# Properties

 Label 154.2.e.a.23.1 Level $154$ Weight $2$ Character 154.23 Analytic conductor $1.230$ Analytic rank $1$ Dimension $2$ CM no Inner twists $2$

# Learn more

## Newspace parameters

 Level: $$N$$ $$=$$ $$154 = 2 \cdot 7 \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 154.e (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$1.22969619113$$ Analytic rank: $$1$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 23.1 Root $$0.500000 - 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 154.23 Dual form 154.2.e.a.67.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.500000 + 0.866025i) q^{2} +(-1.50000 - 2.59808i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-1.00000 + 1.73205i) q^{5} +3.00000 q^{6} +(-2.50000 + 0.866025i) q^{7} +1.00000 q^{8} +(-3.00000 + 5.19615i) q^{9} +O(q^{10})$$ $$q+(-0.500000 + 0.866025i) q^{2} +(-1.50000 - 2.59808i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-1.00000 + 1.73205i) q^{5} +3.00000 q^{6} +(-2.50000 + 0.866025i) q^{7} +1.00000 q^{8} +(-3.00000 + 5.19615i) q^{9} +(-1.00000 - 1.73205i) q^{10} +(0.500000 + 0.866025i) q^{11} +(-1.50000 + 2.59808i) q^{12} -7.00000 q^{13} +(0.500000 - 2.59808i) q^{14} +6.00000 q^{15} +(-0.500000 + 0.866025i) q^{16} +(-1.00000 - 1.73205i) q^{17} +(-3.00000 - 5.19615i) q^{18} +2.00000 q^{20} +(6.00000 + 5.19615i) q^{21} -1.00000 q^{22} +(4.00000 - 6.92820i) q^{23} +(-1.50000 - 2.59808i) q^{24} +(0.500000 + 0.866025i) q^{25} +(3.50000 - 6.06218i) q^{26} +9.00000 q^{27} +(2.00000 + 1.73205i) q^{28} -5.00000 q^{29} +(-3.00000 + 5.19615i) q^{30} +(-2.00000 - 3.46410i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(1.50000 - 2.59808i) q^{33} +2.00000 q^{34} +(1.00000 - 5.19615i) q^{35} +6.00000 q^{36} +(-2.00000 + 3.46410i) q^{37} +(10.5000 + 18.1865i) q^{39} +(-1.00000 + 1.73205i) q^{40} +4.00000 q^{41} +(-7.50000 + 2.59808i) q^{42} -8.00000 q^{43} +(0.500000 - 0.866025i) q^{44} +(-6.00000 - 10.3923i) q^{45} +(4.00000 + 6.92820i) q^{46} +(-1.00000 + 1.73205i) q^{47} +3.00000 q^{48} +(5.50000 - 4.33013i) q^{49} -1.00000 q^{50} +(-3.00000 + 5.19615i) q^{51} +(3.50000 + 6.06218i) q^{52} +(3.00000 + 5.19615i) q^{53} +(-4.50000 + 7.79423i) q^{54} -2.00000 q^{55} +(-2.50000 + 0.866025i) q^{56} +(2.50000 - 4.33013i) q^{58} +(-1.50000 - 2.59808i) q^{59} +(-3.00000 - 5.19615i) q^{60} +(-0.500000 + 0.866025i) q^{61} +4.00000 q^{62} +(3.00000 - 15.5885i) q^{63} +1.00000 q^{64} +(7.00000 - 12.1244i) q^{65} +(1.50000 + 2.59808i) q^{66} +(-4.50000 - 7.79423i) q^{67} +(-1.00000 + 1.73205i) q^{68} -24.0000 q^{69} +(4.00000 + 3.46410i) q^{70} -2.00000 q^{71} +(-3.00000 + 5.19615i) q^{72} +(-2.00000 - 3.46410i) q^{73} +(-2.00000 - 3.46410i) q^{74} +(1.50000 - 2.59808i) q^{75} +(-2.00000 - 1.73205i) q^{77} -21.0000 q^{78} +(-4.50000 + 7.79423i) q^{79} +(-1.00000 - 1.73205i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(-2.00000 + 3.46410i) q^{82} +6.00000 q^{83} +(1.50000 - 7.79423i) q^{84} +4.00000 q^{85} +(4.00000 - 6.92820i) q^{86} +(7.50000 + 12.9904i) q^{87} +(0.500000 + 0.866025i) q^{88} +(-3.00000 + 5.19615i) q^{89} +12.0000 q^{90} +(17.5000 - 6.06218i) q^{91} -8.00000 q^{92} +(-6.00000 + 10.3923i) q^{93} +(-1.00000 - 1.73205i) q^{94} +(-1.50000 + 2.59808i) q^{96} +7.00000 q^{97} +(1.00000 + 6.92820i) q^{98} -6.00000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - q^{2} - 3 q^{3} - q^{4} - 2 q^{5} + 6 q^{6} - 5 q^{7} + 2 q^{8} - 6 q^{9}+O(q^{10})$$ 2 * q - q^2 - 3 * q^3 - q^4 - 2 * q^5 + 6 * q^6 - 5 * q^7 + 2 * q^8 - 6 * q^9 $$2 q - q^{2} - 3 q^{3} - q^{4} - 2 q^{5} + 6 q^{6} - 5 q^{7} + 2 q^{8} - 6 q^{9} - 2 q^{10} + q^{11} - 3 q^{12} - 14 q^{13} + q^{14} + 12 q^{15} - q^{16} - 2 q^{17} - 6 q^{18} + 4 q^{20} + 12 q^{21} - 2 q^{22} + 8 q^{23} - 3 q^{24} + q^{25} + 7 q^{26} + 18 q^{27} + 4 q^{28} - 10 q^{29} - 6 q^{30} - 4 q^{31} - q^{32} + 3 q^{33} + 4 q^{34} + 2 q^{35} + 12 q^{36} - 4 q^{37} + 21 q^{39} - 2 q^{40} + 8 q^{41} - 15 q^{42} - 16 q^{43} + q^{44} - 12 q^{45} + 8 q^{46} - 2 q^{47} + 6 q^{48} + 11 q^{49} - 2 q^{50} - 6 q^{51} + 7 q^{52} + 6 q^{53} - 9 q^{54} - 4 q^{55} - 5 q^{56} + 5 q^{58} - 3 q^{59} - 6 q^{60} - q^{61} + 8 q^{62} + 6 q^{63} + 2 q^{64} + 14 q^{65} + 3 q^{66} - 9 q^{67} - 2 q^{68} - 48 q^{69} + 8 q^{70} - 4 q^{71} - 6 q^{72} - 4 q^{73} - 4 q^{74} + 3 q^{75} - 4 q^{77} - 42 q^{78} - 9 q^{79} - 2 q^{80} - 9 q^{81} - 4 q^{82} + 12 q^{83} + 3 q^{84} + 8 q^{85} + 8 q^{86} + 15 q^{87} + q^{88} - 6 q^{89} + 24 q^{90} + 35 q^{91} - 16 q^{92} - 12 q^{93} - 2 q^{94} - 3 q^{96} + 14 q^{97} + 2 q^{98} - 12 q^{99}+O(q^{100})$$ 2 * q - q^2 - 3 * q^3 - q^4 - 2 * q^5 + 6 * q^6 - 5 * q^7 + 2 * q^8 - 6 * q^9 - 2 * q^10 + q^11 - 3 * q^12 - 14 * q^13 + q^14 + 12 * q^15 - q^16 - 2 * q^17 - 6 * q^18 + 4 * q^20 + 12 * q^21 - 2 * q^22 + 8 * q^23 - 3 * q^24 + q^25 + 7 * q^26 + 18 * q^27 + 4 * q^28 - 10 * q^29 - 6 * q^30 - 4 * q^31 - q^32 + 3 * q^33 + 4 * q^34 + 2 * q^35 + 12 * q^36 - 4 * q^37 + 21 * q^39 - 2 * q^40 + 8 * q^41 - 15 * q^42 - 16 * q^43 + q^44 - 12 * q^45 + 8 * q^46 - 2 * q^47 + 6 * q^48 + 11 * q^49 - 2 * q^50 - 6 * q^51 + 7 * q^52 + 6 * q^53 - 9 * q^54 - 4 * q^55 - 5 * q^56 + 5 * q^58 - 3 * q^59 - 6 * q^60 - q^61 + 8 * q^62 + 6 * q^63 + 2 * q^64 + 14 * q^65 + 3 * q^66 - 9 * q^67 - 2 * q^68 - 48 * q^69 + 8 * q^70 - 4 * q^71 - 6 * q^72 - 4 * q^73 - 4 * q^74 + 3 * q^75 - 4 * q^77 - 42 * q^78 - 9 * q^79 - 2 * q^80 - 9 * q^81 - 4 * q^82 + 12 * q^83 + 3 * q^84 + 8 * q^85 + 8 * q^86 + 15 * q^87 + q^88 - 6 * q^89 + 24 * q^90 + 35 * q^91 - 16 * q^92 - 12 * q^93 - 2 * q^94 - 3 * q^96 + 14 * q^97 + 2 * q^98 - 12 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/154\mathbb{Z}\right)^\times$$.

