# Properties

 Label 154.2.e.f.67.2 Level $154$ Weight $2$ Character 154.67 Analytic conductor $1.230$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$154 = 2 \cdot 7 \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 154.e (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$1.22969619113$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{3})$$ Coefficient field: $$\Q(\sqrt{-3}, \sqrt{7})$$ Defining polynomial: $$x^{4} + 7x^{2} + 49$$ x^4 + 7*x^2 + 49 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 67.2 Root $$-1.32288 - 2.29129i$$ of defining polynomial Character $$\chi$$ $$=$$ 154.67 Dual form 154.2.e.f.23.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.500000 + 0.866025i) q^{2} +(1.32288 - 2.29129i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.82288 - 3.15731i) q^{5} +2.64575 q^{6} +(1.32288 + 2.29129i) q^{7} -1.00000 q^{8} +(-2.00000 - 3.46410i) q^{9} +O(q^{10})$$ $$q+(0.500000 + 0.866025i) q^{2} +(1.32288 - 2.29129i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.82288 - 3.15731i) q^{5} +2.64575 q^{6} +(1.32288 + 2.29129i) q^{7} -1.00000 q^{8} +(-2.00000 - 3.46410i) q^{9} +(1.82288 - 3.15731i) q^{10} +(-0.500000 + 0.866025i) q^{11} +(1.32288 + 2.29129i) q^{12} +5.00000 q^{13} +(-1.32288 + 2.29129i) q^{14} -9.64575 q^{15} +(-0.500000 - 0.866025i) q^{16} +(-3.00000 + 5.19615i) q^{17} +(2.00000 - 3.46410i) q^{18} +(0.177124 + 0.306788i) q^{19} +3.64575 q^{20} +7.00000 q^{21} -1.00000 q^{22} +(1.82288 + 3.15731i) q^{23} +(-1.32288 + 2.29129i) q^{24} +(-4.14575 + 7.18065i) q^{25} +(2.50000 + 4.33013i) q^{26} -2.64575 q^{27} -2.64575 q^{28} -4.29150 q^{29} +(-4.82288 - 8.35347i) q^{30} +(2.00000 - 3.46410i) q^{31} +(0.500000 - 0.866025i) q^{32} +(1.32288 + 2.29129i) q^{33} -6.00000 q^{34} +(4.82288 - 8.35347i) q^{35} +4.00000 q^{36} +(0.822876 + 1.42526i) q^{37} +(-0.177124 + 0.306788i) q^{38} +(6.61438 - 11.4564i) q^{39} +(1.82288 + 3.15731i) q^{40} -4.93725 q^{41} +(3.50000 + 6.06218i) q^{42} -4.00000 q^{43} +(-0.500000 - 0.866025i) q^{44} +(-7.29150 + 12.6293i) q^{45} +(-1.82288 + 3.15731i) q^{46} +(-6.64575 - 11.5108i) q^{47} -2.64575 q^{48} +(-3.50000 + 6.06218i) q^{49} -8.29150 q^{50} +(7.93725 + 13.7477i) q^{51} +(-2.50000 + 4.33013i) q^{52} +(1.82288 - 3.15731i) q^{53} +(-1.32288 - 2.29129i) q^{54} +3.64575 q^{55} +(-1.32288 - 2.29129i) q^{56} +0.937254 q^{57} +(-2.14575 - 3.71655i) q^{58} +(0.322876 - 0.559237i) q^{59} +(4.82288 - 8.35347i) q^{60} +(-1.85425 - 3.21165i) q^{61} +4.00000 q^{62} +(5.29150 - 9.16515i) q^{63} +1.00000 q^{64} +(-9.11438 - 15.7866i) q^{65} +(-1.32288 + 2.29129i) q^{66} +(-1.96863 + 3.40976i) q^{67} +(-3.00000 - 5.19615i) q^{68} +9.64575 q^{69} +9.64575 q^{70} +9.64575 q^{71} +(2.00000 + 3.46410i) q^{72} +(-2.82288 + 4.88936i) q^{73} +(-0.822876 + 1.42526i) q^{74} +(10.9686 + 18.9982i) q^{75} -0.354249 q^{76} -2.64575 q^{77} +13.2288 q^{78} +(-1.32288 - 2.29129i) q^{79} +(-1.82288 + 3.15731i) q^{80} +(2.50000 - 4.33013i) q^{81} +(-2.46863 - 4.27579i) q^{82} +13.2915 q^{83} +(-3.50000 + 6.06218i) q^{84} +21.8745 q^{85} +(-2.00000 - 3.46410i) q^{86} +(-5.67712 + 9.83307i) q^{87} +(0.500000 - 0.866025i) q^{88} +(7.29150 + 12.6293i) q^{89} -14.5830 q^{90} +(6.61438 + 11.4564i) q^{91} -3.64575 q^{92} +(-5.29150 - 9.16515i) q^{93} +(6.64575 - 11.5108i) q^{94} +(0.645751 - 1.11847i) q^{95} +(-1.32288 - 2.29129i) q^{96} -5.70850 q^{97} -7.00000 q^{98} +4.00000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q + 2 q^{2} - 2 q^{4} - 2 q^{5} - 4 q^{8} - 8 q^{9}+O(q^{10})$$ 4 * q + 2 * q^2 - 2 * q^4 - 2 * q^5 - 4 * q^8 - 8 * q^9 $$4 q + 2 q^{2} - 2 q^{4} - 2 q^{5} - 4 q^{8} - 8 q^{9} + 2 q^{10} - 2 q^{11} + 20 q^{13} - 28 q^{15} - 2 q^{16} - 12 q^{17} + 8 q^{18} + 6 q^{19} + 4 q^{20} + 28 q^{21} - 4 q^{22} + 2 q^{23} - 6 q^{25} + 10 q^{26} + 4 q^{29} - 14 q^{30} + 8 q^{31} + 2 q^{32} - 24 q^{34} + 14 q^{35} + 16 q^{36} - 2 q^{37} - 6 q^{38} + 2 q^{40} + 12 q^{41} + 14 q^{42} - 16 q^{43} - 2 q^{44} - 8 q^{45} - 2 q^{46} - 16 q^{47} - 14 q^{49} - 12 q^{50} - 10 q^{52} + 2 q^{53} + 4 q^{55} - 28 q^{57} + 2 q^{58} - 4 q^{59} + 14 q^{60} - 18 q^{61} + 16 q^{62} + 4 q^{64} - 10 q^{65} + 8 q^{67} - 12 q^{68} + 28 q^{69} + 28 q^{70} + 28 q^{71} + 8 q^{72} - 6 q^{73} + 2 q^{74} + 28 q^{75} - 12 q^{76} - 2 q^{80} + 10 q^{81} + 6 q^{82} + 32 q^{83} - 14 q^{84} + 24 q^{85} - 8 q^{86} - 28 q^{87} + 2 q^{88} + 8 q^{89} - 16 q^{90} - 4 q^{92} + 16 q^{94} - 8 q^{95} - 44 q^{97} - 28 q^{98} + 16 q^{99}+O(q^{100})$$ 4 * q + 2 * q^2 - 2 * q^4 - 2 * q^5 - 4 * q^8 - 8 * q^9 + 2 * q^10 - 2 * q^11 + 20 * q^13 - 28 * q^15 - 2 * q^16 - 12 * q^17 + 8 * q^18 + 6 * q^19 + 4 * q^20 + 28 * q^21 - 4 * q^22 + 2 * q^23 - 6 * q^25 + 10 * q^26 + 4 * q^29 - 14 * q^30 + 8 * q^31 + 2 * q^32 - 24 * q^34 + 14 * q^35 + 16 * q^36 - 2 * q^37 - 6 * q^38 + 2 * q^40 + 12 * q^41 + 14 * q^42 - 16 * q^43 - 2 * q^44 - 8 * q^45 - 2 * q^46 - 16 * q^47 - 14 * q^49 - 12 * q^50 - 10 * q^52 + 2 * q^53 + 4 * q^55 - 28 * q^57 + 2 * q^58 - 4 * q^59 + 14 * q^60 - 18 * q^61 + 16 * q^62 + 4 * q^64 - 10 * q^65 + 8 * q^67 - 12 * q^68 + 28 * q^69 + 28 * q^70 + 28 * q^71 + 8 * q^72 - 6 * q^73 + 2 * q^74 + 28 * q^75 - 12 * q^76 - 2 * q^80 + 10 * q^81 + 6 * q^82 + 32 * q^83 - 14 * q^84 + 24 * q^85 - 8 * q^86 - 28 * q^87 + 2 * q^88 + 8 * q^89 - 16 * q^90 - 4 * q^92 + 16 * q^94 - 8 * q^95 - 44 * q^97 - 28 * q^98 + 16 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/154\mathbb{Z}\right)^\times$$.

