402025i
\(621\) −36.3063 + 20.9614i −1.45692 + 0.841153i
\(622\) −6.64116 −0.266286
\(623\) −27.9701 3.40473i −1.12060 0.136408i
\(624\) 4.19520i 0.167942i
\(625\) −1.87286 3.24390i −0.0749146 0.129756i
\(626\) 0.251484 0.435583i 0.0100513 0.0174094i
\(627\) 21.5300 + 14.5625i 0.859824 + 0.581571i
\(628\) −6.73252 + 3.88702i −0.268657 + 0.155109i
\(629\) 0.986974 0.0393532
\(630\) −5.17558 3.89163i −0.206200 0.155046i
\(631\) −0.154087 −0.00613412 −0.00306706 0.999995i \(-0.500976\pi\)
−0.00306706 + 0.999995i \(0.500976\pi\)
\(632\) 7.80647 + 13.5212i 0.310525 + 0.537844i
\(633\) −0.129825 + 0.224863i −0.00516008 + 0.00893752i
\(634\) −9.13547 5.27437i −0.362816 0.209472i
\(635\) −7.10081 12.2990i −0.281787 0.488069i
\(636\) 4.92794i 0.195405i
\(637\) 7.93596 + 27.4599i 0.314434 + 1.08800i
\(638\) −11.7240 0.834995i −0.464156 0.0330578i
\(639\) −3.41072 5.90754i −0.134926 0.233699i
\(640\) 0.629341 1.09005i 0.0248769 0.0430880i
\(641\) 9.92017 17.1822i 0.391823 0.678658i −0.600867 0.799349i \(-0.705178\pi\)
0.992690 + 0.120691i \(0.0385112\pi\)
\(642\) −14.5028 + 8.37319i −0.572379 + 0.330463i
\(643\) 25.2948i 0.997529i −0.866737 0.498765i \(-0.833787\pi\)
0.866737 0.498765i \(-0.166213\pi\)
\(644\) −17.4516 13.1223i −0.687690 0.517089i
\(645\) 9.79699i 0.385756i
\(646\) 21.1523 12.2123i 0.832228 0.480487i
\(647\) 0.813596 + 0.469730i 0.0319857 + 0.0184670i 0.515908 0.856644i \(-0.327455\pi\)
−0.483922 + 0.875111i \(0.660788\pi\)
\(648\) −0.532150 0.307237i −0.0209048 0.0120694i
\(649\) 8.15293 3.96346i 0.320031 0.155579i
\(650\) 13.9477i 0.547073i
\(651\) 3.01632 24.7794i 0.118219 0.971179i
\(652\) 18.2123 0.713249
\(653\) 5.50375 + 9.53278i 0.215379 + 0.373047i 0.953390 0.301742i \(-0.0975681\pi\)
−0.738011 + 0.674789i \(0.764235\pi\)
\(654\) 10.2351 + 5.90922i 0.400223 + 0.231069i
\(655\) 7.66729 + 4.42671i 0.299586 + 0.172966i
\(656\) −3.02638 5.24185i −0.118160 0.204660i
\(657\) 1.88004 0.0733472
\(658\) 11.4479 4.87344i 0.446287 0.189986i
\(659\) 29.9068i 1.16500i −0.812830 0.582501i \(-0.802074\pi\)
0.812830 0.582501i \(-0.197926\pi\)
\(660\) 1.87516 + 3.85725i 0.0729904 + 0.150143i
\(661\) 2.32896 + 1.34463i 0.0905861 + 0.0522999i 0.544609 0.838690i \(-0.316678\pi\)
−0.454023 + 0.890990i \(0.650011\pi\)
\(662\) −5.00613 2.89029i −0.194569 0.112334i
\(663\) −11.6330 + 6.71633i −0.451789 + 0.260841i
\(664\) 1.32998i 0.0516132i
\(665\) 9.95006 + 23.3731i 0.385847 + 0.906371i
\(666\) 0.599378i 0.0232254i
\(667\) −25.3282 + 14.6233i −0.980713 + 0.566215i
\(668\) 7.18264 12.4407i 0.277905 0.481345i
\(669\) 9.77917 16.9380i 0.378084 0.654862i
\(670\) −2.12772 3.68532i −0.0822011 0.142376i
\(671\) 4.99578 + 0.355806i 0.192860 + 0.0137357i