 $$n$$ $$45$$ $$57$$ $$\chi(n)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.500000 + 0.866025i −0.353553 + 0.612372i
$$3$$ −1.50000 2.59808i −0.866025 1.50000i −0.866025 0.500000i $$-0.833333\pi$$
1.00000i $$-0.5\pi$$
$$4$$ −0.500000 0.866025i −0.250000 0.433013i
$$5$$ −1.00000 + 1.73205i −0.447214 + 0.774597i −0.998203 0.0599153i $$-0.980917\pi$$
0.550990 + 0.834512i $$0.314250\pi$$
$$6$$ 3.00000 1.22474
$$7$$ −2.50000 + 0.866025i −0.944911 + 0.327327i
$$8$$ 1.00000 0.353553
$$9$$ −3.00000 + 5.19615i −1.00000 + 1.73205i
$$10$$ −1.00000 1.73205i −0.316228 0.547723i
$$11$$ 0.500000 + 0.866025i 0.150756 + 0.261116i
$$12$$ −1.50000 + 2.59808i −0.433013 + 0.750000i
$$13$$ −7.00000 −1.94145 −0.970725 0.240192i $$-0.922790\pi$$
−0.970725 + 0.240192i $$0.922790\pi$$
$$14$$ 0.500000 2.59808i 0.133631 0.694365i
$$15$$ 6.00000 1.54919
$$16$$ −0.500000 + 0.866025i −0.125000 + 0.216506i
$$17$$ −1.00000 1.73205i −0.242536 0.420084i 0.718900 0.695113i $$-0.244646\pi$$
−0.961436 + 0.275029i $$0.911312\pi$$
$$18$$ −3.00000 5.19615i −0.707107 1.22474i
$$19$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$20$$ 2.00000 0.447214
$$21$$ 6.00000 + 5.19615i 1.30931 + 1.13389i
$$22$$ −1.00000 −0.213201
$$23$$ 4.00000 6.92820i 0.834058 1.44463i −0.0607377 0.998154i $$-0.519345\pi$$
0.894795 0.446476i $$-0.147321\pi$$
$$24$$ −1.50000 2.59808i −0.306186 0.530330i
$$25$$ 0.500000 + 0.866025i 0.100000 + 0.173205i
$$26$$ 3.50000 6.06218i 0.686406 1.18889i
$$27$$ 9.00000 1.73205
$$28$$ 2.00000 + 1.73205i 0.377964 + 0.327327i
$$29$$ −5.00000 −0.928477 −0.464238 0.885710i $$-0.653672\pi$$
−0.464238 + 0.885710i $$0.653672\pi$$
$$30$$ −3.00000 + 5.19615i −0.547723 + 0.948683i
$$31$$ −2.00000 3.46410i −0.359211 0.622171i 0.628619 0.777714i $$-0.283621\pi$$
−0.987829 + 0.155543i $$0.950287\pi$$
$$32$$ −0.500000 0.866025i −0.0883883 0.153093i
$$33$$ 1.50000 2.59808i 0.261116 0.452267i
$$34$$ 2.00000 0.342997
$$35$$ 1.00000 5.19615i 0.169031 0.878310i
$$36$$ 6.00000 1.00000
$$37$$ −2.00000 + 3.46410i −0.328798 + 0.569495i −0.982274 0.187453i $$-0.939977\pi$$
0.653476 + 0.756948i $$0.273310\pi$$
$$38$$ 0 0
$$39$$ 10.5000 + 18.1865i 1.68135 + 2.91218i
$$40$$ −1.00000 + 1.73205i −0.158114 + 0.273861i
$$41$$ 4.00000 0.624695 0.312348 0.949968i $$-0.398885\pi$$
0.312348 + 0.949968i $$0.398885\pi$$
$$42$$ −7.50000 + 2.59808i −1.15728 + 0.400892i
$$43$$ −8.00000 −1.21999 −0.609994 0.792406i $$-0.708828\pi$$
−0.609994 + 0.792406i $$0.708828\pi$$
$$44$$ 0.500000 0.866025i 0.0753778 0.130558i
$$45$$ −6.00000 10.3923i −0.894427 1.54919i
$$46$$ 4.00000 + 6.92820i 0.589768 + 1.02151i
$$47$$ −1.00000 + 1.73205i −0.145865 + 0.252646i −0.929695 0.368329i $$-0.879930\pi$$
0.783830 + 0.620975i $$0.213263\pi$$
$$48$$ 3.00000 0.433013
$$49$$ 5.50000 4.33013i 0.785714 0.618590i
$$50$$ −1.00000 −0.141421
$$51$$ −3.00000 + 5.19615i −0.420084 + 0.727607i
$$52$$ 3.50000 + 6.06218i 0.485363 + 0.840673i
$$53$$ 3.00000 + 5.19615i 0.412082 + 0.713746i 0.995117 0.0987002i $$-0.0314685\pi$$
−0.583036 + 0.812447i $$0.698135\pi$$
$$54$$ −4.50000 + 7.79423i −0.612372 + 1.06066i
$$55$$ −2.00000 −0.269680
$$56$$ −2.50000 + 0.866025i −0.334077 + 0.115728i
$$57$$ 0 0
$$58$$ 2.50000 4.33013i 0.328266 0.568574i
$$59$$ −1.50000 2.59808i −0.195283 0.338241i 0.751710 0.659494i $$-0.229229\pi$$
−0.946993 + 0.321253i $$0.895896\pi$$
$$60$$ −3.00000 5.19615i −0.387298 0.670820i
$$61$$ −0.500000 + 0.866025i −0.0640184 + 0.110883i −0.896258 0.443533i $$-0.853725\pi$$
0.832240 + 0.554416i $$0.187058\pi$$
$$62$$ 4.00000 0.508001
$$63$$ 3.00000 15.5885i 0.377964 1.96396i
$$64$$ 1.00000 0.125000
$$65$$ 7.00000 12.1244i 0.868243 1.50384i
$$66$$ 1.50000 + 2.59808i 0.184637 + 0.319801i
$$67$$ −4.50000 7.79423i −0.549762 0.952217i −0.998290 0.0584478i $$-0.981385\pi$$
0.448528 0.893769i $$-0.351948\pi$$
$$68$$ −1.00000 + 1.73205i −0.121268 + 0.210042i
$$69$$ −24.0000 −2.88926
$$70$$ 4.00000 + 3.46410i 0.478091 + 0.414039i
$$71$$ −2.00000 −0.237356 −0.118678 0.992933i $$-0.537866\pi$$
−0.118678 + 0.992933i $$0.537866\pi$$
$$72$$ −3.00000 + 5.19615i −0.353553 + 0.612372i
$$73$$ −2.00000 3.46410i −0.234082 0.405442i 0.724923 0.688830i $$-0.241875\pi$$
−0.959006 + 0.283387i $$0.908542\pi$$
$$74$$ −2.00000 3.46410i −0.232495 0.402694i
$$75$$ 1.50000 2.59808i 0.173205 0.300000i
$$76$$ 0 0
$$77$$ −2.00000 1.73205i −0.227921 0.197386i
$$78$$ −21.0000 −2.37778
$$79$$ −4.50000 + 7.79423i −0.506290 + 0.876919i 0.493684 + 0.869641i $$0.335650\pi$$
−0.999974 + 0.00727784i $$0.997683\pi$$
$$80$$ −1.00000 1.73205i −0.111803 0.193649i
$$81$$ −4.50000 7.79423i −0.500000 0.866025i
$$82$$ −2.00000 + 3.46410i −0.220863 + 0.382546i
$$83$$ 6.00000 0.658586 0.329293 0.944228i $$-0.393190\pi$$
0.329293 + 0.944228i $$0.393190\pi$$
$$84$$ 1.50000 7.79423i 0.163663 0.850420i
$$85$$ 4.00000 0.433861
$$86$$ 4.00000 6.92820i 0.431331 0.747087i
$$87$$ 7.50000 + 12.9904i 0.804084 + 1.39272i
$$88$$ 0.500000 + 0.866025i 0.0533002 + 0.0923186i
$$89$$ −3.00000 + 5.19615i −0.317999 + 0.550791i −0.980071 0.198650i $$-0.936344\pi$$
0.662071 + 0.749441i $$0.269678\pi$$
$$90$$ 12.0000 1.26491
$$91$$ 17.5000 6.06218i 1.83450 0.635489i
$$92$$ −8.00000 −0.834058
$$93$$ −6.00000 + 10.3923i −0.622171 + 1.07763i
$$94$$ −1.00000 1.73205i −0.103142 0.178647i
$$95$$ 0 0
$$96$$ −1.50000 + 2.59808i −0.153093 + 0.265165i
$$97$$ 7.00000 0.710742 0.355371 0.934725i $$-0.384354\pi$$
0.355371 + 0.934725i $$0.384354\pi$$
$$98$$ 1.00000 + 6.92820i 0.101015 + 0.699854i
$$99$$ −6.00000 −0.603023
$$100$$ 0.500000 0.866025i 0.0500000 0.0866025i
$$101$$ 4.50000 + 7.79423i 0.447767 + 0.775555i 0.998240 0.0592978i $$-0.0188862\pi$$
−0.550474 + 0.834853i $$0.685553\pi$$
$$102$$ −3.00000 5.19615i −0.297044 0.514496i