 $$n$$ $$45$$ $$57$$ $$\chi(n)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.500000 + 0.866025i 0.353553 + 0.612372i
$$3$$ 1.32288 2.29129i 0.763763 1.32288i −0.177136 0.984186i $$-0.556683\pi$$
0.940898 0.338689i $$-0.109984\pi$$
$$4$$ −0.500000 + 0.866025i −0.250000 + 0.433013i
$$5$$ −1.82288 3.15731i −0.815215 1.41199i −0.909174 0.416417i $$-0.863286\pi$$
0.0939588 0.995576i $$-0.470048\pi$$
$$6$$ 2.64575 1.08012
$$7$$ 1.32288 + 2.29129i 0.500000 + 0.866025i
$$8$$ −1.00000 −0.353553
$$9$$ −2.00000 3.46410i −0.666667 1.15470i
$$10$$ 1.82288 3.15731i 0.576444 0.998430i
$$11$$ −0.500000 + 0.866025i −0.150756 + 0.261116i
$$12$$ 1.32288 + 2.29129i 0.381881 + 0.661438i
$$13$$ 5.00000 1.38675 0.693375 0.720577i $$-0.256123\pi$$
0.693375 + 0.720577i $$0.256123\pi$$
$$14$$ −1.32288 + 2.29129i −0.353553 + 0.612372i
$$15$$ −9.64575 −2.49052
$$16$$ −0.500000 0.866025i −0.125000 0.216506i
$$17$$ −3.00000 + 5.19615i −0.727607 + 1.26025i 0.230285 + 0.973123i $$0.426034\pi$$
−0.957892 + 0.287129i $$0.907299\pi$$
$$18$$ 2.00000 3.46410i 0.471405 0.816497i
$$19$$ 0.177124 + 0.306788i 0.0406351 + 0.0703821i 0.885628 0.464396i $$-0.153729\pi$$
−0.844993 + 0.534778i $$0.820395\pi$$
$$20$$ 3.64575 0.815215
$$21$$ 7.00000 1.52753
$$22$$ −1.00000 −0.213201
$$23$$ 1.82288 + 3.15731i 0.380096 + 0.658345i 0.991076 0.133301i $$-0.0425577\pi$$
−0.610980 + 0.791646i $$0.709224\pi$$
$$24$$ −1.32288 + 2.29129i −0.270031 + 0.467707i
$$25$$ −4.14575 + 7.18065i −0.829150 + 1.43613i
$$26$$ 2.50000 + 4.33013i 0.490290 + 0.849208i
$$27$$ −2.64575 −0.509175
$$28$$ −2.64575 −0.500000
$$29$$ −4.29150 −0.796912 −0.398456 0.917187i $$-0.630454\pi$$
−0.398456 + 0.917187i $$0.630454\pi$$
$$30$$ −4.82288 8.35347i −0.880533 1.52513i
$$31$$ 2.00000 3.46410i 0.359211 0.622171i −0.628619 0.777714i $$-0.716379\pi$$
0.987829 + 0.155543i $$0.0497126\pi$$
$$32$$ 0.500000 0.866025i 0.0883883 0.153093i
$$33$$ 1.32288 + 2.29129i 0.230283 + 0.398862i
$$34$$ −6.00000 −1.02899
$$35$$ 4.82288 8.35347i 0.815215 1.41199i
$$36$$ 4.00000 0.666667
$$37$$ 0.822876 + 1.42526i 0.135280 + 0.234312i 0.925704 0.378248i $$-0.123473\pi$$
−0.790424 + 0.612560i $$0.790140\pi$$
$$38$$ −0.177124 + 0.306788i −0.0287334 + 0.0497676i
$$39$$ 6.61438 11.4564i 1.05915 1.83450i
$$40$$ 1.82288 + 3.15731i 0.288222 + 0.499215i
$$41$$ −4.93725 −0.771070 −0.385535 0.922693i $$-0.625983\pi$$
−0.385535 + 0.922693i $$0.625983\pi$$
$$42$$ 3.50000 + 6.06218i 0.540062 + 0.935414i
$$43$$ −4.00000 −0.609994 −0.304997 0.952353i $$-0.598656\pi$$
−0.304997 + 0.952353i $$0.598656\pi$$
$$44$$ −0.500000 0.866025i −0.0753778 0.130558i
$$45$$ −7.29150 + 12.6293i −1.08695 + 1.88266i
$$46$$ −1.82288 + 3.15731i −0.268768 + 0.465520i
$$47$$ −6.64575 11.5108i −0.969382 1.67902i −0.697349 0.716732i $$-0.745637\pi$$
−0.272034 0.962288i $$-0.587696\pi$$
$$48$$ −2.64575 −0.381881
$$49$$ −3.50000 + 6.06218i −0.500000 + 0.866025i
$$50$$ −8.29150 −1.17260
$$51$$ 7.93725 + 13.7477i 1.11144 + 1.92507i
$$52$$ −2.50000 + 4.33013i −0.346688 + 0.600481i
$$53$$ 1.82288 3.15731i 0.250391 0.433690i −0.713242 0.700918i $$-0.752774\pi$$
0.963634 + 0.267227i $$0.0861074\pi$$
$$54$$ −1.32288 2.29129i −0.180021 0.311805i
$$55$$ 3.64575 0.491593
$$56$$ −1.32288 2.29129i −0.176777 0.306186i
$$57$$ 0.937254 0.124142
$$58$$ −2.14575 3.71655i −0.281751 0.488007i
$$59$$ 0.322876 0.559237i 0.0420348 0.0728065i −0.844243 0.535961i $$-0.819949\pi$$
0.886277 + 0.463155i $$0.153283\pi$$
$$60$$ 4.82288 8.35347i 0.622631 1.07843i
$$61$$ −1.85425 3.21165i −0.237412 0.411210i 0.722559 0.691310i $$-0.242966\pi$$
−0.959971 + 0.280099i $$0.909633\pi$$
$$62$$ 4.00000 0.508001
$$63$$ 5.29150 9.16515i 0.666667 1.15470i
$$64$$ 1.00000 0.125000
$$65$$ −9.11438 15.7866i −1.13050 1.95808i
$$66$$ −1.32288 + 2.29129i −0.162835 + 0.282038i
$$67$$ −1.96863 + 3.40976i −0.240506 + 0.416569i −0.960859 0.277039i $$-0.910647\pi$$
0.720352 + 0.693608i $$0.243980\pi$$
$$68$$ −3.00000 5.19615i −0.363803 0.630126i
$$69$$ 9.64575 1.16121
$$70$$ 9.64575 1.15289
$$71$$ 9.64575 1.14474 0.572370 0.819995i $$-0.306024\pi$$
0.572370 + 0.819995i $$0.306024\pi$$
$$72$$ 2.00000 + 3.46410i 0.235702 + 0.408248i
$$73$$ −2.82288 + 4.88936i −0.330393 + 0.572257i −0.982589 0.185793i $$-0.940514\pi$$
0.652196 + 0.758050i $$0.273848\pi$$
$$74$$ −0.822876 + 1.42526i −0.0956574 + 0.165683i
$$75$$ 10.9686 + 18.9982i 1.26655 + 2.19373i
$$76$$ −0.354249 −0.0406351
$$77$$ −2.64575 −0.301511
$$78$$ 13.2288 1.49786
$$79$$ −1.32288 2.29129i −0.148835 0.257790i 0.781962 0.623326i $$-0.214219\pi$$
−0.930797 + 0.365536i $$0.880886\pi$$
$$80$$ −1.82288 + 3.15731i −0.203804 + 0.352998i
$$81$$ 2.50000 4.33013i 0.277778 0.481125i
$$82$$ −2.46863 4.27579i −0.272614 0.472182i
$$83$$ 13.2915 1.45893 0.729466 0.684017i $$-0.239769\pi$$
0.729466 + 0.684017i $$0.239769\pi$$
$$84$$ −3.50000 + 6.06218i −0.381881 + 0.661438i
$$85$$ 21.8745 2.37262
$$86$$ −2.00000 3.46410i −0.215666 0.373544i
$$87$$ −5.67712 + 9.83307i −0.608652 + 1.05422i
$$88$$ 0.500000 0.866025i 0.0533002 0.0923186i
$$89$$ 7.29150 + 12.6293i 0.772898 + 1.33870i 0.935968 + 0.352084i $$0.114527\pi$$
−0.163071 + 0.986614i $$0.552140\pi$$
$$90$$ −14.5830 −1.53718
$$91$$ 6.61438 + 11.4564i 0.693375 + 1.20096i
$$92$$ −3.64575 −0.380096
$$93$$ −5.29150 9.16515i −0.548703 0.950382i
$$94$$ 6.64575 11.5108i 0.685457 1.18725i
$$95$$ 0.645751 1.11847i 0.0662527 0.114753i
$$96$$ −1.32288 2.29129i −0.135015 0.233854i
$$97$$ −5.70850 −0.579610 −0.289805 0.957086i $$-0.593590\pi$$
−0.289805 + 0.957086i $$0.593590\pi$$
$$98$$ −7.00000 −0.707107
$$99$$ 4.00000 0.402015
$$100$$ −4.14575 7.18065i −0.414575 0.718065i
$$101$$ −1.50000 + 2.59808i −0.149256 + 0.258518i −0.930953 0.365140i $$-0.881021\pi$$
0.781697 + 0.623658i $$0.214354\pi$$
$$102$$ −7.93725 + 13.7477i −0.785905 + 1.36123i
$$103$$ −6.46863 11.2040i −0.637373 1.10396i −0.986007 0.166703i $$-0.946688\pi$$
0.348634 0.937259i $$-0.386646\pi$$