\(672\) −0.328454 + 2.69828i −0.0126704 + 0.104088i
\(673\) 3.56361i 0.137367i 0.997638 + 0.0686836i \(0.0218799\pi\)
−0.997638 + 0.0686836i \(0.978120\pi\)
\(674\) 5.56129 + 9.63243i 0.214213 + 0.371027i
\(675\) −15.0268 8.67572i −0.578381 0.333929i
\(676\) 1.83701 3.18180i 0.0706543 0.122377i
\(677\) 15.5901 + 27.0029i 0.599178 + 1.03781i 0.992943 + 0.118595i \(0.0378390\pi\)
−0.393765 + 0.919211i \(0.628828\pi\)
\(678\) 0.574264 0.0220545
\(679\) −16.9734 + 22.5734i −0.651381 + 0.866288i
\(680\) 4.03019 0.154551
\(681\) 16.3774 9.45552i 0.627585 0.362336i
\(682\) 17.0643 25.2287i 0.653426 0.966058i
\(683\) 7.79993 13.5099i 0.298456 0.516941i −0.677327 0.735682i \(-0.736862\pi\)
0.975783 + 0.218741i \(0.0701951\pi\)
\(684\) 7.41639 + 12.8456i 0.283573 + 0.491163i
\(685\) 11.4411i 0.437142i
\(686\) 2.95436 + 18.2831i 0.112798 + 0.698052i
\(687\) 5.45320 0.208053
\(688\) 6.56107 3.78804i 0.250138 0.144417i
\(689\) 9.79316 16.9623i 0.373090 0.646210i
\(690\) 9.24223 + 5.33600i 0.351846 + 0.203138i
\(691\) −31.8902 + 18.4118i −1.21316 + 0.700419i −0.963447 0.267901i \(-0.913670\pi\)
−0.249714 + 0.968320i \(0.580337\pi\)
\(692\) 4.76319 0.181069
\(693\) 12.8747 + 11.1974i 0.489069 + 0.425353i
\(694\) −14.6714 −0.556918
\(695\) −8.57375 + 4.95006i −0.325221 + 0.187766i
\(696\) 3.15311 + 1.82045i 0.119518 + 0.0690040i
\(697\) 9.69021 16.7839i 0.367043 0.635737i
\(698\) 21.3708 12.3385i 0.808899 0.467018i
\(699\) 21.9029 0.828445
\(700\) 1.09201 8.97092i 0.0412739 0.339069i
\(701\) 15.6940i 0.592754i 0.955071 + 0.296377i \(0.0957784\pi\)
−0.955071 + 0.296377i \(0.904222\pi\)
\(702\) −10.3715 17.9640i −0.391449 0.678009i
\(703\) 1.17567 2.03631i 0.0443411 0.0768010i
\(704\) −1.85817 + 2.74722i −0.0700325 + 0.103540i
\(705\) −5.26651 + 3.04062i −0.198348 + 0.114516i
\(706\) 19.2447 0.724285
\(707\) 24.5014 10.4303i 0.921468 0.392273i
\(708\) −2.80813 −0.105536
\(709\) 12.1733 + 21.0847i 0.457176 + 0.791852i 0.998810 0.0487621i \(-0.0155276\pi\)
−0.541634 + 0.840614i \(0.682194\pi\)
\(710\) −2.20779 + 3.82400i −0.0828569 + 0.143512i
\(711\) −26.2918 15.1796i −0.986018 0.569278i
\(712\) 5.32488 + 9.22296i 0.199558 + 0.345645i
\(713\) 75.7880i 2.83828i
\(714\) −8.00801 + 3.40905i −0.299692 + 0.127580i
\(715\) 1.21100 17.0033i 0.0452887 0.635888i
\(716\) −1.94526 3.36928i −0.0726976 0.125916i
\(717\) −3.72510 + 6.45207i −0.139116 + 0.240957i
\(718\) 1.64703 2.85275i 0.0614668 0.106464i
\(719\) 36.9070 21.3083i 1.37640 0.794665i 0.384676 0.923051i \(-0.374313\pi\)
0.991724 + 0.128386i \(0.0409797\pi\)
\(720\) 2.44749i 0.0912125i
\(721\) −7.57766 0.922408i −0.282207 0.0343523i
\(722\) 39.1884i 1.45844i
\(723\) −3.16222 + 1.82571i −0.117604 + 0.0678988i