$$103$$ −9.00000 + 15.5885i −0.886796 + 1.53598i −0.0431555 + 0.999068i $$0.513741\pi$$
−0.843641 + 0.536908i $$0.819592\pi$$
$$104$$ −7.00000 −0.686406
$$105$$ −15.0000 + 5.19615i −1.46385 + 0.507093i
$$106$$ −6.00000 −0.582772
$$107$$ −1.00000 + 1.73205i −0.0966736 + 0.167444i −0.910306 0.413936i $$-0.864154\pi$$
0.813632 + 0.581380i $$0.197487\pi$$
$$108$$ −4.50000 7.79423i −0.433013 0.750000i
$$109$$ 1.00000 + 1.73205i 0.0957826 + 0.165900i 0.909935 0.414751i $$-0.136131\pi$$
−0.814152 + 0.580651i $$0.802798\pi$$
$$110$$ 1.00000 1.73205i 0.0953463 0.165145i
$$111$$ 12.0000 1.13899
$$112$$ 0.500000 2.59808i 0.0472456 0.245495i
$$113$$ 5.00000 0.470360 0.235180 0.971952i $$-0.424432\pi$$
0.235180 + 0.971952i $$0.424432\pi$$
$$114$$ 0 0
$$115$$ 8.00000 + 13.8564i 0.746004 + 1.29212i
$$116$$ 2.50000 + 4.33013i 0.232119 + 0.402042i
$$117$$ 21.0000 36.3731i 1.94145 3.36269i
$$118$$ 3.00000 0.276172
$$119$$ 4.00000 + 3.46410i 0.366679 + 0.317554i
$$120$$ 6.00000 0.547723
$$121$$ −0.500000 + 0.866025i −0.0454545 + 0.0787296i
$$122$$ −0.500000 0.866025i −0.0452679 0.0784063i
$$123$$ −6.00000 10.3923i −0.541002 0.937043i
$$124$$ −2.00000 + 3.46410i −0.179605 + 0.311086i
$$125$$ −12.0000 −1.07331
$$126$$ 12.0000 + 10.3923i 1.06904 + 0.925820i
$$127$$ −19.0000 −1.68598 −0.842989 0.537931i $$-0.819206\pi$$
−0.842989 + 0.537931i $$0.819206\pi$$
$$128$$ −0.500000 + 0.866025i −0.0441942 + 0.0765466i
$$129$$ 12.0000 + 20.7846i 1.05654 + 1.82998i
$$130$$ 7.00000 + 12.1244i 0.613941 + 1.06338i
$$131$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$132$$ −3.00000 −0.261116
$$133$$ 0 0
$$134$$ 9.00000 0.777482
$$135$$ −9.00000 + 15.5885i −0.774597 + 1.34164i
$$136$$ −1.00000 1.73205i −0.0857493 0.148522i
$$137$$ −1.50000 2.59808i −0.128154 0.221969i 0.794808 0.606861i $$-0.207572\pi$$
−0.922961 + 0.384893i $$0.874238\pi$$
$$138$$ 12.0000 20.7846i 1.02151 1.76930i
$$139$$ −4.00000 −0.339276 −0.169638 0.985506i $$-0.554260\pi$$
−0.169638 + 0.985506i $$0.554260\pi$$
$$140$$ −5.00000 + 1.73205i −0.422577 + 0.146385i
$$141$$ 6.00000 0.505291
$$142$$ 1.00000 1.73205i 0.0839181 0.145350i
$$143$$ −3.50000 6.06218i −0.292685 0.506945i
$$144$$ −3.00000 5.19615i −0.250000 0.433013i
$$145$$ 5.00000 8.66025i 0.415227 0.719195i
$$146$$ 4.00000 0.331042
$$147$$ −19.5000 7.79423i −1.60833 0.642857i
$$148$$ 4.00000 0.328798
$$149$$ 5.00000 8.66025i 0.409616 0.709476i −0.585231 0.810867i $$-0.698996\pi$$
0.994847 + 0.101391i $$0.0323294\pi$$
$$150$$ 1.50000 + 2.59808i 0.122474 + 0.212132i
$$151$$ 1.50000 + 2.59808i 0.122068 + 0.211428i 0.920583 0.390547i $$-0.127714\pi$$
−0.798515 + 0.601975i $$0.794381\pi$$
$$152$$ 0 0
$$153$$ 12.0000 0.970143
$$154$$ 2.50000 0.866025i 0.201456 0.0697863i
$$155$$ 8.00000 0.642575
$$156$$ 10.5000 18.1865i 0.840673 1.45609i
$$157$$ −8.00000 13.8564i −0.638470 1.10586i −0.985769 0.168107i $$-0.946235\pi$$
0.347299 0.937754i $$-0.387099\pi$$
$$158$$ −4.50000 7.79423i −0.358001 0.620076i
$$159$$ 9.00000 15.5885i 0.713746 1.23625i
$$160$$ 2.00000 0.158114
$$161$$ −4.00000 + 20.7846i −0.315244 + 1.63806i
$$162$$ 9.00000 0.707107
$$163$$ 8.50000 14.7224i 0.665771 1.15315i −0.313304 0.949653i $$-0.601436\pi$$
0.979076 0.203497i $$-0.0652307\pi$$
$$164$$ −2.00000 3.46410i −0.156174 0.270501i
$$165$$ 3.00000 + 5.19615i 0.233550 + 0.404520i
$$166$$ −3.00000 + 5.19615i −0.232845 + 0.403300i
$$167$$ 19.0000 1.47026 0.735132 0.677924i $$-0.237120\pi$$
0.735132 + 0.677924i $$0.237120\pi$$
$$168$$ 6.00000 + 5.19615i 0.462910 + 0.400892i
$$169$$ 36.0000 2.76923
$$170$$ −2.00000 + 3.46410i −0.153393 + 0.265684i
$$171$$ 0 0
$$172$$ 4.00000 + 6.92820i 0.304997 + 0.528271i
$$173$$ −12.5000 + 21.6506i −0.950357 + 1.64607i −0.205706 + 0.978614i $$0.565949\pi$$
−0.744652 + 0.667453i $$0.767384\pi$$
$$174$$ −15.0000 −1.13715
$$175$$ −2.00000 1.73205i −0.151186 0.130931i
$$176$$ −1.00000 −0.0753778
$$177$$ −4.50000 + 7.79423i −0.338241 + 0.585850i
$$178$$ −3.00000 5.19615i −0.224860 0.389468i
$$179$$ −9.50000 16.4545i −0.710063 1.22987i −0.964833 0.262864i $$-0.915333\pi$$
0.254770 0.967002i $$-0.418000\pi$$
$$180$$ −6.00000 + 10.3923i −0.447214 + 0.774597i
$$181$$ −22.0000 −1.63525 −0.817624 0.575753i $$-0.804709\pi$$
−0.817624 + 0.575753i $$0.804709\pi$$
$$182$$ −3.50000 + 18.1865i −0.259437 + 1.34808i
$$183$$ 3.00000 0.221766
$$184$$ 4.00000 6.92820i 0.294884 0.510754i
$$185$$ −4.00000 6.92820i −0.294086 0.509372i
$$186$$ −6.00000 10.3923i −0.439941 0.762001i
$$187$$ 1.00000 1.73205i 0.0731272 0.126660i
$$188$$ 2.00000 0.145865
$$189$$ −22.5000 + 7.79423i −1.63663 + 0.566947i
$$190$$ 0 0
$$191$$ −1.00000 + 1.73205i −0.0723575 + 0.125327i −0.899934 0.436026i $$-0.856386\pi$$
0.827577 + 0.561353i $$0.189719\pi$$
$$192$$ −1.50000 2.59808i −0.108253 0.187500i
$$193$$ −4.00000 6.92820i −0.287926 0.498703i 0.685388 0.728178i $$-0.259632\pi$$
−0.973315 + 0.229475i $$0.926299\pi$$
$$194$$ −3.50000 + 6.06218i −0.251285 + 0.435239i
$$195$$ −42.0000 −3.00768
$$196$$ −6.50000 2.59808i −0.464286 0.185577i
$$197$$ 15.0000 1.06871 0.534353 0.845262i $$-0.320555\pi$$
0.534353 + 0.845262i $$0.320555\pi$$
$$198$$ 3.00000 5.19615i 0.213201 0.369274i
$$199$$ −2.00000 3.46410i −0.141776 0.245564i 0.786389 0.617731i $$-0.211948\pi$$
−0.928166 + 0.372168i $$0.878615\pi$$
$$200$$ 0.500000 + 0.866025i 0.0353553 + 0.0612372i
$$201$$ −13.5000 + 23.3827i −0.952217 + 1.64929i
$$202$$ −9.00000 −0.633238
$$203$$ 12.5000 4.33013i 0.877328 0.303915i
$$204$$ 6.00000 0.420084
$$205$$ −4.00000 + 6.92820i −0.279372 + 0.483887i
$$206$$ −9.00000 15.5885i −0.627060 1.08610i
$$207$$ 24.0000 + 41.5692i 1.66812 + 2.88926i
$$208$$ 3.50000 6.06218i 0.242681 0.420336i
$$209$$ 0 0
$$210$$ 3.00000 15.5885i 0.207020 1.07571i
$$211$$ −20.0000 −1.37686 −0.688428 0.725304i $$-0.741699\pi$$
−0.688428 + 0.725304i $$0.741699\pi$$