$$104$$ −5.00000 −0.490290
$$105$$ −12.7601 22.1012i −1.24526 2.15686i
$$106$$ 3.64575 0.354107
$$107$$ −2.46863 4.27579i −0.238651 0.413356i 0.721676 0.692231i $$-0.243372\pi$$
−0.960327 + 0.278875i $$0.910039\pi$$
$$108$$ 1.32288 2.29129i 0.127294 0.220479i
$$109$$ −5.29150 + 9.16515i −0.506834 + 0.877862i 0.493135 + 0.869953i $$0.335851\pi$$
−0.999969 + 0.00790932i $$0.997482\pi$$
$$110$$ 1.82288 + 3.15731i 0.173804 + 0.301038i
$$111$$ 4.35425 0.413287
$$112$$ 1.32288 2.29129i 0.125000 0.216506i
$$113$$ −7.70850 −0.725154 −0.362577 0.931954i $$-0.618103\pi$$
−0.362577 + 0.931954i $$0.618103\pi$$
$$114$$ 0.468627 + 0.811686i 0.0438909 + 0.0760213i
$$115$$ 6.64575 11.5108i 0.619720 1.07339i
$$116$$ 2.14575 3.71655i 0.199228 0.345073i
$$117$$ −10.0000 17.3205i −0.924500 1.60128i
$$118$$ 0.645751 0.0594462
$$119$$ −15.8745 −1.45521
$$120$$ 9.64575 0.880533
$$121$$ −0.500000 0.866025i −0.0454545 0.0787296i
$$122$$ 1.85425 3.21165i 0.167876 0.290769i
$$123$$ −6.53137 + 11.3127i −0.588914 + 1.02003i
$$124$$ 2.00000 + 3.46410i 0.179605 + 0.311086i
$$125$$ 12.0000 1.07331
$$126$$ 10.5830 0.942809
$$127$$ 0.0627461 0.00556781 0.00278391 0.999996i $$-0.499114\pi$$
0.00278391 + 0.999996i $$0.499114\pi$$
$$128$$ 0.500000 + 0.866025i 0.0441942 + 0.0765466i
$$129$$ −5.29150 + 9.16515i −0.465891 + 0.806947i
$$130$$ 9.11438 15.7866i 0.799384 1.38457i
$$131$$ −7.82288 13.5496i −0.683488 1.18384i −0.973909 0.226937i $$-0.927129\pi$$
0.290422 0.956899i $$-0.406204\pi$$
$$132$$ −2.64575 −0.230283
$$133$$ −0.468627 + 0.811686i −0.0406351 + 0.0703821i
$$134$$ −3.93725 −0.340127
$$135$$ 4.82288 + 8.35347i 0.415087 + 0.718952i
$$136$$ 3.00000 5.19615i 0.257248 0.445566i
$$137$$ −9.43725 + 16.3458i −0.806279 + 1.39652i 0.109145 + 0.994026i $$0.465189\pi$$
−0.915424 + 0.402490i $$0.868145\pi$$
$$138$$ 4.82288 + 8.35347i 0.410550 + 0.711094i
$$139$$ −4.00000 −0.339276 −0.169638 0.985506i $$-0.554260\pi$$
−0.169638 + 0.985506i $$0.554260\pi$$
$$140$$ 4.82288 + 8.35347i 0.407607 + 0.705997i
$$141$$ −35.1660 −2.96151
$$142$$ 4.82288 + 8.35347i 0.404727 + 0.701007i
$$143$$ −2.50000 + 4.33013i −0.209061 + 0.362103i
$$144$$ −2.00000 + 3.46410i −0.166667 + 0.288675i
$$145$$ 7.82288 + 13.5496i 0.649654 + 1.12523i
$$146$$ −5.64575 −0.467246
$$147$$ 9.26013 + 16.0390i 0.763763 + 1.32288i
$$148$$ −1.64575 −0.135280
$$149$$ 2.35425 + 4.07768i 0.192868 + 0.334056i 0.946199 0.323584i $$-0.104888\pi$$
−0.753332 + 0.657641i $$0.771555\pi$$
$$150$$ −10.9686 + 18.9982i −0.895585 + 1.55120i
$$151$$ 1.67712 2.90486i 0.136482 0.236395i −0.789680 0.613519i $$-0.789754\pi$$
0.926163 + 0.377124i $$0.123087\pi$$
$$152$$ −0.177124 0.306788i −0.0143667 0.0248838i
$$153$$ 24.0000 1.94029
$$154$$ −1.32288 2.29129i −0.106600 0.184637i
$$155$$ −14.5830 −1.17134
$$156$$ 6.61438 + 11.4564i 0.529574 + 0.917249i
$$157$$ 10.5830 18.3303i 0.844616 1.46292i −0.0413387 0.999145i $$-0.513162\pi$$
0.885954 0.463772i $$-0.153504\pi$$
$$158$$ 1.32288 2.29129i 0.105242 0.182285i
$$159$$ −4.82288 8.35347i −0.382479 0.662473i
$$160$$ −3.64575 −0.288222
$$161$$ −4.82288 + 8.35347i −0.380096 + 0.658345i
$$162$$ 5.00000 0.392837
$$163$$ 2.32288 + 4.02334i 0.181942 + 0.315132i 0.942542 0.334089i $$-0.108428\pi$$
−0.760600 + 0.649221i $$0.775095\pi$$
$$164$$ 2.46863 4.27579i 0.192767 0.333883i
$$165$$ 4.82288 8.35347i 0.375460 0.650316i
$$166$$ 6.64575 + 11.5108i 0.515810 + 0.893410i
$$167$$ 15.2288 1.17844 0.589218 0.807974i $$-0.299436\pi$$
0.589218 + 0.807974i $$0.299436\pi$$
$$168$$ −7.00000 −0.540062
$$169$$ 12.0000 0.923077
$$170$$ 10.9373 + 18.9439i 0.838849 + 1.45293i
$$171$$ 0.708497 1.22715i 0.0541801 0.0938428i
$$172$$ 2.00000 3.46410i 0.152499 0.264135i
$$173$$ −5.14575 8.91270i −0.391224 0.677620i 0.601387 0.798958i $$-0.294615\pi$$
−0.992611 + 0.121338i $$0.961282\pi$$
$$174$$ −11.3542 −0.860763
$$175$$ −21.9373 −1.65830
$$176$$ 1.00000 0.0753778
$$177$$ −0.854249 1.47960i −0.0642093 0.111214i
$$178$$ −7.29150 + 12.6293i −0.546521 + 0.946603i
$$179$$ 2.03137 3.51844i 0.151832 0.262981i −0.780069 0.625693i $$-0.784816\pi$$
0.931901 + 0.362713i $$0.118149\pi$$
$$180$$ −7.29150 12.6293i −0.543477 0.941329i
$$181$$ −10.0000 −0.743294 −0.371647 0.928374i $$-0.621207\pi$$
−0.371647 + 0.928374i $$0.621207\pi$$
$$182$$ −6.61438 + 11.4564i −0.490290 + 0.849208i
$$183$$ −9.81176 −0.725306
$$184$$ −1.82288 3.15731i −0.134384 0.232760i
$$185$$ 3.00000 5.19615i 0.220564 0.382029i
$$186$$ 5.29150 9.16515i 0.387992 0.672022i
$$187$$ −3.00000 5.19615i −0.219382 0.379980i
$$188$$ 13.2915 0.969382
$$189$$ −3.50000 6.06218i −0.254588 0.440959i
$$190$$ 1.29150 0.0936954
$$191$$ 6.64575 + 11.5108i 0.480870 + 0.832891i 0.999759 0.0219507i $$-0.00698768\pi$$
−0.518889 + 0.854841i $$0.673654\pi$$
$$192$$ 1.32288 2.29129i 0.0954703 0.165359i
$$193$$ 5.76013 9.97684i 0.414623 0.718148i −0.580766 0.814071i $$-0.697247\pi$$
0.995389 + 0.0959224i $$0.0305801\pi$$
$$194$$ −2.85425 4.94370i −0.204923 0.354937i
$$195$$ −48.2288 −3.45373
$$196$$ −3.50000 6.06218i −0.250000 0.433013i
$$197$$ 18.8745 1.34475 0.672377 0.740209i $$-0.265274\pi$$
0.672377 + 0.740209i $$0.265274\pi$$
$$198$$ 2.00000 + 3.46410i 0.142134 + 0.246183i
$$199$$ 11.1144 19.2507i 0.787877 1.36464i −0.139388 0.990238i $$-0.544513\pi$$
0.927265 0.374406i $$-0.122153\pi$$
$$200$$ 4.14575 7.18065i 0.293149 0.507749i
$$201$$ 5.20850 + 9.02138i 0.367379 + 0.636319i
$$202$$ −3.00000 −0.211079
$$203$$ −5.67712 9.83307i −0.398456 0.690146i
$$204$$ −15.8745 −1.11144
$$205$$ 9.00000 + 15.5885i 0.628587 + 1.08875i
$$206$$ 6.46863 11.2040i 0.450691 0.780619i
$$207$$ 7.29150 12.6293i 0.506794 0.877794i
$$208$$ −2.50000 4.33013i −0.173344 0.300240i
$$209$$ −0.354249 −0.0245039
$$210$$ 12.7601 22.1012i 0.880533 1.52513i
$$211$$ −14.9373 −1.02832 −0.514161 0.857693i $$-0.671897\pi$$
−0.514161 + 0.857693i $$0.671897\pi$$
$$212$$ 1.82288 + 3.15731i 0.125196 + 0.216845i