\(724\) −11.3188 6.53492i −0.420661 0.242868i
\(725\) −10.4831 6.05242i −0.389332 0.224781i
\(726\) −4.20650 10.4892i −0.156118 0.389290i
\(727\) 23.2698i 0.863031i 0.902106 + 0.431515i \(0.142021\pi\)
−0.902106 + 0.431515i \(0.857979\pi\)
\(728\) 6.49279 8.63492i 0.240639 0.320031i
\(729\) −14.4621 −0.535633
\(730\) −0.608482 1.05392i −0.0225209 0.0390074i
\(731\) 21.0080 + 12.1290i 0.777008 + 0.448606i
\(732\) −1.34360 0.775726i −0.0496607 0.0286716i
\(733\) 18.8378 + 32.6281i 0.695791 + 1.20515i 0.969913 + 0.243450i \(0.0782793\pi\)
−0.274122 + 0.961695i \(0.588387\pi\)
\(734\) −30.9410 −1.14205
\(735\) −2.51320 8.69616i −0.0927009 0.320763i
\(736\) 8.25273i 0.304200i
\(737\) 4.90251 + 10.0846i 0.180586 + 0.371470i
\(738\) 10.1927 + 5.88475i 0.375198 + 0.216621i
\(739\) −0.479784 0.277003i −0.0176491 0.0101897i 0.491149 0.871075i \(-0.336577\pi\)
−0.508799 + 0.860886i \(0.669910\pi\)
\(740\) 0.336003 0.193991i 0.0123517 0.00713126i
\(741\) 32.0015i 1.17561i
\(742\) 7.62682 10.1431i 0.279990 0.372365i
\(743\) 20.1974i 0.740972i 0.928838 + 0.370486i \(0.120809\pi\)
−0.928838 + 0.370486i \(0.879191\pi\)
\(744\) −8.17082 + 4.71742i −0.299557 + 0.172949i
\(745\) −3.92140 + 6.79207i −0.143669 + 0.248842i
\(746\) 0.480798 0.832767i 0.0176033 0.0304898i
\(747\) −1.29306 2.23965i −0.0473107 0.0819445i
\(748\) −10.5927 0.754426i −0.387308 0.0275845i
\(749\) 42.8098 + 5.21112i 1.56424 + 0.190410i
\(750\) 10.8828i 0.397383i
\(751\) −3.70031 6.40913i −0.135026 0.233872i 0.790581 0.612357i \(-0.209779\pi\)
−0.925607 + 0.378485i \(0.876445\pi\)
\(752\) −4.07263 2.35133i −0.148513 0.0857443i
\(753\) 0.377937 0.654606i 0.0137728 0.0238552i
\(754\) −7.23547 12.5322i −0.263500 0.456396i
\(755\) 22.0397 0.802106
\(756\) −5.26435 12.3662i −0.191463 0.449754i
\(757\) −29.1994 −1.06127 −0.530636 0.847600i \(-0.678047\pi\)
−0.530636 + 0.847600i \(0.678047\pi\)
\(758\) 1.22297 0.706081i 0.0444202 0.0256460i
\(759\) −23.2929 15.7549i −0.845477 0.571867i
\(760\) 4.80070 8.31505i 0.174140 0.301619i
\(761\) 25.4831 + 44.1380i 0.923761 + 1.60000i 0.793541 + 0.608517i \(0.208235\pi\)
0.130220 + 0.991485i \(0.458432\pi\)
\(762\) 11.5919i 0.419930i
\(763\) −11.9212 28.0034i −0.431576 1.01379i
\(764\) −6.00000 −0.217072
\(765\) −6.78674 + 3.91832i −0.245375 + 0.141667i
\(766\) −1.89039 + 3.27426i −0.0683027 + 0.118304i
\(767\) 9.66576 + 5.58053i 0.349010 + 0.201501i
\(768\) 0.889740 0.513691i 0.0321057 0.0185362i
\(769\) −32.9963 −1.18988 −0.594938 0.803771i \(-0.702824\pi\)
−0.594938 + 0.803771i \(0.702824\pi\)
\(770\) 2.11013 10.8414i 0.0760440 0.390699i
\(771\) 16.6503 0.599645
\(772\) −8.12582 + 4.69144i −0.292455 + 0.168849i
\(773\) −28.1797 16