$$212$$ 3.00000 5.19615i 0.206041 0.356873i
$$213$$ 3.00000 + 5.19615i 0.205557 + 0.356034i
$$214$$ −1.00000 1.73205i −0.0683586 0.118401i
$$215$$ 8.00000 13.8564i 0.545595 0.944999i
$$216$$ 9.00000 0.612372
$$217$$ 8.00000 + 6.92820i 0.543075 + 0.470317i
$$218$$ −2.00000 −0.135457
$$219$$ −6.00000 + 10.3923i −0.405442 + 0.702247i
$$220$$ 1.00000 + 1.73205i 0.0674200 + 0.116775i
$$221$$ 7.00000 + 12.1244i 0.470871 + 0.815572i
$$222$$ −6.00000 + 10.3923i −0.402694 + 0.697486i
$$223$$ 4.00000 0.267860 0.133930 0.990991i $$-0.457240\pi$$
0.133930 + 0.990991i $$0.457240\pi$$
$$224$$ 2.00000 + 1.73205i 0.133631 + 0.115728i
$$225$$ −6.00000 −0.400000
$$226$$ −2.50000 + 4.33013i −0.166298 + 0.288036i
$$227$$ 1.00000 + 1.73205i 0.0663723 + 0.114960i 0.897302 0.441417i $$-0.145524\pi$$
−0.830930 + 0.556378i $$0.812191\pi$$
$$228$$ 0 0
$$229$$ 14.0000 24.2487i 0.925146 1.60240i 0.133820 0.991006i $$-0.457276\pi$$
0.791326 0.611394i $$-0.209391\pi$$
$$230$$ −16.0000 −1.05501
$$231$$ −1.50000 + 7.79423i −0.0986928 + 0.512823i
$$232$$ −5.00000 −0.328266
$$233$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$234$$ 21.0000 + 36.3731i 1.37281 + 2.37778i
$$235$$ −2.00000 3.46410i −0.130466 0.225973i
$$236$$ −1.50000 + 2.59808i −0.0976417 + 0.169120i
$$237$$ 27.0000 1.75384
$$238$$ −5.00000 + 1.73205i −0.324102 + 0.112272i
$$239$$ −5.00000 −0.323423 −0.161712 0.986838i $$-0.551701\pi$$
−0.161712 + 0.986838i $$0.551701\pi$$
$$240$$ −3.00000 + 5.19615i −0.193649 + 0.335410i
$$241$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$242$$ −0.500000 0.866025i −0.0321412 0.0556702i
$$243$$ 0 0
$$244$$ 1.00000 0.0640184
$$245$$ 2.00000 + 13.8564i 0.127775 + 0.885253i
$$246$$ 12.0000 0.765092
$$247$$ 0 0
$$248$$ −2.00000 3.46410i −0.127000 0.219971i
$$249$$ −9.00000 15.5885i −0.570352 0.987878i
$$250$$ 6.00000 10.3923i 0.379473 0.657267i
$$251$$ −24.0000 −1.51487 −0.757433 0.652913i $$-0.773547\pi$$
−0.757433 + 0.652913i $$0.773547\pi$$
$$252$$ −15.0000 + 5.19615i −0.944911 + 0.327327i
$$253$$ 8.00000 0.502956
$$254$$ 9.50000 16.4545i 0.596083 1.03245i
$$255$$ −6.00000 10.3923i −0.375735 0.650791i
$$256$$ −0.500000 0.866025i −0.0312500 0.0541266i
$$257$$ −1.50000 + 2.59808i −0.0935674 + 0.162064i −0.909010 0.416775i $$-0.863160\pi$$
0.815442 + 0.578838i $$0.196494\pi$$
$$258$$ −24.0000 −1.49417
$$259$$ 2.00000 10.3923i 0.124274 0.645746i
$$260$$ −14.0000 −0.868243
$$261$$ 15.0000 25.9808i 0.928477 1.60817i
$$262$$ 0 0
$$263$$ −13.5000 23.3827i −0.832446 1.44184i −0.896093 0.443866i $$-0.853607\pi$$
0.0636476 0.997972i $$-0.479727\pi$$
$$264$$ 1.50000 2.59808i 0.0923186 0.159901i
$$265$$ −12.0000 −0.737154
$$266$$ 0 0
$$267$$ 18.0000 1.10158
$$268$$ −4.50000 + 7.79423i −0.274881 + 0.476108i
$$269$$ 12.0000 + 20.7846i 0.731653 + 1.26726i 0.956176 + 0.292791i $$0.0945841\pi$$
−0.224523 + 0.974469i $$0.572083\pi$$
$$270$$ −9.00000 15.5885i −0.547723 0.948683i
$$271$$ 5.50000 9.52628i 0.334101 0.578680i −0.649211 0.760609i $$-0.724901\pi$$
0.983312 + 0.181928i $$0.0582339\pi$$
$$272$$ 2.00000 0.121268
$$273$$ −42.0000 36.3731i −2.54196 2.20140i
$$274$$ 3.00000 0.181237
$$275$$ −0.500000 + 0.866025i −0.0301511 + 0.0522233i
$$276$$ 12.0000 + 20.7846i 0.722315 + 1.25109i
$$277$$ 4.50000 + 7.79423i 0.270379 + 0.468310i 0.968959 0.247222i $$-0.0795177\pi$$
−0.698580 + 0.715532i $$0.746184\pi$$
$$278$$ 2.00000 3.46410i 0.119952 0.207763i
$$279$$ 24.0000 1.43684
$$280$$ 1.00000 5.19615i 0.0597614 0.310530i
$$281$$ −28.0000 −1.67034 −0.835170 0.549992i $$-0.814631\pi$$
−0.835170 + 0.549992i $$0.814631\pi$$
$$282$$ −3.00000 + 5.19615i −0.178647 + 0.309426i
$$283$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$284$$ 1.00000 + 1.73205i 0.0593391 + 0.102778i
$$285$$ 0 0
$$286$$ 7.00000 0.413919
$$287$$ −10.0000 + 3.46410i −0.590281 + 0.204479i
$$288$$ 6.00000 0.353553
$$289$$ 6.50000 11.2583i 0.382353 0.662255i
$$290$$ 5.00000 + 8.66025i 0.293610 + 0.508548i
$$291$$ −10.5000 18.1865i −0.615521 1.06611i
$$292$$ −2.00000 + 3.46410i −0.117041 + 0.202721i
$$293$$ −18.0000 −1.05157 −0.525786 0.850617i $$-0.676229\pi$$
−0.525786 + 0.850617i $$0.676229\pi$$
$$294$$ 16.5000 12.9904i 0.962300 0.757614i
$$295$$ 6.00000 0.349334
$$296$$ −2.00000 + 3.46410i −0.116248 + 0.201347i
$$297$$ 4.50000 + 7.79423i 0.261116 + 0.452267i
$$298$$ 5.00000 + 8.66025i 0.289642 + 0.501675i
$$299$$ −28.0000 + 48.4974i −1.61928 + 2.80468i
$$300$$ −3.00000 −0.173205
$$301$$ 20.0000 6.92820i 1.15278 0.399335i
$$302$$ −3.00000 −0.172631
$$303$$ 13.5000 23.3827i 0.775555 1.34330i
$$304$$ 0 0
$$305$$ −1.00000 1.73205i −0.0572598 0.0991769i
$$306$$ −6.00000 + 10.3923i −0.342997 + 0.594089i
$$307$$ 2.00000 0.114146 0.0570730 0.998370i $$-0.481823\pi$$
0.0570730 + 0.998370i $$0.481823\pi$$
$$308$$ −0.500000 + 2.59808i −0.0284901 + 0.148039i
$$309$$ 54.0000 3.07195
$$310$$ −4.00000 + 6.92820i −0.227185 + 0.393496i
$$311$$ 5.00000 + 8.66025i 0.283524 + 0.491078i 0.972250 0.233944i $$-0.0751631\pi$$
−0.688726 + 0.725022i $$0.741830\pi$$
$$312$$ 10.5000 + 18.1865i 0.594445 + 1.02961i
$$313$$ −0.500000 + 0.866025i −0.0282617 + 0.0489506i −0.879810 0.475325i $$-0.842331\pi$$
0.851549 + 0.524276i $$0.175664\pi$$
$$314$$ 16.0000 0.902932
$$315$$ 24.0000 + 20.7846i 1.35225 + 1.17108i
$$316$$ 9.00000 0.506290
$$317$$ 6.00000 10.3923i 0.336994 0.583690i −0.646872 0.762598i $$-0.723923\pi$$
0.983866 + 0.178908i $$0.0572566\pi$$
$$318$$ 9.00000 + 15.5885i 0.504695 + 0.874157i
$$319$$ −2.50000 4.33013i −0.139973 0.242441i
$$320$$ −1.00000 + 1.73205i −0.0559017 + 0.0968246i
$$321$$ 6.00000 0.334887
$$322$$ −16.0000 13.8564i −0.891645 0.772187i
$$323$$ 0 0
$$324$$ −4.50000 + 7.79423i −0.250000 + 0.433013i
$$325$$ −3.50000 6.06218i −0.194145 0.336269i
$$326$$ 8.50000 + 14.7224i 0.470771 + 0.815400i