$$213$$ 12.7601 22.1012i 0.874310 1.51435i
$$214$$ 2.46863 4.27579i 0.168752 0.292287i
$$215$$ 7.29150 + 12.6293i 0.497276 + 0.861308i
$$216$$ 2.64575 0.180021
$$217$$ 10.5830 0.718421
$$218$$ −10.5830 −0.716772
$$219$$ 7.46863 + 12.9360i 0.504683 + 0.874137i
$$220$$ −1.82288 + 3.15731i −0.122898 + 0.212866i
$$221$$ −15.0000 + 25.9808i −1.00901 + 1.74766i
$$222$$ 2.17712 + 3.77089i 0.146119 + 0.253086i
$$223$$ −12.3542 −0.827302 −0.413651 0.910436i $$-0.635747\pi$$
−0.413651 + 0.910436i $$0.635747\pi$$
$$224$$ 2.64575 0.176777
$$225$$ 33.1660 2.21107
$$226$$ −3.85425 6.67575i −0.256381 0.444065i
$$227$$ 6.64575 11.5108i 0.441094 0.763997i −0.556677 0.830729i $$-0.687924\pi$$
0.997771 + 0.0667318i $$0.0212572\pi$$
$$228$$ −0.468627 + 0.811686i −0.0310356 + 0.0537552i
$$229$$ 8.00000 + 13.8564i 0.528655 + 0.915657i 0.999442 + 0.0334101i $$0.0106368\pi$$
−0.470787 + 0.882247i $$0.656030\pi$$
$$230$$ 13.2915 0.876416
$$231$$ −3.50000 + 6.06218i −0.230283 + 0.398862i
$$232$$ 4.29150 0.281751
$$233$$ −8.46863 14.6681i −0.554798 0.960939i −0.997919 0.0644769i $$-0.979462\pi$$
0.443121 0.896462i $$-0.353871\pi$$
$$234$$ 10.0000 17.3205i 0.653720 1.13228i
$$235$$ −24.2288 + 41.9654i −1.58051 + 2.73752i
$$236$$ 0.322876 + 0.559237i 0.0210174 + 0.0364032i
$$237$$ −7.00000 −0.454699
$$238$$ −7.93725 13.7477i −0.514496 0.891133i
$$239$$ 9.22876 0.596959 0.298479 0.954416i $$-0.403521\pi$$
0.298479 + 0.954416i $$0.403521\pi$$
$$240$$ 4.82288 + 8.35347i 0.311315 + 0.539214i
$$241$$ −11.4059 + 19.7556i −0.734717 + 1.27257i 0.220130 + 0.975471i $$0.429352\pi$$
−0.954847 + 0.297097i $$0.903981\pi$$
$$242$$ 0.500000 0.866025i 0.0321412 0.0556702i
$$243$$ −10.5830 18.3303i −0.678900 1.17589i
$$244$$ 3.70850 0.237412
$$245$$ 25.5203 1.63043
$$246$$ −13.0627 −0.832850
$$247$$ 0.885622 + 1.53394i 0.0563508 + 0.0976024i
$$248$$ −2.00000 + 3.46410i −0.127000 + 0.219971i
$$249$$ 17.5830 30.4547i 1.11428 1.92999i
$$250$$ 6.00000 + 10.3923i 0.379473 + 0.657267i
$$251$$ 7.29150 0.460236 0.230118 0.973163i $$-0.426089\pi$$
0.230118 + 0.973163i $$0.426089\pi$$
$$252$$ 5.29150 + 9.16515i 0.333333 + 0.577350i
$$253$$ −3.64575 −0.229206
$$254$$ 0.0313730 + 0.0543397i 0.00196852 + 0.00340958i
$$255$$ 28.9373 50.1208i 1.81212 3.13869i
$$256$$ −0.500000 + 0.866025i −0.0312500 + 0.0541266i
$$257$$ 0.208497 + 0.361128i 0.0130057 + 0.0225265i 0.872455 0.488694i $$-0.162527\pi$$
−0.859449 + 0.511221i $$0.829193\pi$$
$$258$$ −10.5830 −0.658869
$$259$$ −2.17712 + 3.77089i −0.135280 + 0.234312i
$$260$$ 18.2288 1.13050
$$261$$ 8.58301 + 14.8662i 0.531275 + 0.920195i
$$262$$ 7.82288 13.5496i 0.483299 0.837098i
$$263$$ −2.03137 + 3.51844i −0.125260 + 0.216956i −0.921834 0.387584i $$-0.873310\pi$$
0.796575 + 0.604540i $$0.206643\pi$$
$$264$$ −1.32288 2.29129i −0.0814174 0.141019i
$$265$$ −13.2915 −0.816491
$$266$$ −0.937254 −0.0574667
$$267$$ 38.5830 2.36124
$$268$$ −1.96863 3.40976i −0.120253 0.208284i
$$269$$ −13.2915 + 23.0216i −0.810397 + 1.40365i 0.102189 + 0.994765i $$0.467415\pi$$
−0.912586 + 0.408884i $$0.865918\pi$$
$$270$$ −4.82288 + 8.35347i −0.293511 + 0.508376i
$$271$$ 8.96863 + 15.5341i 0.544805 + 0.943630i 0.998619 + 0.0525339i $$0.0167298\pi$$
−0.453814 + 0.891097i $$0.649937\pi$$
$$272$$ 6.00000 0.363803
$$273$$ 35.0000 2.11830
$$274$$ −18.8745 −1.14025
$$275$$ −4.14575 7.18065i −0.249998 0.433010i
$$276$$ −4.82288 + 8.35347i −0.290303 + 0.502820i
$$277$$ 5.85425 10.1399i 0.351748 0.609245i −0.634808 0.772670i $$-0.718921\pi$$
0.986556 + 0.163425i $$0.0522542\pi$$
$$278$$ −2.00000 3.46410i −0.119952 0.207763i
$$279$$ −16.0000 −0.957895
$$280$$ −4.82288 + 8.35347i −0.288222 + 0.499215i
$$281$$ −7.06275 −0.421328 −0.210664 0.977559i $$-0.567563\pi$$
−0.210664 + 0.977559i $$0.567563\pi$$
$$282$$ −17.5830 30.4547i −1.04705 1.81355i
$$283$$ 3.82288 6.62141i 0.227246 0.393602i −0.729745 0.683720i $$-0.760361\pi$$
0.956991 + 0.290118i $$0.0936944\pi$$
$$284$$ −4.82288 + 8.35347i −0.286185 + 0.495687i
$$285$$ −1.70850 2.95920i −0.101203 0.175288i
$$286$$ −5.00000 −0.295656
$$287$$ −6.53137 11.3127i −0.385535 0.667766i
$$288$$ −4.00000 −0.235702
$$289$$ −9.50000 16.4545i −0.558824 0.967911i
$$290$$ −7.82288 + 13.5496i −0.459375 + 0.795661i
$$291$$ −7.55163 + 13.0798i −0.442685 + 0.766752i
$$292$$ −2.82288 4.88936i −0.165196 0.286128i
$$293$$ 12.0000 0.701047 0.350524 0.936554i $$-0.386004\pi$$
0.350524 + 0.936554i $$0.386004\pi$$
$$294$$ −9.26013 + 16.0390i −0.540062 + 0.935414i
$$295$$ −2.35425 −0.137070
$$296$$ −0.822876 1.42526i −0.0478287 0.0828417i
$$297$$ 1.32288 2.29129i 0.0767610 0.132954i
$$298$$ −2.35425 + 4.07768i −0.136378 + 0.236214i
$$299$$ 9.11438 + 15.7866i 0.527098 + 0.912961i
$$300$$ −21.9373 −1.26655
$$301$$ −5.29150 9.16515i −0.304997 0.528271i
$$302$$ 3.35425 0.193015
$$303$$ 3.96863 + 6.87386i 0.227992 + 0.394893i
$$304$$ 0.177124 0.306788i 0.0101588 0.0175955i
$$305$$ −6.76013 + 11.7089i −0.387084 + 0.670449i
$$306$$ 12.0000 + 20.7846i 0.685994 + 1.18818i
$$307$$ −4.22876 −0.241348 −0.120674 0.992692i $$-0.538506\pi$$
−0.120674 + 0.992692i $$0.538506\pi$$
$$308$$ 1.32288 2.29129i 0.0753778 0.130558i
$$309$$ −34.2288 −1.94721
$$310$$ −7.29150 12.6293i −0.414130 0.717293i
$$311$$ −8.46863 + 14.6681i −0.480212 + 0.831751i −0.999742 0.0227007i $$-0.992774\pi$$
0.519531 + 0.854452i $$0.326107\pi$$
$$312$$ −6.61438 + 11.4564i −0.374465 + 0.648593i
$$313$$ −1.20850 2.09318i −0.0683083 0.118313i 0.829848 0.557989i $$-0.188427\pi$$
−0.898157 + 0.439675i $$0.855093\pi$$
$$314$$ 21.1660 1.19447
$$315$$ −38.5830 −2.17391
$$316$$ 2.64575 0.148835
$$317$$ −6.00000 10.3923i −0.336994 0.583690i 0.646872 0.762598i $$-0.276077\pi$$
−0.983866 + 0.178908i $$0.942743\pi$$
$$318$$ 4.82288 8.35347i 0.270453 0.468439i
$$319$$ 2.14575 3.71655i 0.120139 0.208087i
$$320$$ −1.82288 3.15731i −0.101902 0.176499i
$$321$$ −13.0627 −0.729091
$$322$$ −9.64575 −0.537537
$$323$$ −2.12549 −0.118266