$$327$$ 3.00000 5.19615i 0.165900 0.287348i
$$328$$ 4.00000 0.220863
$$329$$ 1.00000 5.19615i 0.0551318 0.286473i
$$330$$ −6.00000 −0.330289
$$331$$ −6.50000 + 11.2583i −0.357272 + 0.618814i −0.987504 0.157593i $$-0.949627\pi$$
0.630232 + 0.776407i $$0.282960\pi$$
$$332$$ −3.00000 5.19615i −0.164646 0.285176i
$$333$$ −12.0000 20.7846i −0.657596 1.13899i
$$334$$ −9.50000 + 16.4545i −0.519817 + 0.900349i
$$335$$ 18.0000 0.983445
$$336$$ −7.50000 + 2.59808i −0.409159 + 0.141737i
$$337$$ −12.0000 −0.653682 −0.326841 0.945079i $$-0.605984\pi$$
−0.326841 + 0.945079i $$0.605984\pi$$
$$338$$ −18.0000 + 31.1769i −0.979071 + 1.69580i
$$339$$ −7.50000 12.9904i −0.407344 0.705541i
$$340$$ −2.00000 3.46410i −0.108465 0.187867i
$$341$$ 2.00000 3.46410i 0.108306 0.187592i
$$342$$ 0 0
$$343$$ −10.0000 + 15.5885i −0.539949 + 0.841698i
$$344$$ −8.00000 −0.431331
$$345$$ 24.0000 41.5692i 1.29212 2.23801i
$$346$$ −12.5000 21.6506i −0.672004 1.16395i
$$347$$ 11.0000 + 19.0526i 0.590511 + 1.02279i 0.994164 + 0.107883i $$0.0344071\pi$$
−0.403653 + 0.914912i $$0.632260\pi$$
$$348$$ 7.50000 12.9904i 0.402042 0.696358i
$$349$$ 2.00000 0.107058 0.0535288 0.998566i $$-0.482953\pi$$
0.0535288 + 0.998566i $$0.482953\pi$$
$$350$$ 2.50000 0.866025i 0.133631 0.0462910i
$$351$$ −63.0000 −3.36269
$$352$$ 0.500000 0.866025i 0.0266501 0.0461593i
$$353$$ 9.00000 + 15.5885i 0.479022 + 0.829690i 0.999711 0.0240566i $$-0.00765819\pi$$
−0.520689 + 0.853746i $$0.674325\pi$$
$$354$$ −4.50000 7.79423i −0.239172 0.414259i
$$355$$ 2.00000 3.46410i 0.106149 0.183855i
$$356$$ 6.00000 0.317999
$$357$$ 3.00000 15.5885i 0.158777 0.825029i
$$358$$ 19.0000 1.00418
$$359$$ 9.50000 16.4545i 0.501391 0.868434i −0.498608 0.866828i $$-0.666155\pi$$
0.999999 0.00160673i $$-0.000511438\pi$$
$$360$$ −6.00000 10.3923i −0.316228 0.547723i
$$361$$ 9.50000 + 16.4545i 0.500000 + 0.866025i
$$362$$ 11.0000 19.0526i 0.578147 1.00138i
$$363$$ 3.00000 0.157459
$$364$$ −14.0000 12.1244i −0.733799 0.635489i
$$365$$ 8.00000 0.418739
$$366$$ −1.50000 + 2.59808i −0.0784063 + 0.135804i
$$367$$ −2.00000 3.46410i −0.104399 0.180825i 0.809093 0.587680i $$-0.199959\pi$$
−0.913493 + 0.406855i $$0.866625\pi$$
$$368$$ 4.00000 + 6.92820i 0.208514 + 0.361158i
$$369$$ −12.0000 + 20.7846i −0.624695 + 1.08200i
$$370$$ 8.00000 0.415900
$$371$$ −12.0000 10.3923i −0.623009 0.539542i
$$372$$ 12.0000 0.622171
$$373$$ −5.50000 + 9.52628i −0.284779 + 0.493252i −0.972556 0.232671i $$-0.925254\pi$$
0.687776 + 0.725923i $$0.258587\pi$$
$$374$$ 1.00000 + 1.73205i 0.0517088 + 0.0895622i
$$375$$ 18.0000 + 31.1769i 0.929516 + 1.60997i
$$376$$ −1.00000 + 1.73205i −0.0515711 + 0.0893237i
$$377$$ 35.0000 1.80259
$$378$$ 4.50000 23.3827i 0.231455 1.20268i
$$379$$ 1.00000 0.0513665 0.0256833 0.999670i $$-0.491824\pi$$
0.0256833 + 0.999670i $$0.491824\pi$$
$$380$$ 0 0
$$381$$ 28.5000 + 49.3634i 1.46010 + 2.52897i
$$382$$ −1.00000 1.73205i −0.0511645 0.0886194i
$$383$$ −13.0000 + 22.5167i −0.664269 + 1.15055i 0.315214 + 0.949021i $$0.397924\pi$$
−0.979483 + 0.201527i $$0.935410\pi$$
$$384$$ 3.00000 0.153093
$$385$$ 5.00000 1.73205i 0.254824 0.0882735i
$$386$$ 8.00000 0.407189
$$387$$ 24.0000 41.5692i 1.21999 2.11308i
$$388$$ −3.50000 6.06218i −0.177686 0.307760i
$$389$$ −9.00000 15.5885i −0.456318 0.790366i 0.542445 0.840091i $$-0.317499\pi$$
−0.998763 + 0.0497253i $$0.984165\pi$$
$$390$$ 21.0000 36.3731i 1.06338 1.84182i
$$391$$ −16.0000 −0.809155
$$392$$ 5.50000 4.33013i 0.277792 0.218704i
$$393$$ 0 0
$$394$$ −7.50000 + 12.9904i −0.377845 + 0.654446i
$$395$$ −9.00000 15.5885i −0.452839 0.784340i
$$396$$ 3.00000 + 5.19615i 0.150756 + 0.261116i
$$397$$ −3.00000 + 5.19615i −0.150566 + 0.260787i −0.931436 0.363906i $$-0.881443\pi$$
0.780870 + 0.624694i $$0.214776\pi$$
$$398$$ 4.00000 0.200502
$$399$$ 0 0
$$400$$ −1.00000 −0.0500000
$$401$$ 4.50000 7.79423i 0.224719 0.389225i −0.731516 0.681824i $$-0.761187\pi$$
0.956235 + 0.292599i $$0.0945202\pi$$
$$402$$ −13.5000 23.3827i −0.673319 1.16622i
$$403$$ 14.0000 + 24.2487i 0.697390 + 1.20791i
$$404$$ 4.50000 7.79423i 0.223883 0.387777i
$$405$$ 18.0000 0.894427
$$406$$ −2.50000 + 12.9904i −0.124073 + 0.644702i
$$407$$ −4.00000 −0.198273
$$408$$ −3.00000 + 5.19615i −0.148522 + 0.257248i
$$409$$ −11.0000 19.0526i −0.543915 0.942088i −0.998674 0.0514740i $$-0.983608\pi$$
0.454759 0.890614i $$-0.349725\pi$$
$$410$$ −4.00000 6.92820i −0.197546 0.342160i
$$411$$ −4.50000 + 7.79423i −0.221969 + 0.384461i
$$412$$ 18.0000 0.886796
$$413$$ 6.00000 + 5.19615i 0.295241 + 0.255686i
$$414$$ −48.0000 −2.35907
$$415$$ −6.00000 + 10.3923i −0.294528 + 0.510138i
$$416$$ 3.50000 + 6.06218i 0.171602 + 0.297223i
$$417$$ 6.00000 + 10.3923i 0.293821 + 0.508913i
$$418$$ 0 0
$$419$$ 16.0000 0.781651 0.390826 0.920465i $$-0.372190\pi$$
0.390826 + 0.920465i $$0.372190\pi$$
$$420$$ 12.0000 + 10.3923i 0.585540 + 0.507093i
$$421$$ −20.0000 −0.974740 −0.487370 0.873195i $$-0.662044\pi$$
−0.487370 + 0.873195i $$0.662044\pi$$
$$422$$ 10.0000 17.3205i 0.486792 0.843149i
$$423$$ −6.00000 10.3923i −0.291730 0.505291i
$$424$$ 3.00000 + 5.19615i 0.145693 + 0.252347i
$$425$$ 1.00000 1.73205i 0.0485071 0.0840168i
$$426$$ −6.00000 −0.290701
$$427$$ 0.500000 2.59808i 0.0241967 0.125730i
$$428$$ 2.00000 0.0966736
$$429$$ −10.5000 + 18.1865i −0.506945 + 0.878054i
$$430$$ 8.00000 + 13.8564i 0.385794 + 0.668215i
$$431$$ −12.5000 21.6506i −0.602104 1.04287i −0.992502 0.122228i $$-0.960996\pi$$
0.390398 0.920646i $$-0.372337\pi$$
$$432$$ −4.50000 + 7.79423i −0.216506 + 0.375000i
$$433$$ −34.0000 −1.63394 −0.816968 0.576683i $$-0.804347\pi$$
−0.816968 + 0.576683i $$0.804347\pi$$
$$434$$ −10.0000 + 3.46410i −0.480015 + 0.166282i
$$435$$ −30.0000 −1.43839
$$436$$ 1.00000 1.73205i 0.0478913 0.0829502i
$$437$$ 0 0