$$324$$ 2.50000 + 4.33013i 0.138889 + 0.240563i
$$325$$ −20.7288 + 35.9033i −1.14982 + 1.99155i
$$326$$ −2.32288 + 4.02334i −0.128652 + 0.222832i
$$327$$ 14.0000 + 24.2487i 0.774202 + 1.34096i
$$328$$ 4.93725 0.272614
$$329$$ 17.5830 30.4547i 0.969382 1.67902i
$$330$$ 9.64575 0.530981
$$331$$ 7.67712 + 13.2972i 0.421973 + 0.730879i 0.996132 0.0878650i $$-0.0280044\pi$$
−0.574159 + 0.818743i $$0.694671\pi$$
$$332$$ −6.64575 + 11.5108i −0.364733 + 0.631736i
$$333$$ 3.29150 5.70105i 0.180373 0.312416i
$$334$$ 7.61438 + 13.1885i 0.416640 + 0.721642i
$$335$$ 14.3542 0.784256
$$336$$ −3.50000 6.06218i −0.190941 0.330719i
$$337$$ 24.9373 1.35842 0.679209 0.733945i $$-0.262323\pi$$
0.679209 + 0.733945i $$0.262323\pi$$
$$338$$ 6.00000 + 10.3923i 0.326357 + 0.565267i
$$339$$ −10.1974 + 17.6624i −0.553846 + 0.959289i
$$340$$ −10.9373 + 18.9439i −0.593156 + 1.02738i
$$341$$ 2.00000 + 3.46410i 0.108306 + 0.187592i
$$342$$ 1.41699 0.0766223
$$343$$ −18.5203 −1.00000
$$344$$ 4.00000 0.215666
$$345$$ −17.5830 30.4547i −0.946637 1.63962i
$$346$$ 5.14575 8.91270i 0.276637 0.479150i
$$347$$ −13.4059 + 23.2197i −0.719665 + 1.24650i 0.241467 + 0.970409i $$0.422371\pi$$
−0.961132 + 0.276088i $$0.910962\pi$$
$$348$$ −5.67712 9.83307i −0.304326 0.527108i
$$349$$ 29.8745 1.59915 0.799573 0.600569i $$-0.205059\pi$$
0.799573 + 0.600569i $$0.205059\pi$$
$$350$$ −10.9686 18.9982i −0.586298 1.01550i
$$351$$ −13.2288 −0.706099
$$352$$ 0.500000 + 0.866025i 0.0266501 + 0.0461593i
$$353$$ 17.5830 30.4547i 0.935849 1.62094i 0.162736 0.986670i $$-0.447968\pi$$
0.773113 0.634268i $$-0.218699\pi$$
$$354$$ 0.854249 1.47960i 0.0454028 0.0786400i
$$355$$ −17.5830 30.4547i −0.933209 1.61637i
$$356$$ −14.5830 −0.772898
$$357$$ −21.0000 + 36.3731i −1.11144 + 1.92507i
$$358$$ 4.06275 0.214723
$$359$$ 5.03137 + 8.71459i 0.265546 + 0.459939i 0.967706 0.252080i $$-0.0811145\pi$$
−0.702161 + 0.712018i $$0.747781\pi$$
$$360$$ 7.29150 12.6293i 0.384296 0.665620i
$$361$$ 9.43725 16.3458i 0.496698 0.860305i
$$362$$ −5.00000 8.66025i −0.262794 0.455173i
$$363$$ −2.64575 −0.138866
$$364$$ −13.2288 −0.693375
$$365$$ 20.5830 1.07736
$$366$$ −4.90588 8.49723i −0.256435 0.444158i
$$367$$ 4.88562 8.46215i 0.255027 0.441720i −0.709876 0.704327i $$-0.751249\pi$$
0.964903 + 0.262607i $$0.0845822\pi$$
$$368$$ 1.82288 3.15731i 0.0950240 0.164586i
$$369$$ 9.87451 + 17.1031i 0.514046 + 0.890354i
$$370$$ 6.00000 0.311925
$$371$$ 9.64575 0.500782
$$372$$ 10.5830 0.548703
$$373$$ 5.43725 + 9.41760i 0.281530 + 0.487625i 0.971762 0.235964i $$-0.0758247\pi$$
−0.690232 + 0.723589i $$0.742491\pi$$
$$374$$ 3.00000 5.19615i 0.155126 0.268687i
$$375$$ 15.8745 27.4955i 0.819756 1.41986i
$$376$$ 6.64575 + 11.5108i 0.342728 + 0.593623i
$$377$$ −21.4575 −1.10512
$$378$$ 3.50000 6.06218i 0.180021 0.311805i
$$379$$ 21.9373 1.12684 0.563421 0.826170i $$-0.309485\pi$$
0.563421 + 0.826170i $$0.309485\pi$$
$$380$$ 0.645751 + 1.11847i 0.0331263 + 0.0573765i
$$381$$ 0.0830052 0.143769i 0.00425249 0.00736552i
$$382$$ −6.64575 + 11.5108i −0.340026 + 0.588943i
$$383$$ 17.0516 + 29.5343i 0.871298 + 1.50913i 0.860655 + 0.509189i $$0.170054\pi$$
0.0106427 + 0.999943i $$0.496612\pi$$
$$384$$ 2.64575 0.135015
$$385$$ 4.82288 + 8.35347i 0.245797 + 0.425732i
$$386$$ 11.5203 0.586366
$$387$$ 8.00000 + 13.8564i 0.406663 + 0.704361i
$$388$$ 2.85425 4.94370i 0.144903 0.250979i
$$389$$ 10.4059 18.0235i 0.527599 0.913828i −0.471883 0.881661i $$-0.656426\pi$$
0.999482 0.0321675i $$-0.0102410\pi$$
$$390$$ −24.1144 41.7673i −1.22108 2.11497i
$$391$$ −21.8745 −1.10624
$$392$$ 3.50000 6.06218i 0.176777 0.306186i
$$393$$ −41.3948 −2.08809
$$394$$ 9.43725 + 16.3458i 0.475442 + 0.823490i
$$395$$ −4.82288 + 8.35347i −0.242665 + 0.420308i
$$396$$ −2.00000 + 3.46410i −0.100504 + 0.174078i
$$397$$ −15.5830 26.9906i −0.782089 1.35462i −0.930723 0.365725i $$-0.880821\pi$$
0.148634 0.988892i $$-0.452512\pi$$
$$398$$ 22.2288 1.11423
$$399$$ 1.23987 + 2.14752i 0.0620712 + 0.107510i
$$400$$ 8.29150 0.414575
$$401$$ −0.208497 0.361128i −0.0104119 0.0180339i 0.860773 0.508990i $$-0.169981\pi$$
−0.871184 + 0.490956i $$0.836648\pi$$
$$402$$ −5.20850 + 9.02138i −0.259776 + 0.449946i
$$403$$ 10.0000 17.3205i 0.498135 0.862796i
$$404$$ −1.50000 2.59808i −0.0746278 0.129259i
$$405$$ −18.2288 −0.905794
$$406$$ 5.67712 9.83307i 0.281751 0.488007i
$$407$$ −1.64575 −0.0815769
$$408$$ −7.93725 13.7477i −0.392953 0.680614i
$$409$$ −9.46863 + 16.4001i −0.468193 + 0.810935i −0.999339 0.0363456i $$-0.988428\pi$$
0.531146 + 0.847280i $$0.321762\pi$$
$$410$$ −9.00000 + 15.5885i −0.444478 + 0.769859i
$$411$$ 24.9686 + 43.2469i 1.23161 + 2.13321i
$$412$$ 12.9373 0.637373
$$413$$ 1.70850 0.0840697
$$414$$ 14.5830 0.716716
$$415$$ −24.2288 41.9654i −1.18934 2.06000i
$$416$$ 2.50000 4.33013i 0.122573 0.212302i
$$417$$ −5.29150 + 9.16515i −0.259126 + 0.448819i
$$418$$ −0.177124 0.306788i −0.00866343 0.0150055i
$$419$$ 21.8745 1.06864 0.534320 0.845282i $$-0.320568\pi$$
0.534320 + 0.845282i $$0.320568\pi$$
$$420$$ 25.5203 1.24526
$$421$$ −33.1660 −1.61641 −0.808206 0.588900i $$-0.799561\pi$$
−0.808206 + 0.588900i $$0.799561\pi$$
$$422$$ −7.46863 12.9360i −0.363567 0.629717i
$$423$$ −26.5830 + 46.0431i −1.29251 + 2.23869i
$$424$$ −1.82288 + 3.15731i −0.0885267 + 0.153333i
$$425$$ −24.8745 43.0839i −1.20659 2.08988i
$$426$$ 25.5203 1.23646
$$427$$ 4.90588 8.49723i 0.237412 0.411210i
$$428$$ 4.93725 0.238651
$$429$$ 6.61438 + 11.4564i 0.319345 + 0.553122i
$$430$$ −7.29150 + 12.6293i −0.351627 + 0.609037i
$$431$$ −1.38562 + 2.39997i −0.0667430 + 0.115602i −0.897466 0.441084i $$-0.854594\pi$$
0.830723 + 0.556686i $$0.187927\pi$$
$$432$$ 1.32288 + 2.29129i 0.0636469 + 0.110240i
$$433$$ −16.0000 −0.768911 −0.384455 0.923144i $$-0.625611\pi$$
−0.384455 + 0.923144i $$0.625611\pi$$
$$434$$ 5.29150 + 9.16515i 0.254000 + 0.439941i
$$435$$ 41.3948 1.98473
$$436$$ −5.29150 9.16515i −0.253417 0.438931i