$$438$$ −6.00000 10.3923i −0.286691 0.496564i
$$439$$ 2.50000 4.33013i 0.119318 0.206666i −0.800179 0.599761i $$-0.795262\pi$$
0.919498 + 0.393095i $$0.128596\pi$$
$$440$$ −2.00000 −0.0953463
$$441$$ 6.00000 + 41.5692i 0.285714 + 1.97949i
$$442$$ −14.0000 −0.665912
$$443$$ −18.0000 + 31.1769i −0.855206 + 1.48126i 0.0212481 + 0.999774i $$0.493236\pi$$
−0.876454 + 0.481486i $$0.840097\pi$$
$$444$$ −6.00000 10.3923i −0.284747 0.493197i
$$445$$ −6.00000 10.3923i −0.284427 0.492642i
$$446$$ −2.00000 + 3.46410i −0.0947027 + 0.164030i
$$447$$ −30.0000 −1.41895
$$448$$ −2.50000 + 0.866025i −0.118114 + 0.0409159i
$$449$$ −6.00000 −0.283158 −0.141579 0.989927i $$-0.545218\pi$$
−0.141579 + 0.989927i $$0.545218\pi$$
$$450$$ 3.00000 5.19615i 0.141421 0.244949i
$$451$$ 2.00000 + 3.46410i 0.0941763 + 0.163118i
$$452$$ −2.50000 4.33013i −0.117590 0.203672i
$$453$$ 4.50000 7.79423i 0.211428 0.366205i
$$454$$ −2.00000 −0.0938647
$$455$$ −7.00000 + 36.3731i −0.328165 + 1.70520i
$$456$$ 0 0
$$457$$ −7.00000 + 12.1244i −0.327446 + 0.567153i −0.982004 0.188858i $$-0.939521\pi$$
0.654558 + 0.756012i $$0.272855\pi$$
$$458$$ 14.0000 + 24.2487i 0.654177 + 1.13307i
$$459$$ −9.00000 15.5885i −0.420084 0.727607i
$$460$$ 8.00000 13.8564i 0.373002 0.646058i
$$461$$ 27.0000 1.25752 0.628758 0.777601i $$-0.283564\pi$$
0.628758 + 0.777601i $$0.283564\pi$$
$$462$$ −6.00000 5.19615i −0.279145 0.241747i
$$463$$ −2.00000 −0.0929479 −0.0464739 0.998920i $$-0.514798\pi$$
−0.0464739 + 0.998920i $$0.514798\pi$$
$$464$$ 2.50000 4.33013i 0.116060 0.201021i
$$465$$ −12.0000 20.7846i −0.556487 0.963863i
$$466$$ 0 0
$$467$$ −6.00000 + 10.3923i −0.277647 + 0.480899i −0.970799 0.239892i $$-0.922888\pi$$
0.693153 + 0.720791i $$0.256221\pi$$
$$468$$ −42.0000 −1.94145
$$469$$ 18.0000 + 15.5885i 0.831163 + 0.719808i
$$470$$ 4.00000 0.184506
$$471$$ −24.0000 + 41.5692i −1.10586 + 1.91541i
$$472$$ −1.50000 2.59808i −0.0690431 0.119586i
$$473$$ −4.00000 6.92820i −0.183920 0.318559i
$$474$$ −13.5000 + 23.3827i −0.620076 + 1.07400i
$$475$$ 0 0
$$476$$ 1.00000 5.19615i 0.0458349 0.238165i
$$477$$ −36.0000 −1.64833
$$478$$ 2.50000 4.33013i 0.114347 0.198055i
$$479$$ 0.500000 + 0.866025i 0.0228456 + 0.0395697i 0.877222 0.480085i $$-0.159394\pi$$
−0.854377 + 0.519654i $$0.826061\pi$$
$$480$$ −3.00000 5.19615i −0.136931 0.237171i
$$481$$ 14.0000 24.2487i 0.638345 1.10565i
$$482$$ 0 0
$$483$$ 60.0000 20.7846i 2.73009 0.945732i
$$484$$ 1.00000 0.0454545
$$485$$ −7.00000 + 12.1244i −0.317854 + 0.550539i
$$486$$ 0 0
$$487$$ 20.0000 + 34.6410i 0.906287 + 1.56973i 0.819181 + 0.573535i $$0.194428\pi$$
0.0871056 + 0.996199i $$0.472238\pi$$
$$488$$ −0.500000 + 0.866025i −0.0226339 + 0.0392031i
$$489$$ −51.0000 −2.30630
$$490$$ −13.0000 5.19615i −0.587280 0.234738i
$$491$$ 30.0000 1.35388 0.676941 0.736038i $$-0.263305\pi$$
0.676941 + 0.736038i $$0.263305\pi$$
$$492$$ −6.00000 + 10.3923i −0.270501 + 0.468521i
$$493$$ 5.00000 + 8.66025i 0.225189 + 0.390038i
$$494$$ 0 0
$$495$$ 6.00000 10.3923i 0.269680 0.467099i
$$496$$ 4.00000 0.179605
$$497$$ 5.00000 1.73205i 0.224281 0.0776931i
$$498$$ 18.0000 0.806599
$$499$$ −10.0000 + 17.3205i −0.447661 + 0.775372i −0.998233 0.0594153i $$-0.981076\pi$$
0.550572 + 0.834788i $$0.314410\pi$$
$$500$$ 6.00000 + 10.3923i 0.268328 + 0.464758i
$$501$$ −28.5000 49.3634i −1.27329 2.20540i
$$502$$ 12.0000 20.7846i 0.535586 0.927663i
$$503$$ 3.00000 0.133763 0.0668817 0.997761i $$-0.478695\pi$$
0.0668817 + 0.997761i $$0.478695\pi$$
$$504$$ 3.00000 15.5885i 0.133631 0.694365i
$$505$$ −18.0000 −0.800989
$$506$$ −4.00000 + 6.92820i −0.177822 + 0.307996i
$$507$$ −54.0000 93.5307i −2.39822 4.15385i
$$508$$ 9.50000 + 16.4545i 0.421494 + 0.730050i
$$509$$ 11.0000 19.0526i 0.487566 0.844490i −0.512331 0.858788i $$-0.671218\pi$$
0.999898 + 0.0142980i $$0.00455136\pi$$
$$510$$ 12.0000 0.531369
$$511$$ 8.00000 + 6.92820i 0.353899 + 0.306486i
$$512$$ 1.00000 0.0441942
$$513$$ 0 0
$$514$$ −1.50000 2.59808i −0.0661622 0.114596i
$$515$$ −18.0000 31.1769i −0.793175 1.37382i
$$516$$ 12.0000 20.7846i 0.528271 0.914991i
$$517$$ −2.00000 −0.0879599
$$518$$ 8.00000 + 6.92820i 0.351500 + 0.304408i
$$519$$ 75.0000 3.29213
$$520$$ 7.00000 12.1244i 0.306970 0.531688i
$$521$$ −5.00000 8.66025i −0.219054 0.379413i 0.735465 0.677563i $$-0.236964\pi$$
−0.954519 + 0.298150i $$0.903630\pi$$
$$522$$ 15.0000 + 25.9808i 0.656532 + 1.13715i
$$523$$ 5.00000 8.66025i 0.218635 0.378686i −0.735756 0.677247i $$-0.763173\pi$$
0.954391 + 0.298560i $$0.0965063\pi$$
$$524$$ 0 0
$$525$$ −1.50000 + 7.79423i −0.0654654 + 0.340168i
$$526$$ 27.0000 1.17726
$$527$$ −4.00000 + 6.92820i −0.174243 + 0.301797i
$$528$$ 1.50000 + 2.59808i 0.0652791 + 0.113067i
$$529$$ −20.5000 35.5070i −0.891304 1.54378i
$$530$$ 6.00000 10.3923i 0.260623 0.451413i
$$531$$ 18.0000 0.781133
$$532$$ 0 0
$$533$$ −28.0000 −1.21281
$$534$$ −9.00000 + 15.5885i −0.389468 + 0.674579i
$$535$$ −2.00000 3.46410i −0.0864675 0.149766i
$$536$$ −4.50000 7.79423i −0.194370 0.336659i
$$537$$ −28.5000 + 49.3634i −1.22987 + 2.13019i
$$538$$ −24.0000 −1.03471
$$539$$ 6.50000 + 2.59808i 0.279975 + 0.111907i
$$540$$ 18.0000 0.774597
$$541$$ −2.50000 + 4.33013i −0.107483 + 0.186167i −0.914750 0.404020i $$-0.867613\pi$$
0.807267 + 0.590187i $$0.200946\pi$$
$$542$$ 5.50000 + 9.52628i 0.236245 + 0.409189i
$$543$$ 33.0000 + 57.1577i 1.41617 + 2.45287i
$$544$$ −1.00000 + 1.73205i −0.0428746 + 0.0742611i
$$545$$ −4.00000 −0.171341
$$546$$ 52.5000 18.1865i 2.24679 0.778312i
$$547$$ 30.0000 1.28271 0.641354 0.767245i $$-0.278373\pi$$
0.641354 + 0.767245i $$0.278373\pi$$
$$548$$ −1.50000 + 2.59808i −0.0640768 + 0.110984i
$$549$$ −3.00000 5.19615i −0.128037 0.221766i
$$550$$ −0.500000 0.866025i −0.0213201 0.0369274i
$$551$$ 0 0
$$552$$ −24.0000 −1.02151