$$437$$ −0.645751 + 1.11847i −0.0308905 + 0.0535039i
$$438$$ −7.46863 + 12.9360i −0.356865 + 0.618108i
$$439$$ 5.96863 + 10.3380i 0.284867 + 0.493404i 0.972577 0.232581i $$-0.0747172\pi$$
−0.687710 + 0.725986i $$0.741384\pi$$
$$440$$ −3.64575 −0.173804
$$441$$ 28.0000 1.33333
$$442$$ −30.0000 −1.42695
$$443$$ 9.22876 + 15.9847i 0.438471 + 0.759455i 0.997572 0.0696451i $$-0.0221867\pi$$
−0.559100 + 0.829100i $$0.688853\pi$$
$$444$$ −2.17712 + 3.77089i −0.103322 + 0.178959i
$$445$$ 26.5830 46.0431i 1.26016 2.18265i
$$446$$ −6.17712 10.6991i −0.292495 0.506617i
$$447$$ 12.4575 0.589220
$$448$$ 1.32288 + 2.29129i 0.0625000 + 0.108253i
$$449$$ 9.87451 0.466007 0.233003 0.972476i $$-0.425145\pi$$
0.233003 + 0.972476i $$0.425145\pi$$
$$450$$ 16.5830 + 28.7226i 0.781730 + 1.35400i
$$451$$ 2.46863 4.27579i 0.116243 0.201339i
$$452$$ 3.85425 6.67575i 0.181289 0.314001i
$$453$$ −4.43725 7.68555i −0.208480 0.361099i
$$454$$ 13.2915 0.623801
$$455$$ 24.1144 41.7673i 1.13050 1.95808i
$$456$$ −0.937254 −0.0438909
$$457$$ 19.5830 + 33.9188i 0.916054 + 1.58665i 0.805350 + 0.592799i $$0.201977\pi$$
0.110704 + 0.993853i $$0.464689\pi$$
$$458$$ −8.00000 + 13.8564i −0.373815 + 0.647467i
$$459$$ 7.93725 13.7477i 0.370479 0.641689i
$$460$$ 6.64575 + 11.5108i 0.309860 + 0.536693i
$$461$$ −32.1660 −1.49812 −0.749060 0.662502i $$-0.769495\pi$$
−0.749060 + 0.662502i $$0.769495\pi$$
$$462$$ −7.00000 −0.325669
$$463$$ −22.4575 −1.04369 −0.521845 0.853041i $$-0.674756\pi$$
−0.521845 + 0.853041i $$0.674756\pi$$
$$464$$ 2.14575 + 3.71655i 0.0996140 + 0.172537i
$$465$$ −19.2915 + 33.4139i −0.894622 + 1.54953i
$$466$$ 8.46863 14.6681i 0.392302 0.679486i
$$467$$ −5.35425 9.27383i −0.247765 0.429142i 0.715140 0.698981i $$-0.246363\pi$$
−0.962905 + 0.269839i $$0.913029\pi$$
$$468$$ 20.0000 0.924500
$$469$$ −10.4170 −0.481012
$$470$$ −48.4575 −2.23518
$$471$$ −28.0000 48.4974i −1.29017 2.23464i
$$472$$ −0.322876 + 0.559237i −0.0148616 + 0.0257410i
$$473$$ 2.00000 3.46410i 0.0919601 0.159280i
$$474$$ −3.50000 6.06218i −0.160760 0.278445i
$$475$$ −2.93725 −0.134770
$$476$$ 7.93725 13.7477i 0.363803 0.630126i
$$477$$ −14.5830 −0.667710
$$478$$ 4.61438 + 7.99234i 0.211057 + 0.365561i
$$479$$ 12.9686 22.4623i 0.592552 1.02633i −0.401336 0.915931i $$-0.631454\pi$$
0.993887 0.110399i $$-0.0352127\pi$$
$$480$$ −4.82288 + 8.35347i −0.220133 + 0.381282i
$$481$$ 4.11438 + 7.12631i 0.187600 + 0.324932i
$$482$$ −22.8118 −1.03905
$$483$$ 12.7601 + 22.1012i 0.580606 + 1.00564i
$$484$$ 1.00000 0.0454545
$$485$$ 10.4059 + 18.0235i 0.472507 + 0.818406i
$$486$$ 10.5830 18.3303i 0.480055 0.831479i
$$487$$ 15.2915 26.4857i 0.692924 1.20018i −0.277951 0.960595i $$-0.589655\pi$$
0.970875 0.239585i $$-0.0770113\pi$$
$$488$$ 1.85425 + 3.21165i 0.0839379 + 0.145385i
$$489$$ 12.2915 0.555841
$$490$$ 12.7601 + 22.1012i 0.576444 + 0.998430i
$$491$$ 10.7085 0.483268 0.241634 0.970367i $$-0.422317\pi$$
0.241634 + 0.970367i $$0.422317\pi$$
$$492$$ −6.53137 11.3127i −0.294457 0.510015i
$$493$$ 12.8745 22.2993i 0.579839 1.00431i
$$494$$ −0.885622 + 1.53394i −0.0398460 + 0.0690153i
$$495$$ −7.29150 12.6293i −0.327729 0.567643i
$$496$$ −4.00000 −0.179605
$$497$$ 12.7601 + 22.1012i 0.572370 + 0.991374i
$$498$$ 35.1660 1.57583
$$499$$ −8.93725 15.4798i −0.400086 0.692970i 0.593650 0.804724i $$-0.297687\pi$$
−0.993736 + 0.111754i $$0.964353\pi$$
$$500$$ −6.00000 + 10.3923i −0.268328 + 0.464758i
$$501$$ 20.1458 34.8935i 0.900046 1.55893i
$$502$$ 3.64575 + 6.31463i 0.162718 + 0.281836i
$$503$$ −19.9373 −0.888958 −0.444479 0.895789i $$-0.646611\pi$$
−0.444479 + 0.895789i $$0.646611\pi$$
$$504$$ −5.29150 + 9.16515i −0.235702 + 0.408248i
$$505$$ 10.9373 0.486701
$$506$$ −1.82288 3.15731i −0.0810367 0.140360i
$$507$$ 15.8745 27.4955i 0.705012 1.22112i
$$508$$ −0.0313730 + 0.0543397i −0.00139195 + 0.00241093i
$$509$$ −10.2915 17.8254i −0.456163 0.790097i 0.542591 0.839997i $$-0.317443\pi$$
−0.998754 + 0.0498996i $$0.984110\pi$$
$$510$$ 57.8745 2.56273
$$511$$ −14.9373 −0.660785
$$512$$ −1.00000 −0.0441942
$$513$$ −0.468627 0.811686i −0.0206904 0.0358368i
$$514$$ −0.208497 + 0.361128i −0.00919643 + 0.0159287i
$$515$$ −23.5830 + 40.8470i −1.03919 + 1.79993i
$$516$$ −5.29150 9.16515i −0.232945 0.403473i
$$517$$ 13.2915 0.584560
$$518$$ −4.35425 −0.191315
$$519$$ −27.2288 −1.19521
$$520$$ 9.11438 + 15.7866i 0.399692 + 0.692287i
$$521$$ 1.06275 1.84073i 0.0465598 0.0806439i −0.841806 0.539780i $$-0.818508\pi$$
0.888366 + 0.459136i $$0.151841\pi$$
$$522$$ −8.58301 + 14.8662i −0.375668 + 0.650676i
$$523$$ −7.76013 13.4409i −0.339327 0.587731i 0.644979 0.764200i $$-0.276866\pi$$
−0.984306 + 0.176469i $$0.943533\pi$$
$$524$$ 15.6458 0.683488
$$525$$ −29.0203 + 50.2646i −1.26655 + 2.19373i
$$526$$ −4.06275 −0.177144
$$527$$ 12.0000 + 20.7846i 0.522728 + 0.905392i
$$528$$ 1.32288 2.29129i 0.0575708 0.0997155i
$$529$$ 4.85425 8.40781i 0.211054 0.365557i
$$530$$ −6.64575 11.5108i −0.288673 0.499996i
$$531$$ −2.58301 −0.112093
$$532$$ −0.468627 0.811686i −0.0203176 0.0351910i
$$533$$ −24.6863 −1.06928
$$534$$ 19.2915 + 33.4139i 0.834825 + 1.44596i
$$535$$ −9.00000 + 15.5885i −0.389104 + 0.673948i
$$536$$ 1.96863 3.40976i 0.0850317 0.147279i
$$537$$ −5.37451 9.30892i −0.231927 0.401710i
$$538$$ −26.5830 −1.14607
$$539$$ −3.50000 6.06218i −0.150756 0.261116i
$$540$$ −9.64575 −0.415087
$$541$$ 4.14575 + 7.18065i 0.178240 + 0.308720i 0.941278 0.337633i $$-0.109626\pi$$
−0.763038 + 0.646354i $$0.776293\pi$$
$$542$$ −8.96863 + 15.5341i −0.385236 + 0.667247i
$$543$$ −13.2288 + 22.9129i −0.567700 + 0.983286i
$$544$$ 3.00000 + 5.19615i 0.128624 + 0.222783i
$$545$$ 38.5830 1.65271
$$546$$ 17.5000 + 30.3109i 0.748931 + 1.29719i
$$547$$ 27.5203 1.17668 0.588341 0.808613i $$-0.299781\pi$$
0.588341 + 0.808613i $$0.299781\pi$$
$$548$$ −9.43725 16.3458i −0.403140 0.698258i
$$549$$ −7.41699 + 12.8466i −0.316550 + 0.548280i
$$550$$ 4.14575 7.18065i 0.176775 0.306184i
$$551$$ −0.760130 1.31658i −0.0323826 0.0560883i
$$552$$ −9.64575 −0.410550
$$553$$ 3.50000 6.06218i 0.148835 0.257790i
$$554$$ 11.7085 0.497446
$$555$$ −7.93725 13.7477i −0.336918 0.583559i
$$556$$ 2.00000 3.46410i 0.0848189 0.146911i
$$557$$ −15.8745 + 27.4955i −0.672624 + 1.16502i 0.304533 + 0.952502i $$0.401500\pi$$
−0.977157 + 0.212518i $$0.931834\pi$$
$$558$$ −8.00000 13.8564i −0.338667 0.586588i
$$559$$ −20.0000 −0.845910
$$560$$ −9.64575 −0.407607
$$561$$ −15.8745 −0.670222
$$562$$ −3.53137 6.11652i −0.148962 0.258010i
$$563$$ −6.53137 + 11.3127i −0.275265 + 0.476772i −0.970202 0.242298i $$-0.922099\pi$$
0.694937 + 0.719070i $$0.255432\pi$$
$$564$$ 17.5830 30.4547i 0.740378 1.28237i
$$565$$ 14.0516 + 24.3381i 0.591157 + 1.02391i
$$566$$ 7.64575 0.321375
$$567$$ 13.2288 0.555556
$$568$$ −9.64575 −0.404727
$$569$$ 20.5830 + 35.6508i 0.862884 + 1.49456i 0.869133 + 0.494579i $$0.164678\pi$$
−0.00624806 + 0.999980i $$0.501989\pi$$
$$570$$ 1.70850 2.95920i 0.0715611 0.123947i
$$571$$ 22.4686 38.9168i 0.940283 1.62862i 0.175351 0.984506i $$-0.443894\pi$$
0.764932 0.644112i $$-0.222773\pi$$
$$572$$ −2.50000 4.33013i −0.104530 0.181052i
$$573$$ 35.1660 1.46908
$$574$$ 6.53137 11.3127i 0.272614 0.472182i
$$575$$ −30.2288 −1.26063
$$576$$ −2.00000 3.46410i −0.0833333 0.144338i
$$577$$ 12.7288 22.0469i 0.529905 0.917823i −0.469486 0.882940i $$-0.655561\pi$$
0.999391 0.0348828i $$-0.0111058\pi$$
$$578$$ 9.50000 16.4545i 0.395148 0.684416i
$$579$$ −15.2399 26.3962i −0.633347 1.09699i
$$580$$ −15.6458 −0.649654
$$581$$ 17.5830 + 30.4547i 0.729466 + 1.26347i
$$582$$ −15.1033 −0.626050
$$583$$ 1.82288 + 3.15731i 0.0754958 + 0.130763i
$$584$$ 2.82288 4.88936i 0.116811 0.202323i
$$585$$ −36.4575 + 63.1463i −1.50733 + 2.61078i
$$586$$ 6.00000 + 10.3923i 0.247858 + 0.429302i
$$587$$ −7.93725 −0.327606 −0.163803 0.986493i $$-0.552376\pi$$
−0.163803 + 0.986493i $$0.552376\pi$$
$$588$$ −18.5203 −0.763763
$$589$$ 1.41699 0.0583863
$$590$$ −1.17712 2.03884i −0.0484614 0.0839377i
$$591$$ 24.9686 43.2469i 1.02707 1.77894i
$$592$$ 0.822876 1.42526i 0.0338200 0.0585779i
$$593$$ −11.4686 19.8642i −0.470960 0.815727i 0.528488 0.848941i $$-0.322759\pi$$
−0.999448 + 0.0332139i $$0.989426\pi$$
$$594$$ 2.64575 0.108556
$$595$$ 28.9373 + 50.1208i 1.18631 + 2.05475i
$$596$$ −4.70850 −0.192868
$$597$$ −29.4059 50.9325i −1.20350 2.08453i
$$598$$ −9.11438 + 15.7866i −0.372715 + 0.645561i
$$599$$ 9.87451 17.1031i 0.403461 0.698816i −0.590680 0.806906i $$-0.701140\pi$$
0.994141 + 0.108090i $$0.0344736\pi$$
$$600$$ −10.9686 18.9982i −0.447792 0.775599i
$$601$$ −24.5830 −1.00276 −0.501381 0.865227i $$-0.667174\pi$$
−0.501381 + 0.865227i $$0.667174\pi$$
$$602$$ 5.29150 9.16515i 0.215666 0.373544i
$$603$$ 15.7490 0.641350
$$604$$ 1.67712 + 2.90486i 0.0682412 + 0.118197i
$$605$$ −1.82288 + 3.15731i −0.0741104 + 0.128363i
$$606$$ −3.96863 + 6.87386i −0.161214 + 0.279232i
$$607$$ −10.6458 18.4390i −0.432098 0.748415i 0.564956 0.825121i $$-0.308893\pi$$
−0.997054 + 0.0767058i $$0.975560\pi$$
$$608$$ 0.354249 0.0143667
$$609$$ −30.0405 −1.21730
$$610$$ −13.5203 −0.547419
$$611$$ −33.2288 57.5539i −1.34429 2.32838i
$$612$$ −12.0000 + 20.7846i −0.485071 + 0.840168i
$$613$$ −1.00000 + 1.73205i −0.0403896 + 0.0699569i −0.885514 0.464614i $$-0.846193\pi$$
0.845124 + 0.534570i $$0.179527\pi$$
$$614$$ −2.11438 3.66221i −0.0853294 0.147795i
$$615$$ 47.6235 1.92037
$$616$$ 2.64575 0.106600
$$617$$ −16.2915 −0.655871 −0.327936 0.944700i $$-0.606353\pi$$
−0.327936 + 0.944700i $$0.606353\pi$$
$$618$$ −17.1144 29.6430i −0.688441 1.19242i
$$619$$ −17.2915 + 29.9498i −0.695004 + 1.20378i 0.275175 + 0.961394i $$0.411264\pi$$
−0.970179 + 0.242388i $$0.922069\pi$$
$$620$$ 7.29150 12.6293i 0.292834 0.507203i
$$621$$ −4.82288 8.35347i −0.193535 0.335213i
$$622$$ −16.9373 −0.679122
$$623$$ −19.2915 + 33.4139i −0.772898 + 1.33870i
$$624$$ −13.2288 −0.529574
$$625$$ −1.14575 1.98450i −0.0458301 0.0793800i
$$626$$ 1.20850 2.09318i 0.0483013 0.0836603i
$$627$$ −0.468627 + 0.811686i −0.0187152 + 0.0324156i
$$628$$ 10.5830 + 18.3303i 0.422308 + 0.731459i
$$629$$ −9.87451 −0.393722
$$630$$ −19.2915 33.4139i −0.768592 1.33124i
$$631$$ 34.8118 1.38583 0.692917 0.721017i $$-0.256325\pi$$
0.692917 + 0.721017i $$0.256325\pi$$
$$632$$ 1.32288 + 2.29129i 0.0526212 + 0.0911425i
$$633$$ −19.7601 + 34.2255i −0.785395 + 1.36034i
$$634$$ 6.00000 10.3923i 0.238290 0.412731i
$$635$$ −0.114378 0.198109i −0.00453896 0.00786172i
$$636$$ 9.64575 0.382479
$$637$$ −17.5000 + 30.3109i −0.693375 + 1.20096i
$$638$$ 4.29150 0.169902
$$639$$ −19.2915 33.4139i −0.763160 1.32183i
$$640$$ 1.82288 3.15731i 0.0720555 0.124804i
$$641$$ 9.43725 16.3458i 0.372749 0.645620i −0.617238 0.786776i $$-0.711749\pi$$
0.989987 + 0.141156i $$0.0450819\pi$$
$$642$$ −6.53137 11.3127i −0.257773 0.446475i
$$643$$ 6.52026 0.257134 0.128567 0.991701i $$-0.458962\pi$$
0.128567 + 0.991701i $$0.458962\pi$$
$$644$$ −4.82288 8.35347i −0.190048 0.329173i
$$645$$ 38.5830 1.51920
$$646$$ −1.06275 1.84073i −0.0418132 0.0724226i
$$647$$ −19.4059 + 33.6120i −0.762924 + 1.32142i 0.178413 + 0.983956i $$0.442904\pi$$
−0.941337 + 0.337467i $$0.890430\pi$$
$$648$$ −2.50000 + 4.33013i −0.0982093 + 0.170103i
$$649$$ 0.322876 + 0.559237i 0.0126740 + 0.0219520i
$$650$$ −41.4575 −1.62610
$$651$$ 14.0000 24.2487i 0.548703 0.950382i
$$652$$ −4.64575 −0.181942
$$653$$ −1.17712 2.03884i −0.0460644 0.0797859i 0.842074 0.539362i $$-0.181335\pi$$
−0.888138 + 0.459576i $$0.848001\pi$$
$$654$$ −14.0000 + 24.2487i −0.547443 + 0.948200i
$$655$$ −28.5203 + 49.3985i −1.11438 + 1.93016i
$$656$$ 2.46863 + 4.27579i 0.0963837 + 0.166941i
$$657$$ 22.5830 0.881047
$$658$$ 35.1660 1.37091
$$659$$ 14.5830 0.568073 0.284037 0.958813i $$-0.408326\pi$$
0.284037 + 0.958813i $$0.408326\pi$$
$$660$$ 4.82288 + 8.35347i 0.187730 + 0.325158i
$$661$$ −14.2915 + 24.7536i −0.555875 + 0.962804i 0.441960 + 0.897035i $$0.354283\pi$$