$$553$$ 4.50000 23.3827i 0.191359 0.994333i
$$554$$ −9.00000 −0.382373
$$555$$ −12.0000 + 20.7846i −0.509372 + 0.882258i
$$556$$ 2.00000 + 3.46410i 0.0848189 + 0.146911i
$$557$$ −13.0000 22.5167i −0.550828 0.954062i −0.998215 0.0597213i $$-0.980979\pi$$
0.447387 0.894340i $$-0.352355\pi$$
$$558$$ −12.0000 + 20.7846i −0.508001 + 0.879883i
$$559$$ 56.0000 2.36855
$$560$$ 4.00000 + 3.46410i 0.169031 + 0.146385i
$$561$$ −6.00000 −0.253320
$$562$$ 14.0000 24.2487i 0.590554 1.02287i
$$563$$ −10.0000 17.3205i −0.421450 0.729972i 0.574632 0.818412i $$-0.305145\pi$$
−0.996082 + 0.0884397i $$0.971812\pi$$
$$564$$ −3.00000 5.19615i −0.126323 0.218797i
$$565$$ −5.00000 + 8.66025i −0.210352 + 0.364340i
$$566$$ 0 0
$$567$$ 18.0000 + 15.5885i 0.755929 + 0.654654i
$$568$$ −2.00000 −0.0839181
$$569$$ 6.00000 10.3923i 0.251533 0.435668i −0.712415 0.701758i $$-0.752399\pi$$
0.963948 + 0.266090i $$0.0857319\pi$$
$$570$$ 0 0
$$571$$ −11.0000 19.0526i −0.460336 0.797325i 0.538642 0.842535i $$-0.318938\pi$$
−0.998978 + 0.0452101i $$0.985604\pi$$
$$572$$ −3.50000 + 6.06218i −0.146342 + 0.253472i
$$573$$ 6.00000 0.250654
$$574$$ 2.00000 10.3923i 0.0834784 0.433766i
$$575$$ 8.00000 0.333623
$$576$$ −3.00000 + 5.19615i −0.125000 + 0.216506i
$$577$$ 21.5000 + 37.2391i 0.895057 + 1.55028i 0.833734 + 0.552166i $$0.186198\pi$$
0.0613223 + 0.998118i $$0.480468\pi$$
$$578$$ 6.50000 + 11.2583i 0.270364 + 0.468285i
$$579$$ −12.0000 + 20.7846i −0.498703 + 0.863779i
$$580$$ −10.0000 −0.415227
$$581$$ −15.0000 + 5.19615i −0.622305 + 0.215573i
$$582$$ 21.0000 0.870478
$$583$$ −3.00000 + 5.19615i −0.124247 + 0.215203i
$$584$$ −2.00000 3.46410i −0.0827606 0.143346i
$$585$$ 42.0000 + 72.7461i 1.73649 + 3.00768i
$$586$$ 9.00000 15.5885i 0.371787 0.643953i
$$587$$ 27.0000 1.11441 0.557205 0.830375i $$-0.311874\pi$$
0.557205 + 0.830375i $$0.311874\pi$$
$$588$$ 3.00000 + 20.7846i 0.123718 + 0.857143i
$$589$$ 0 0
$$590$$ −3.00000 + 5.19615i −0.123508 + 0.213922i
$$591$$ −22.5000 38.9711i −0.925526 1.60306i
$$592$$ −2.00000 3.46410i −0.0821995 0.142374i
$$593$$ −3.00000 + 5.19615i −0.123195 + 0.213380i −0.921026 0.389501i $$-0.872647\pi$$
0.797831 + 0.602881i $$0.205981\pi$$
$$594$$ −9.00000 −0.369274
$$595$$ −10.0000 + 3.46410i −0.409960 + 0.142014i
$$596$$ −10.0000 −0.409616
$$597$$ −6.00000 + 10.3923i −0.245564 + 0.425329i
$$598$$ −28.0000 48.4974i −1.14501 1.98321i
$$599$$ −18.0000 31.1769i −0.735460 1.27385i −0.954521 0.298143i $$-0.903633\pi$$
0.219061 0.975711i $$-0.429701\pi$$
$$600$$ 1.50000 2.59808i 0.0612372 0.106066i
$$601$$ 26.0000 1.06056 0.530281 0.847822i $$-0.322086\pi$$
0.530281 + 0.847822i $$0.322086\pi$$
$$602$$ −4.00000 + 20.7846i −0.163028 + 0.847117i
$$603$$ 54.0000 2.19905
$$604$$ 1.50000 2.59808i 0.0610341 0.105714i
$$605$$ −1.00000 1.73205i −0.0406558 0.0704179i
$$606$$ 13.5000 + 23.3827i 0.548400 + 0.949857i
$$607$$ −4.00000 + 6.92820i −0.162355 + 0.281207i −0.935713 0.352763i $$-0.885242\pi$$
0.773358 + 0.633970i $$0.218576\pi$$
$$608$$ 0 0
$$609$$ −30.0000 25.9808i −1.21566 1.05279i
$$610$$ 2.00000 0.0809776
$$611$$ 7.00000 12.1244i 0.283190 0.490499i
$$612$$ −6.00000 10.3923i −0.242536 0.420084i
$$613$$ 19.0000 + 32.9090i 0.767403 + 1.32918i 0.938967 + 0.344008i $$0.111785\pi$$
−0.171564 + 0.985173i $$0.554882\pi$$
$$614$$ −1.00000 + 1.73205i −0.0403567 + 0.0698999i
$$615$$ 24.0000 0.967773
$$616$$ −2.00000 1.73205i −0.0805823 0.0697863i
$$617$$ −15.0000 −0.603877 −0.301939 0.953327i $$-0.597634\pi$$
−0.301939 + 0.953327i $$0.597634\pi$$
$$618$$ −27.0000 + 46.7654i −1.08610 + 1.88118i
$$619$$ 14.0000 + 24.2487i 0.562708 + 0.974638i 0.997259 + 0.0739910i $$0.0235736\pi$$
−0.434551 + 0.900647i $$0.643093\pi$$
$$620$$ −4.00000 6.92820i −0.160644 0.278243i
$$621$$ 36.0000 62.3538i 1.44463 2.50217i
$$622$$ −10.0000 −0.400963
$$623$$ 3.00000 15.5885i 0.120192 0.624538i
$$624$$ −21.0000 −0.840673
$$625$$ 9.50000 16.4545i 0.380000 0.658179i
$$626$$ −0.500000 0.866025i −0.0199840 0.0346133i
$$627$$ 0 0
$$628$$ −8.00000 + 13.8564i −0.319235 + 0.552931i
$$629$$ 8.00000 0.318981
$$630$$ −30.0000 + 10.3923i −1.19523 + 0.414039i
$$631$$ −18.0000 −0.716569 −0.358284 0.933613i $$-0.616638\pi$$
−0.358284 + 0.933613i $$0.616638\pi$$
$$632$$ −4.50000 + 7.79423i −0.179000 + 0.310038i
$$633$$ 30.0000 + 51.9615i 1.19239 + 2.06529i
$$634$$ 6.00000 + 10.3923i 0.238290 + 0.412731i
$$635$$ 19.0000 32.9090i 0.753992 1.30595i
$$636$$ −18.0000 −0.713746
$$637$$ −38.5000 + 30.3109i −1.52543 + 1.20096i
$$638$$ 5.00000 0.197952
$$639$$ 6.00000 10.3923i 0.237356 0.411113i
$$640$$ −1.00000 1.73205i −0.0395285 0.0684653i
$$641$$ 13.5000 + 23.3827i 0.533218 + 0.923561i 0.999247 + 0.0387913i $$0.0123508\pi$$
−0.466029 + 0.884769i $$0.654316\pi$$
$$642$$ −3.00000 + 5.19615i −0.118401 + 0.205076i
$$643$$ 31.0000 1.22252 0.611260 0.791430i $$-0.290663\pi$$
0.611260 + 0.791430i $$0.290663\pi$$
$$644$$ 20.0000 6.92820i 0.788110 0.273009i
$$645$$ −48.0000 −1.89000
$$646$$ 0 0
$$647$$ −15.0000 25.9808i −0.589711 1.02141i −0.994270 0.106897i $$-0.965908\pi$$
0.404559 0.914512i $$-0.367425\pi$$
$$648$$ −4.50000 7.79423i −0.176777 0.306186i
$$649$$ 1.50000 2.59808i 0.0588802 0.101983i
$$650$$ 7.00000 0.274563
$$651$$ 6.00000 31.1769i 0.235159 1.22192i
$$652$$ −17.0000 −0.665771
$$653$$ −20.0000 + 34.6410i −0.782660 + 1.35561i 0.147726 + 0.989028i $$0.452805\pi$$
−0.930387 + 0.366579i $$0.880529\pi$$
$$654$$ 3.00000 + 5.19615i 0.117309 + 0.203186i
$$655$$ 0 0
$$656$$ −2.00000 + 3.46410i −0.0780869 + 0.135250i
$$657$$ 24.0000 0.936329
$$658$$ 4.00000 + 3.46410i 0.155936 + 0.135045i
$$659$$ 28.0000 1.09073 0.545363 0.838200i $$-0.316392\pi$$
0.545363 + 0.838200i $$0.316392\pi$$
$$660$$ 3.00000 5.19615i 0.116775 0.202260i
$$661$$ 11.0000 + 19.0526i 0.427850 + 0.741059i 0.996682 0.0813955i $$-0.0259377\pi$$