−0.997835 + 0.0657690i $$0.979050\pi$$
$$662$$ −7.67712 + 13.2972i −0.298380 + 0.516809i
$$663$$ 39.6863 + 68.7386i 1.54129 + 2.66959i
$$664$$ −13.2915 −0.515810
$$665$$ 3.41699 0.132505
$$666$$ 6.58301 0.255086
$$667$$ −7.82288 13.5496i −0.302903 0.524643i
$$668$$ −7.61438 + 13.1885i −0.294609 + 0.510278i
$$669$$ −16.3431 + 28.3071i −0.631862 + 1.09442i
$$670$$ 7.17712 + 12.4311i 0.277277 + 0.480257i
$$671$$ 3.70850 0.143165
$$672$$ 3.50000 6.06218i 0.135015 0.233854i
$$673$$ −14.9373 −0.575789 −0.287894 0.957662i $$-0.592955\pi$$
−0.287894 + 0.957662i $$0.592955\pi$$
$$674$$ 12.4686 + 21.5963i 0.480274 + 0.831858i
$$675$$ 10.9686 18.9982i 0.422183 0.731242i
$$676$$ −6.00000 + 10.3923i −0.230769 + 0.399704i
$$677$$ 1.06275 + 1.84073i 0.0408446 + 0.0707450i 0.885725 0.464210i $$-0.153662\pi$$
−0.844880 + 0.534955i $$0.820328\pi$$
$$678$$ −20.3948 −0.783256
$$679$$ −7.55163 13.0798i −0.289805 0.501957i
$$680$$ −21.8745 −0.838849
$$681$$ −17.5830 30.4547i −0.673782 1.16703i
$$682$$ −2.00000 + 3.46410i −0.0765840 + 0.132647i
$$683$$ 6.96863 12.0700i 0.266647 0.461846i −0.701347 0.712820i $$-0.747418\pi$$
0.967994 + 0.250974i $$0.0807509\pi$$
$$684$$ 0.708497 + 1.22715i 0.0270901 + 0.0469214i
$$685$$ 68.8118 2.62916
$$686$$ −9.26013 16.0390i −0.353553 0.612372i
$$687$$ 42.3320 1.61507
$$688$$ 2.00000 + 3.46410i 0.0762493 + 0.132068i
$$689$$ 9.11438 15.7866i 0.347230 0.601420i
$$690$$ 17.5830 30.4547i 0.669374 1.15939i
$$691$$ 9.38562 + 16.2564i 0.357046 + 0.618422i 0.987466 0.157833i $$-0.0504506\pi$$
−0.630420 + 0.776254i $$0.717117\pi$$
$$692$$ 10.2915 0.391224
$$693$$ 5.29150 + 9.16515i 0.201008 + 0.348155i
$$694$$ −26.8118 −1.01776
$$695$$ 7.29150 + 12.6293i 0.276582 + 0.479055i
$$696$$ 5.67712 9.83307i 0.215191 0.372721i
$$697$$ 14.8118 25.6547i 0.561035 0.971742i
$$698$$ 14.9373 + 25.8721i 0.565383 + 0.979273i
$$699$$ −44.8118 −1.69494
$$700$$ 10.9686 18.9982i 0.414575 0.718065i
$$701$$ −6.87451 −0.259647 −0.129823 0.991537i $$-0.541441\pi$$
−0.129823 + 0.991537i $$0.541441\pi$$
$$702$$ −6.61438 11.4564i −0.249644 0.432395i
$$703$$ −0.291503 + 0.504897i −0.0109942 + 0.0190426i
$$704$$ −0.500000 + 0.866025i −0.0188445 + 0.0326396i
$$705$$ 64.1033 + 111.030i 2.41427 + 4.18164i
$$706$$ 35.1660 1.32349
$$707$$ −7.93725 −0.298511
$$708$$ 1.70850 0.0642093
$$709$$ 3.40588 + 5.89916i 0.127911 + 0.221548i 0.922867 0.385119i $$-0.125840\pi$$
−0.794956 + 0.606667i $$0.792506\pi$$
$$710$$ 17.5830 30.4547i 0.659878 1.14294i
$$711$$ −5.29150 + 9.16515i −0.198447 + 0.343720i
$$712$$ −7.29150 12.6293i −0.273261 0.473301i
$$713$$ 14.5830 0.546138
$$714$$ −42.0000 −1.57181
$$715$$ 18.2288 0.681717
$$716$$ 2.03137 + 3.51844i 0.0759160 + 0.131490i
$$717$$ 12.2085 21.1457i 0.455935 0.789702i
$$718$$ −5.03137 + 8.71459i −0.187769 + 0.325226i
$$719$$ 1.93725 + 3.35542i 0.0722474 + 0.125136i 0.899886 0.436125i $$-0.143650\pi$$
−0.827639 + 0.561261i $$0.810316\pi$$
$$720$$ 14.5830 0.543477
$$721$$ 17.1144 29.6430i 0.637373 1.10396i
$$722$$ 18.8745 0.702436
$$723$$ 30.1771 + 52.2683i 1.12230 + 1.94388i
$$724$$ 5.00000 8.66025i 0.185824 0.321856i
$$725$$ 17.7915 30.8158i 0.660760 1.14447i
$$726$$ −1.32288 2.29129i −0.0490965 0.0850377i
$$727$$ −17.2915 −0.641306 −0.320653 0.947197i $$-0.603902\pi$$
−0.320653 + 0.947197i $$0.603902\pi$$
$$728$$ −6.61438 11.4564i −0.245145 0.424604i
$$729$$ −41.0000 −1.51852
$$730$$ 10.2915 + 17.8254i 0.380906 + 0.659748i
$$731$$ 12.0000 20.7846i 0.443836 0.768747i
$$732$$ 4.90588 8.49723i 0.181327 0.314067i
$$733$$ −20.7288 35.9033i −0.765634 1.32612i −0.939911 0.341420i $$-0.889092\pi$$
0.174277 0.984697i $$-0.444241\pi$$
$$734$$ 9.77124 0.360663
$$735$$ 33.7601 58.4743i 1.24526 2.15686i
$$736$$ 3.64575 0.134384
$$737$$ −1.96863 3.40976i −0.0725153 0.125600i
$$738$$ −9.87451 + 17.1031i −0.363486 + 0.629576i
$$739$$ 3.93725 6.81952i 0.144834 0.250860i −0.784477 0.620158i $$-0.787068\pi$$
0.929311 + 0.369298i $$0.120402\pi$$
$$740$$ 3.00000 + 5.19615i 0.110282 + 0.191014i
$$741$$ 4.68627 0.172154
$$742$$ 4.82288 + 8.35347i 0.177053 + 0.306665i
$$743$$ −34.7085 −1.27333 −0.636666 0.771140i $$-0.719687\pi$$
−0.636666 + 0.771140i $$0.719687\pi$$
$$744$$ 5.29150 + 9.16515i 0.193996 + 0.336011i
$$745$$ 8.58301 14.8662i 0.314457 0.544655i
$$746$$ −5.43725 + 9.41760i −0.199072 + 0.344803i
$$747$$ −26.5830 46.0431i −0.972621 1.68463i
$$748$$ 6.00000 0.219382
$$749$$ 6.53137 11.3127i 0.238651 0.413356i
$$750$$ 31.7490 1.15931
$$751$$ 8.00000 + 13.8564i 0.291924 + 0.505627i 0.974265 0.225407i $$-0.0723712\pi$$
−0.682341 + 0.731034i $$0.739038\pi$$
$$752$$ −6.64575 + 11.5108i −0.242346 + 0.419755i
$$753$$ 9.64575 16.7069i 0.351511 0.608834i
$$754$$ −10.7288 18.5828i −0.390718 0.676744i
$$755$$ −12.2288 −0.445050
$$756$$ 7.00000 0.254588
$$757$$ 19.1660 0.696600 0.348300 0.937383i $$-0.386759\pi$$
0.348300 + 0.937383i $$0.386759\pi$$
$$758$$ 10.9686 + 18.9982i 0.398398 + 0.690046i
$$759$$ −4.82288 + 8.35347i −0.175059 + 0.303212i
$$760$$ −0.645751 + 1.11847i −0.0234239 + 0.0405713i
$$761$$ 3.00000 + 5.19615i 0.108750 + 0.188360i 0.915264 0.402854i $$-0.131982\pi$$
−0.806514 + 0.591215i $$0.798649\pi$$
$$762$$ 0.166010 0.00601393
$$763$$ −28.0000 −1.01367
$$764$$ −13.2915 −0.480870
$$765$$ −43.7490 75.7755i −1.58175 2.73967i
$$766$$ −17.0516 + 29.5343i −0.616101 + 1.06712i
$$767$$ 1.61438 2.79619i 0.0582918 0.100964i
$$768$$ 1.32288 + 2.29129i 0.0477352 + 0.0826797i
$$769$$ −15.1660 −0.546900 −0.273450 0.961886i $$-0.588165\pi$$
−0.273450 + 0.961886i $$0.588165\pi$$
$$770$$ −4.82288 + 8.35347i −0.173804 + 0.301038i
$$771$$ 1.10326 0.0397331
$$772$$ 5.76013 + 9.97684i 0.207312 + 0.359074i
$$773$$ −1.29150 + 2.23695i −0.0464521 + 0.0804574i −0.888317 0.459232i $$-0.848125\pi$$
0.841864 + 0.539689i $$0.181458\pi$$
$$774$$ −8.00000 + 13.8564i −0.287554 + 0.498058i
$$775$$ 16.5830 + 28.7226i 0.595679 + 1.03175i