−0.568831 + 0.822454i $$0.692604\pi$$
$$662$$ −6.50000 11.2583i −0.252630 0.437567i
$$663$$ 21.0000 36.3731i 0.815572 1.41261i
$$664$$ 6.00000 0.232845
$$665$$ 0 0
$$666$$ 24.0000 0.929981
$$667$$ −20.0000 + 34.6410i −0.774403 + 1.34131i
$$668$$ −9.50000 16.4545i −0.367566 0.636643i
$$669$$ −6.00000 10.3923i −0.231973 0.401790i
$$670$$ −9.00000 + 15.5885i −0.347700 + 0.602235i
$$671$$ −1.00000 −0.0386046
$$672$$ 1.50000 7.79423i 0.0578638 0.300669i
$$673$$ 34.0000 1.31060 0.655302 0.755367i $$-0.272541\pi$$
0.655302 + 0.755367i $$0.272541\pi$$
$$674$$ 6.00000 10.3923i 0.231111 0.400297i
$$675$$ 4.50000 + 7.79423i 0.173205 + 0.300000i
$$676$$ −18.0000 31.1769i −0.692308 1.19911i
$$677$$ −7.00000 + 12.1244i −0.269032 + 0.465977i −0.968612 0.248577i $$-0.920037\pi$$
0.699580 + 0.714554i $$0.253370\pi$$
$$678$$ 15.0000 0.576072
$$679$$ −17.5000 + 6.06218i −0.671588 + 0.232645i
$$680$$ 4.00000 0.153393
$$681$$ 3.00000 5.19615i 0.114960 0.199117i
$$682$$ 2.00000 + 3.46410i 0.0765840 + 0.132647i
$$683$$ −10.5000 18.1865i −0.401771 0.695888i 0.592168 0.805814i $$-0.298272\pi$$
−0.993940 + 0.109926i $$0.964939\pi$$
$$684$$ 0 0
$$685$$ 6.00000 0.229248
$$686$$ −8.50000 16.4545i −0.324532 0.628235i
$$687$$ −84.0000 −3.20480
$$688$$ 4.00000 6.92820i 0.152499 0.264135i
$$689$$ −21.0000 36.3731i −0.800036 1.38570i
$$690$$ 24.0000 + 41.5692i 0.913664 + 1.58251i
$$691$$ −16.5000 + 28.5788i −0.627690 + 1.08719i 0.360325 + 0.932827i $$0.382666\pi$$
−0.988014 + 0.154363i $$0.950667\pi$$
$$692$$ 25.0000 0.950357
$$693$$ 15.0000 5.19615i 0.569803 0.197386i
$$694$$ −22.0000 −0.835109
$$695$$ 4.00000 6.92820i 0.151729 0.262802i
$$696$$ 7.50000 + 12.9904i 0.284287 + 0.492399i
$$697$$ −4.00000 6.92820i −0.151511 0.262424i
$$698$$ −1.00000 + 1.73205i −0.0378506 + 0.0655591i
$$699$$ 0 0
$$700$$ −0.500000 + 2.59808i −0.0188982 + 0.0981981i
$$701$$ −27.0000 −1.01978 −0.509888 0.860241i $$-0.670313\pi$$
−0.509888 + 0.860241i $$0.670313\pi$$
$$702$$ 31.5000 54.5596i 1.18889 2.05922i
$$703$$ 0 0
$$704$$ 0.500000 + 0.866025i 0.0188445 + 0.0326396i
$$705$$ −6.00000 + 10.3923i −0.225973 + 0.391397i
$$706$$ −18.0000 −0.677439
$$707$$ −18.0000 15.5885i −0.676960 0.586264i
$$708$$ 9.00000 0.338241
$$709$$ 24.0000 41.5692i 0.901339 1.56116i 0.0755813 0.997140i $$-0.475919\pi$$
0.825758 0.564025i $$-0.190748\pi$$
$$710$$ 2.00000 + 3.46410i 0.0750587 + 0.130005i
$$711$$ −27.0000 46.7654i −1.01258 1.75384i
$$712$$ −3.00000 + 5.19615i −0.112430 + 0.194734i
$$713$$ −32.0000 −1.19841
$$714$$ 12.0000 + 10.3923i 0.449089 + 0.388922i
$$715$$ 14.0000 0.523570
$$716$$ −9.50000 + 16.4545i −0.355032 + 0.614933i
$$717$$ 7.50000 + 12.9904i 0.280093 + 0.485135i
$$718$$ 9.50000 + 16.4545i 0.354537 + 0.614076i
$$719$$ 19.0000 32.9090i 0.708580 1.22730i −0.256803 0.966464i $$-0.582669\pi$$
0.965384 0.260834i $$-0.0839974\pi$$
$$720$$ 12.0000 0.447214
$$721$$ 9.00000 46.7654i 0.335178 1.74163i
$$722$$ −19.0000 −0.707107
$$723$$ 0 0
$$724$$ 11.0000 + 19.0526i 0.408812 + 0.708083i
$$725$$ −2.50000 4.33013i −0.0928477 0.160817i
$$726$$ −1.50000 + 2.59808i −0.0556702 + 0.0964237i
$$727$$ −22.0000 −0.815935 −0.407967 0.912996i $$-0.633762\pi$$
−0.407967 + 0.912996i $$0.633762\pi$$
$$728$$ 17.5000 6.06218i 0.648593 0.224679i
$$729$$ −27.0000 −1.00000
$$730$$ −4.00000 + 6.92820i −0.148047 + 0.256424i
$$731$$ 8.00000 + 13.8564i 0.295891 + 0.512498i
$$732$$ −1.50000 2.59808i −0.0554416 0.0960277i
$$733$$ 9.50000 16.4545i 0.350891 0.607760i −0.635515 0.772088i $$-0.719212\pi$$
0.986406 + 0.164328i $$0.0525456\pi$$
$$734$$ 4.00000 0.147643
$$735$$ 33.0000 25.9808i 1.21722 0.958315i
$$736$$ −8.00000 −0.294884
$$737$$ 4.50000 7.79423i 0.165760 0.287104i
$$738$$ −12.0000 20.7846i −0.441726 0.765092i
$$739$$ −21.0000 36.3731i −0.772497 1.33800i −0.936190 0.351494i $$-0.885674\pi$$
0.163693 0.986511i $$-0.447659\pi$$
$$740$$ −4.00000 + 6.92820i −0.147043 + 0.254686i
$$741$$ 0 0
$$742$$ 15.0000 5.19615i 0.550667 0.190757i
$$743$$ 12.0000 0.440237 0.220119 0.975473i $$-0.429356\pi$$
0.220119 + 0.975473i $$0.429356\pi$$
$$744$$ −6.00000 + 10.3923i −0.219971 + 0.381000i
$$745$$ 10.0000 + 17.3205i 0.366372 + 0.634574i
$$746$$ −5.50000 9.52628i −0.201369 0.348782i
$$747$$ −18.0000 + 31.1769i −0.658586 + 1.14070i
$$748$$ −2.00000 −0.0731272
$$749$$ 1.00000 5.19615i 0.0365392 0.189863i
$$750$$ −36.0000 −1.31453
$$751$$ −14.0000 + 24.2487i −0.510867 + 0.884848i 0.489053 + 0.872254i $$0.337342\pi$$
−0.999921 + 0.0125942i $$0.995991\pi$$
$$752$$ −1.00000 1.73205i −0.0364662 0.0631614i
$$753$$ 36.0000 + 62.3538i 1.31191 + 2.27230i
$$754$$ −17.5000 + 30.3109i −0.637312 + 1.10386i
$$755$$ −6.00000 −0.218362
$$756$$ 18.0000 + 15.5885i 0.654654 + 0.566947i
$$757$$ −22.0000 −0.799604 −0.399802 0.916602i $$-0.630921\pi$$
−0.399802 + 0.916602i $$0.630921\pi$$
$$758$$ −0.500000 + 0.866025i −0.0181608 + 0.0314555i
$$759$$ −12.0000 20.7846i −0.435572 0.754434i
$$760$$ 0 0
$$761$$ 3.00000 5.19615i 0.108750 0.188360i −0.806514 0.591215i $$-0.798649\pi$$
0.915264 + 0.402854i $$0.131982\pi$$
$$762$$ −57.0000 −2.06489
$$763$$ −4.00000 3.46410i −0.144810 0.125409i
$$764$$ 2.00000 0.0723575
$$765$$ −12.0000 + 20.7846i −0.433861 + 0.751469i
$$766$$ −13.0000 22.5167i −0.469709 0.813560i
$$767$$ 10.5000 + 18.1865i 0.379133 + 0.656678i
$$768$$ −1.50000 + 2.59808i −0.0541266 + 0.0937500i
$$769$$ −14.0000 −0.504853 −0.252426 0.967616i $$-0.581229\pi$$
−0.252426 + 0.967616i $$0.581229\pi$$
$$770$$ −1.00000 + 5.19615i −0.0360375 + 0.187256i
$$771$$ 9.00000 0.324127
$$772$$ −4.00000 + 6.92820i −0.143963 + 0.249351i
$$773$$ −12.0000 20.7846i −0.431610 0.747570i 0.565402 0.824815i $$-0.308721\pi$$
−0.997012 + 0.0772449i $$0.975388\pi$$
$$774$$ 24.0000 + 41.5692i 0.862662 + 1.49417i
$$775$$ 2.00000 3.46410i 0.0718421